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Introduction to Knots

Definition
A topology on a set X is a set τ of subsets of X satisfying the following:

T1. ∅,X ∈ τ .

T2. τ is closed under finite intersections.

T3. τ is closed under arbitrary unions.

Members of τ are open in X . A subset is closed in X if its complement is open.

Example

The set Rn is a topological space when equipped with the standard Euclidean
topology, that is the one generated by open balls, that is the open sets in Rn are
arbitrary unions of Bε(x) := {y ∈ Rn : |x − y | < ε} for every ε > 0 and x ∈ Rn.

Remark
Open and closed are not opposites; a set can be one of them, both or neither.

Definition
Let X and Y be topological spaces. A map f : X → Y is continuous if, for
any U ⊆ Y open, the pre-image f −1(U) ⊆ X is open. It is a homeomorphism
if it is a continuous bijection with continuous inverse. An embedding is a
continuous injection which is a homeomorphism onto its image f (X ).



Introduction to Knots

Definition
Let f , g : X → Y be embeddings of topological spaces. An ambient isotopy
from f to g is a continuous map F : Y × [0, 1]→ Y that is a homeomorphism
for every t ∈ [0, 1] and satisfies the following, for all y ∈ Y and x ∈ X :

F (y , 0) = y and F (f (x), 1) = g(x).

Lemma
Ambient isotopy ≃ is an equivalence relation.

Definition
A closed parametrised curve is called knotted if it is not ambient isotopic to
the circle S1. Otherwise, it is called unknotted.

A knot K ⊆ R3 is a class of closed curves under the equivalence relation ambient
isotopy. One of the most effective ways to picture a knot comes about by using
knot diagrams; these are projections of a knot K onto the plane R2 such that
each crossing consists of a continuous curve (over-crossing) and a discontinuous
curve (under-crossing).



Introduction to Knots

Example

The simplest non-trivial knot is the trefoil and its projection is given below.

Definition
The Reidemeister moves are the following, applied locally to a knot’s arcs:

R0. Planar isotopy.

R1. Twisting part of an arc.

R2. Moving an arc in front of or behind another arc.

R3. Moving an arc in front of or behind a crossing.

R1←→ R2←→ R3←→



Introduction to Knots

Example

Applying Reidemeister moves to transform the green arc of the figure-eight
knot so that it passes between chirality.

R0 R2 R3≃ R0≃

This example shows that the figure-eight knot is isotopic to its mirror image. This
is not true for all knots (the trefoil is not; proving so requires more machinery).

Definition
A knot K is achiral if it is isotopic to its mirror image K . Otherwise, it is chiral.

How can we prove results on chirality and other knot invariants without explicitly
parametrising a closed curve and computing an ambient isotopy to see (i) whether
or not the curve is knotted, and (ii) if it is ambient isotopic to another knot?
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We breathe a sigh of relief and state one of knot theory’s most important results.

Theorem (Reidemeister’s Theorem)

Two knots K1 and K2 are ambient isotopic if and only if their diagrams are
related by a finite sequence of Reidemeister moves.

Remark
The nomenclature here can make Reidemeister’s Theorem seem trivial but it
really isn’t; we say knot diagrams are isotopic when we can pass between them
using Reidemeister moves whereas ambient isotopic is the topological notion
defined at the beginning.

Example

We now know that the figure-eight knot is ambient isotopic to its mirror
image, that is they lie in the same ambient isotopy class and so truly do define
the same knot.



Knot Colourings

One simple way to prove that the trefoil knot is indeed a knotted curve is to
consider p-colourability, a colouring of the arcs of the trefoil with p (odd prime)
distinct colours under certain rules.

Definition
Let p > 2 be prime. A knot diagram is p-colourable if it can be coloured with
p colours such that the following are satisfied:

(i) At least two colours are used.

(ii) For x , y , z ∈ Zp colours at a crossing with over-crossing z and
under-crossings x and y , it must be that x + y − 2z ≡ 0 (mod p).

Example

An example of a three-colouring of one diagram of the trefoil.

Theorem
p-colourability is an isotopy invariant.



Knot Colourings

Definition
Let K be a diagram of a knot with n crossings. A colouring matrix MK of K is
an n × n matrix with rows and columns representing the crossing and arcs of
K , respectively, where an entry of 2 denotes an over-crossing, an entry of −1
denotes an under-crossing and an entry of 0 denotes exclusion from a crossing.

Example

The colouring matrix of the trefoil knot K , with respect to a given labelling, is

MK =

−1 −1 2
2 −1 −1
−1 2 −1

 .

Definition
Let K be a diagram of a knot. The knot determinant det(K) of K is the
absolute value of any minor of the matrix MK . By convention, det(S1) = 1.

Proposition

Let K be a diagram of a knot. K is p-colourable if and only if p | det(K).



Knot Colourings

Example

Consider the below diagram of the endless knot K and its colouring matrix:



−1 −1 0 0 2 0 0
0 −1 −1 0 0 2 0
2 0 −1 −1 0 0 0
0 0 0 −1 −1 0 2
0 0 2 0 −1 −1 0
0 2 0 0 0 −1 −1
−1 0 0 2 0 0 −1


One can compute the knot determinant to be det(K) = 15. The proposition
above guarantees that it is both 3-colourable and 5-colourable.

