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The Literature

Of course, there are many sources that one can use. However, the following were
those which acted as my bible for the survey of the areas that were relevant to
my research.

• [CB99] is used to study representations of quivers.

• [Obl03, Sto05, Mac03] is used to introduce double affine Hecke algebras.

• [CBS04, EOR06] is used to study the Deligne-Simpson problem.

• [CM10] is used to provide exposition on monodromy.



Representations of Quivers

Definition 1
A quiver is a quadruple Q = (QV ,QA; s, t) where QV is called the set of
vertices, QA is called the set of arrows, s : QA → QV is called the source
map, t : QA → QV is called the target map.

Example 2

This is an example of a quiver; note we allow multiple edges and loops.
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Figure: An example of a quiver Q.

Definition 3
A quiver representation {(Xi , fα)} of a quiver Q is an assignment of a vector
space Xi to each vertex i and linear map fα : Xi → Xj to each arrow α : i → j .
The space of representations is Rep(Q, n), where n = (dimX1, ..., dimX|QV |) is
the so-called dimension vector.



Representations of Quivers

Remark 4
Choosing bases, we identify the space of representations Rep(Q, n) with∏

α:i→j

Mdim(Xj )×dim(Xi )(C).

Definition 5
The path algebra of Q is the algebra CQ generated by arrows α and trivial
paths ei at each vertex i , subject to the following relations:

(i) e2i = ei .
(ii) eiej = 0 for i ̸= j .

(iii) et(α)α = α.
(iv) αes(α) = α.

Remark 6
A path in a quiver Q is a concatenation of arrows p = αn · · ·α1 with
t(αk) = s(αk+1). The length of the path ℓ(p) is the number of arrows n. We
read the path right-to-left, so that it is comparable to function composition.

Example 7

The path algebra of the quiver Q with one vertex 1 and one loop α at that
vertex is generated by e1, α, α

2, α3, .... As such, the path algebra CQ ∼= C[α] is
isomorphic to the polynomials in one variable.



Representations of Quivers

Remark 8
Recall that a (left) module M over a ring R is a generalisation of a vector
space over a field; it is an Abelian group (M,+) such that there is a map
· : R ×M → M called scalar multiplication which is distributive and
associative, where the multiplicative identity 1R acts trivially on M.

Proposition 9

The space Rep(Q, n) is equivalent to the space of (left) CQ-modules.

Definition 10
Let Q be a quiver. The double of Q is the quiver Q obtained by adjoining the
reverse arrows α∗ : j → i for each arrow α : i → j .

Example 11

Here, we have a quiver Q which doubles to the quiver Q.
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Figure: An example of a quiver with its double.



Double Affine Hecke Algebras

Definition 12
Let k0, k1, u0, u1, q ∈ C∗. The double affine Hecke algebra of type C∨C1 is
the algebra Ht,q generated by T0,T1,T

∨
0 ,T∨

1 subject to these relations:
(i) (T0 − k0)(T0 + k−1

0 ) = 0.
(ii) (T1 − k1)(T1 + k−1

1 ) = 0.
(iii) (T∨

0 − u0)(T
∨
0 + u−1

0 ) = 0.
(iv) (T∨

1 − u1)(T
∨
1 + u−1

1 ) = 0.
(v) T∨

1 T1T0T
∨
0 = q−1/2.

Definition 13
The spherical subalgebra is Bt,q = eHt,qe, where the symmetriser e is

e =
1 + k1T1

1 + k2
1

.

We define the following elements of Ht,1:

X1 = T∨
1 T1 + T0T

∨
0 ,

X2 = T1T0 + T∨
0 T∨

1 ,

X3 = T1T
∨
0 + (T∨

0 )−1T−1
1 .



Double Affine Hecke Algebras

Notation 14
We use the notation k i := ki − k−1

i and ui := ui − u−1
i .

Theorem 15 ([Obl03, Theorem 2.1, Proposition 2.1])

Let Ht,1 be the double affine Hecke algebra with q = 1 and define the
polynomial Rt = X1X2X3 − X 2

1 − X 2
2 − X 2

3 + r1X1 + r2X2 + r3X3 + r4 = 0 where

r1 = k1u1 + u0k0,

r2 = k0k1 + u0u1,

r3 = k0u1 + u0k1,

r4 = k
2
0 + k

2
1 + u2

0 + u2
1 − k0k1u0u1 + 4.

(i) Z(Ht,1) is generated by X1,X2,X3 and Z(Ht,1) ∼= C[X1,X2,X3]/⟨Rt⟩.
(ii) We have an isomorphism φ : Z(Ht,1) → Bt,1 given by φ(z) = ze.

Remark 16
Theorem 15 can be generalised to treat the case where q ̸= 1, see [Ter13]. The
punchline is that Bt,q can be given explicitly by generators and relations.



Double Affine Hecke Algebras

Definition 17
Let G be a group with arbitrary subgroup H ≤ G and normal subgroup N ⊴ G .
Consider the conjugation action H × N → N where h • n = hnh−1. The
semidirect product N ⋊ H is the group with underlying set N × H and
almost-pointwise operation (n1, h1) · (n2, h2) = (n1(h1 • n2), h1h2).

Example 18

Consider the algebra Dq = Cq[X
±1,P±1]⋊ CZ2, which we describe below:

• The elements are linear combinations of X iP jsε for ε = 0, 1.
• The multiplication is defined by sX = X−1s and sP = P−1s.

We invert the Laurent polynomials in X to form D loc
q = C(X )[P±1]⋊ CZ2.

Proposition 19 (Basic Representation)

For all q ∈ C∗, there is an injective algebra map ιq : Ht,q ↪→ D loc
q given by

T0 7→ k0P
−1s +

k0 + u0X

1− X 2
(1− P−1s), T1 7→ k1s +

k1 + u1X

1− X 2
(1− s),

T∨
0 7→ q−1/2ιq(T0)

−1X , T∨
1 7→ X−1ιq(T1)

−1.



Deligne-Simpson Problem

We consider the multiplicative Deligne-Simpson problem: for given conjugacy
classes C1, ...,Ck in GLn(C), determine solutions of the matrix equation

A1 · · ·Ak = In, where each Ai ∈ Ci .

Example 20 (Our Situation)

Let k = 4 and n = 2: we want to solve A1A2A3A4 = I2 (2× 2 matrices here).
First, we fix ξij ∈ C∗ for i = 1, 2, 3, 4 and j = 1, 2 such that the products

(Ai − ξi1I2)(Ai − ξi2I2) = 0.

It is clear the ξij are eigenvalues of the matrices Ai . The conjugacy classes are
then determined by the ranks ni1 = rank(Ai − ξi1I2). By convention, we set
n0 = n = 2, which allows us to realise as a dimension vector of some quiver
representation this collection n = (n0, n11, n21, n31, n41). Indeed, the quiver in

our situation is D̃4.

Remark 21
In our situation above, the ranks ni1 = 1 for all i , so the representation of this
quiver will consist of C2 at the central node and one-dimensional subspaces at
the other vertices.



Deligne-Simpson Problem
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Figure: The affine Dynkin quiver D̃4.



Deligne-Simpson Problem

Definition 22
Let Q be a quiver. For q ∈ (C∗)|QV |, the multiplicative preprojective algebra
is the algebra Λq satisfying the following properties:
(i) 1 + αα∗ is invertible in Λq for all α ∈ QA.
(ii)

∏
α∈QA

(1 + αα∗)ε(α) =
∑

v∈QV
qvev in Λq, where ε(α) = ±1.

Example 23 (Our Situation)

In our situation (from Example 20), let Q = D̃4 and define q ∈ (C∗)5 by

q0 :=
1

ξ11ξ21ξ31ξ41
, qi1 :=

ξi1
ξi2

for i = 1, 2, 3, 4.

Then, we have Λq ∼= CQ/J, where J is the two-sided ideal generated by these:

q11(e11 + α∗
11α11) = e11,

q21(e21 + α∗
21α21) = e21,

q31(e31 + α∗
31α31) = e31,

q41(e41 + α∗
41α41) = e41,

(e0 + α11α
∗
11)(e0 + α21α

∗
21)(e0 + α31α

∗
31)(e0 + α41α

∗
41) = q0e0.



Deligne-Simpson Problem

Definition 24
Let µ, ξi1, ξi2 ∈ C∗ for i = 1, 2, 3, 4. We define the algebra Aw,µ,ξ to be
generated by the four elements x1, x2, x3, x4 subject to these relations:
(i) (x1 − ξ111)(x1 − ξ121) = 0.
(ii) (x2 − ξ211)(x2 − ξ221) = 0.
(iii) (x3 − ξ311)(x3 − ξ321) = 0.
(iv) (x4 − ξ411)(x4 − ξ421) = 0.
(v) x1x2x3x4 = µ.

Lemma 25
For suitable choice of (w, µ, ξ), we have an algebra isomorphism Ht,q

∼= Aw,µ,ξ.