Exercise
If the talk is knot interesting, pass the time by finding both a 3-colouring and a
5-colouring of the endless knot K (if you are very bored, verify det(K) = 15).



The Knot Group

We now detour into algebraic topology which will not only give us a powerful
knot invariant but will allow me to live up to this seminar’s title!

Definition
Let X be a topological space. A path is a continuous map α : [0, 1]→ X . A
path is a loop based at p if α(0) = p = α(1).

Definition
Let α, β : [0, 1]→ X be paths with endpoints x and y . We call α and β
path-homotopic if there is a continuous F : [0, 1]× [0, 1]→ X such that the
following conditions hold:

(i) F (s, 0) = α(s).

(ii) F (s, 1) = β(s).

(iii) F (0, t) = x .

(iv) F (1, t) = y .

Remark
We can also join two paths together given that the start-point of the second
path is the endpoint of the first. Furthermore, we can trace a path in the
reverse direction and we can even define the trivial path at a single point. This
gives us a group-like structure.



The Knot Group

Definition
Let X be a topological space and x ∈ X . The fundamental group is the set
π1(X , x) = {[α] : α is a loop based at x} under the join operation.

Definition
Let K be a knot. The knot group is the fundamental group π1(R3 \ K).

Remark
An alternate approach is to define the so-called Wirtinger presentation of the
knot group, which has generators xi corresponding to arcs of K and relations
based on the interaction of positive crossings L+ and negative crossings L−:

xi

xj xk

L+

xkxix
−1
k x−1

j = 1

xj

xi xk

L−

xkx
−1
j x−1

k xi = 1



The Knot Group

Theorem
The knot group is an isotopy invariant.

Proof
Homeomorphic spaces have isomorphic fundamental groups. As such, for
K1 ≃ K2, it follows R3 \ K1

∼= R3 \ K2 and so π1(R3 \ K1) ∼= π1(R3 \ K2).

Proposition

Let K be a diagram of a knot. Then, K is p-colourable if and only if there
exists a group homomorphism φ : π1(R3 \ K)→ D2p to the dihedral group.

Proof
The dihedral group D2p = ⟨r , s; rp, s2, rsrs⟩. Let φ(xi ) = r ci s, where ci is the
colour of the arc xi ; apply this to the (first) Wirtinger relation:

φ(1) = φ(xkxix
−1
k x−1

j )

⇔ 1 = r ck sr ci ss−1r−ck s−1r−cj

= r ck r−ci r ck r−cj

= r 2ck−ci−cj

⇔ ci + cj − 2ck ≡ 0 (mod p).



The ‘End’



Brief Braid Theory

Definition
A braid on n-strings consists of n arcs x1, ..., xn with integer endpoints 1, ..., n.
More specifically, each xi connects a point P+

i = (i , 0, 1) in the so-called upper
plane to a point P−

π(i) = (i , 0, 0) in the so-called lower plane, where π ∈ Sn is a
permutation. In the case that π is trivial, we call it a pure braid on n-strings.

Example

Consider the following braid diagram, in which the permutation π = (1)(3)(24).

P+
1 P+

2 P+
3 P+

4

P−
1 P−

2 P−
3 P−

4

Convention: if an arc goes over from Pi to Pi+1, then it is represented by σi but
if an arc goes over from Pi+1 to Pi , then it is represented by σ−1

i .



Brief Braid Theory

Definition
The Artin moves are the following, applied to the arcs of a braid on n-strings:

A1. σiσj = σjσi whenever |i − j | > 1.

A2. σiσ
−1
i = 1 = σ−1

i σi .

A3. σiσi+1σi = σi+1σiσi+1.

Remark

• This gives rise to the Artin presentation of the braid group. For a braid
on n-strands, the associated braid group is that with n − 1 generators
subject to relations given by the Artin moves. Call this group Bn.

• The symmetric group Sn has the so-called Coxeter presentation on
generators si = (i , i + 1) transpositions with relations given by the Artin
moves. The pure braid group on n-strands is then the kernel of the group
homomorphism Bn → Sn where σi 7→ si .

• The braid group can be given as the fundamental group of a certain space.

Theorem (Alexander’s Theorem)

Every knot is isotopic to a closed (identify the upper and lower planes) braid.



A Different Direction

In rather näıve terms, a complex Coxeter group is a group which is generated
by ‘reflections’ (e.g. W = Z2) and the Cherednik algebra Ht,c of a Coxeter
group is the algebra generated by the algebras CW , C[h], C[h∗], where h is a
complex vector space (e.g. h = Cn), subject to some relations.

My research is heading down the following avenue: there is a generalisation called
the double affine Hecke algebra Ht,q; I hope we can reconvene down the line
to continue this story in the more algebraic setting (when I can better convince
you that I know what I’m talking about).

Although this is a far-cry from the title of the talk, it is interesting to see knot
theory have an impact on some very algebraic structures!



The True End
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