Theorem 26
For suitable multiplicative preprojective algebra Λq and idempotent e, we have
an algebra isomorphism Aw,µ,ξ

∼= eΛqe.

Proposition 27 ([EOR06, Proposition 11.2])

The algebra Λq/Λqe0Λ
q is finite-dimensional. Moreover, if qi1 ̸= 1 for any

i = 1, 2, 3, 4, then this quotient algebra is zero and thus Λq Mor∼ e0Λ
qe0.



Monodromy

Monodromy is the study of an object’s behaviour near a singularity (apparently,
the word comes from Greek and means ‘uniformly running’).

Definition 28
The sixth Painlevé equation (PVI) is the second-order ODE

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(
1

t
+

1

t − 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(1− t)2

(
α+ β

t

y 2
+ γ

t − 1

(y − 1)2
+ δ

t(t − 1)

(y − t)2

)
.

Remark 29
Full disclosure, Definition 28 frightens me and I am not even close to a
differential equations expert, so useful comments are welcome!

Definition 30
Let A1, ...,Ak be n × n matrices. A Fuchsian system is a linear system

dΦ

dλ
=

(
k∑

i=1

Ai

λ− ti

)
Φ,

where variable λ ∈ CP1 \ {t1, ..., tk} and Φ is a Mn×n(C)-valued function of λ.



Monodromy

Remark 31
Recall that CP1 = C ∪ {∞}, the one-point compactification of the complex
plane. In Definition 30, if we impose the additive Deligne Simpson condition

A1 + · · ·+ Ak = 0,

then the point at infinity λ = ∞ is a so-called regular point of the system; any
neighbourhood of this point contains a solution of the Fuchsian system with
the condition that Φ|λ=∞ = In, the identity matrix.

Example 32 (Our Situation)

Let A1,A2,A3 be 2× 2 matrices and consider the punctured Riemann sphere
X := CP1 \ {0, 1, t,∞}. The Fuchsian system of interest is the following:

dΦ

dλ
=

(
A1

λ
+

A2

λ− 1
+

A3

λ− t

)
Φ.

We define the matrix corresponding to infinity as A∞ := −A1 − A2 − A3.

Remark 33
For i = ∞, 1, 2, 3, the eigenvalues depend on α, β, γ, δ from (PVI) respectively.



Monodromy

We say that the Fuchsian system encodes the monodromy data for the punctured
space X . Let Φ be a solution to the Fuchsian system in Example 32 where it is
the identity at λ = ∞ and the matrices sum to zero.

Remark 34
Recall the fundamental group π1(X , x) consists of classes of loops at x ∈ X .

Choosing some x ∈ X and considering a loop based here that encircles the
poles 0, 1, t,∞, we get a representation ρ : π1(X , x) → GL2(C). The matrices
M1,M2,M3 correspond to the loops around each of the points 0, 1, t respectively.

We can choose the orientation so that the generators are path-homotopic to the
loop at infinity, meaning we get the multiplicative Deligne-Simpson condition

M∞ = (M1M2M3)
−1.

This is the multiplicative analogue of the expression for A∞; monodromy allows
us to pass between the multiplicative and additive Deligne-Simpson problems.

In [CM10], the Mi ∈ GL2(C) are given locally as follows:

Mi ∼ exp(Ai ) ∼
(
eθi/2 0

0 −e−θi/2

)
.



Representation of the Double Affine Hecke Algebra via Matrices

Let Aq := Cq[X
±1,P±1]. We have an Aq-action on C[X±1] given by

X •X j = X j+1, P •X j = qjX .

This gives a representation π : Aq → EndC(C[X±1]). Alright, but we want to get
a representation of Dq from earlier; this is achieved by the induced representation
of Dq = Aq ⋊ CZ2 via π, which is defined as follows:

Ind
Dq

Aq
(π) := Dq ⊗Aq π ∼= CZ2 ⊗ C[X±1] ∼= C[X±1]⊕2.

Thus, we get a representation π̂ : Dq → EndC(C[X±1]⊕2) defined by these:

X • (f1 + sf2) = X •f1 + sX−1
•f2,

P • (f1 + sf2) = P •f1 + sP−1
•f2,

s • (f1 + sf2) = f2 + sf1.

Remark 35
In the same way, we extend this representation to all of C(X ), that is we get a
representation π̂ : D loc

q → EndC(C(X )⊕2), where the acting formulae and the
subsequent matrix formulae are preserved in this localised situation.

Notation 36
We abuse Basic Representation notation and let Ti := ιq(Ti ), T

∨
i := ιq(T

∨
i ).



Representation of the Double Affine Hecke Algebra via Matrices

We can define the representation π̂ by matrices in the basis {1, s}:

π̂(X ) =

(
X 0
0 X−1

)
, π̂(P) =

(
P 0
0 P−1

)
, π̂(s) =

(
0 1
1 0

)
.

Note also that for any rational function f ∈ C(X ), we have

π̂(f (X )) =

(
f (X ) 0
0 f (X−1)

)
.

We are now in a position to exploit the Basic Representation to generate some
2 × 2 matrices which represent the type C∨C1 double affine Hecke algebra.
Indeed, we need only decompose the Ti into the forms T0 = a0(X )+b0(X )P−1s
and T1 = a1(X ) + b1(X )s, as is done below:

T0 =
k0 + u0X

1− X 2
+

(
k0 −

k0 + u0X

1− X 2

)
P−1s,

T1 =
k1 + u1X

1− X 2
+

(
k1 −

k1 + u1X

1− X 2

)
s.



Representation of the Double Affine Hecke Algebra via Matrices

Hence, we find the corresponding matrices:

π̂(T0) =


k0 + u0X

1− X 2
k0P

−1 − k0 + u0X

1− X 2
P−1

k0P +
k0X

2 + u0X

1− X 2
P −k0X

2 + u0X

1− X 2

 ,

π̂(T1) =


k1 + u1X

1− X 2
k1 −

k1 + u1X

1− X 2

k1 +
k1X

2 + u1X

1− X 2
−k1X

2 + u1X

1− X 2

 .

We easily represent the T∨
i by matrices using the expressions we have for π̂(Ti )

in conjunction with the Basic Representation. First, note that

π̂(X )−1 =

(
X−1 0
0 X

)
.



Representation of the Double Affine Hecke Algebra via Matrices

We now have all we require to compute the remaining matrices:

π̂(T∨
0 ) = q−1/2


−
k0X + u0X 2

1− X 2
−k0P−1X−1 +

k0 + u0X

1− X 2
P−1X−1

−k0PX −
k0X 2 + u0X

1− X 2
PX

k0X + u0

1− X 2

,

π̂(T∨
1 ) =


−k1X

−1 + u1

1− X 2
−k1X

−1 +
k1X

−1 + u1

1− X 2

−k1X − k1X
3 + u1X

2

1− X 2

k1X
3 + u1X

2

1− X 2

 .

Notation 37
We label the matrices π̂(T∨

1 ) =: A1, π̂(T1) =: A2, π̂(T0) =: A3, π̂(T
∨
0 ) =: A4.

The representation π̂ respects the relations of the double affine Hecke algebra;
this means that A1A2A3A4 = q−1/2I2 and (Ai − ti I2)(Ai + t−1

i I2) = 0, for the
relevant parameters ti in Definition 12.



Conclusions

• For q = 1, the four quadratic relations remain but the product relation
reduces to A1A2A3A4 = I2, the multiplicative Deligne-Simpson problem.

• Looking at the matrices π̂(Ti ) and π̂(T∨
i ), we have a two-parameter family

of solutions to the Deligne-Simpson problem, parametrised by X and P.

• In quiver terms, this provides the following representation of D̃4: the
one-dimensional spaces im(Ai − ti I2) are on the outside vertices, C2 is at
the central node and the linear maps are inclusions.

• From another perspective, we can associate to each Ai a monodromy
matrix; there is ambiguity in that M∞ is determined by the other Mi , so
one must choose which of our matrices Ai corresponds to this M∞. In this
way, we see that the eigenvalues ti = eθi/2.

• The matrices can be used to parametrise the affine cubic surface Rt = 0.

Problem 38
The matrices have poles at X 2 = 1. Is it possible to degenerate, as X → 1, to
get solutions to the Deligne-Simpson problem for X = 1? If not, we may not
have a global system of coordinates on the affine cubic surface; points of the
form (1,P) may be missed in this (X ,P)-parametrisation.



Future Work

• Study the double affine Hecke algebra of type C∨Cn, that is an algebra
defined similarly to Definition 12 except with generators T0, ...,Tn subject
to braid relations, the quadratic relations, and more.

• Derive a similar story for the Basic Representation in the type C∨Cn

situation following work by [EGO06] and [Cha19] and convert this theory
into matrices solving an analogous Deligne-Simpson problem.

• Use this to get a parametrisation of an affine cubic surface in the type
C∨Cn situation and describe the spherical subalgebra à la Theorem 15.



Thanks for Listening!
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