Double Affine Hecke Algebras and Character Varieties

Leeds Algebra Seminar, University of Leeds

Bradley Ryan (based on joint work-in-progress with Oleg Chalykh) University of Leeds

October 24th 2023

Hecke Algebras of Type C_n

Definition 1

Let $\mathbf{t} = (k_0, k_n, t) \in (\mathbb{C}^*)^3$. The affine Hecke algebra of type \widetilde{C}_n is the algebra $\widetilde{H}_{n,t}$ generated by $T_0, T_1, ..., T_n$ satisfying the following:

$$\begin{split} [T_i, T_j] &= 0, & |i - j| > 1 \\ T_0 T_1 T_0 T_1 &= T_1 T_0 T_1 T_0, \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1}, & i = 1, ..., n-2 \\ T_{n-1} T_n T_{n-1} T_n &= T_n T_{n-1} T_n T_{n-1}, \\ (T_0 - k_0) (T_0 + k_0^{-1}) &= 0, \\ (T_i - t) (T_i + t^{-1}) &= 0, & i = 1, ..., n-1 \\ (T_n - k_n) (T_n + k_n^{-1}) &= 0. \end{split}$$

Remark 2

The **Hecke algebra** of type C_n is the subalgebra $H_{n,t}$ generated by $T_1, ..., T_n$.

Generators of the Affine Hecke Algebra

Approach 1: The affine Hecke algebra is generated by $T_0, T_1, ..., T_n$.

Approach 2: The affine Hecke algebra is generated by $T_1, ..., T_n$ and $Y_1, ..., Y_n$.

Remark 3 We have an explicit formula $Y_i := T_i \cdots T_{n-1} T_n T_{n-1} \cdots T_1 T_0 T_1^{-1} \cdots T_{i-1}^{-1}$.

Proposition 4 ([Lusztig])

The Y_i pairwise commute and generate a subalgebra $\mathbb{C}[\mathbf{Y}^{\pm 1}]$ such that $\widetilde{H} \cong H \otimes \mathbb{C}[\mathbf{Y}^{\pm 1}].$ The Double Affine Hecke Algebra of Type $C^{\vee}C_n$

Definition 5 ([Sahi]) Let $q \in \mathbb{C}^*$ and $\mathbf{t} = (k_0, k_n, t, u_0, u_n) \in (\mathbb{C}^*)^5$. The **DAHA** of type $C^{\vee}C_n$ is the algebra $\mathcal{H}_{n,t,q}$ generated by $T_0, T_1, ..., T_n$ and $X_1, ..., X_n$ satisfying the following: |i - i| > 1 $[T_i, T_i] = 0,$ $T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ i = 1, ..., n - 2 $T_{n-1}T_nT_{n-1}T_n = T_nT_{n-1}T_nT_{n-1}$ $[X_i, X_i] = 0.$ 1 < i, i < n $[T_i, X_i] = 0,$ $i \neq i, i+1$ $T_i X_i T_i = X_{i+1},$ i = 1, ..., n - 1 $(T_0 - k_0)(T_0 + k_0^{-1}) = 0,$ $(T_i - t)(T_i + t^{-1}) = 0$ i = 1, ..., n - 1 $(T_n - k_n)(T_n + k_n^{-1}) = 0.$ $(T_0^{\vee} - u_0)(T_0^{\vee} + u_0^{-1}) = 0.$ $T_0^{\vee} := a^{-1} T_0^{-1} X_1$ $(T_{r}^{\vee} - u_{r})(T_{r}^{\vee} + u_{r}^{-1}) = 0.$ $T_{n}^{\vee} := X_{n}^{-1} T_{n}^{-1}$

Spherical Subalgebra

Definition 6

The spherical subalgebra of the DAHA is the subalgebra $e\mathcal{H}_{n,t,q}e$, where

$$\mathbf{e} \coloneqq \frac{1}{\sum_{w \in W} \tau_w^2} \sum_{w \in W} \tau_w T_w.$$

Problem 7

Find a variety V such that the centre $Z(\mathcal{H}_{n,t,1}) \cong \mathbf{e}\mathcal{H}_{n,t,1}\mathbf{e}$ of the DAHA at the classical level q = 1 is isomorphic to the algebra of functions $\mathbb{C}[V]$ on V.

Character Varieties

Definition 8

Fix conjugacy classes $C_1, ..., C_k \subseteq GL_m(\mathbb{C})$, an integer $g \ge 0$ and define the set

 $\widehat{\mathcal{M}} := \{A_1, B_1, ..., A_g, B_g \in \mathsf{GL}_m(\mathbb{C}), C_i \in \mathcal{C}_i : (A_1B_1A_1^{-1}B_1^{-1})\cdots (A_gB_gA_g^{-1}B_g^{-1})C_1 \cdots C_k = \mathbb{1}_m\}.$

The corresponding GL_m-character variety is defined as follows:

$$\mathcal{M}_{g,k} \coloneqq \widehat{\mathcal{M}} /\!\!/ \operatorname{PGL}_m(\mathbb{C}).$$

Definition 9

Fix semi-simple conjugacy classes in $GL_m(\mathbb{C})$ by specifying eigenvalues λ and multiplicities μ . This data is said to be **generic** if for any $1 \le s < m$ and sub-multiplicities $\nu_{ij} \le \mu_{ij}$ where $\nu_{i1} + \cdots + \nu_{i\ell_i} = s$ for each *i*, we have

$$\prod_{i=1}^k \prod_{j=1}^{\ell_i} \lambda_{ij}^{\mu_{ij}} = 1 \qquad \text{and} \qquad \prod_{i=1}^k \prod_{j=1}^{\ell_i} \lambda_{ij}^{\nu_{ij}} \neq 1.$$

Generic Semi-Simple Eigendata

For generic semi-simple conjugacy classes, we have these (if non-empty):

• $\mathcal{M}_{g,k}$ is smooth.

•
$$\mathcal{M}_{g,k}$$
 is d_{μ} -equidimensional where $d_{\mu} \coloneqq (2g-2+k)m^2 - \sum_{i=1}^k \sum_{j=1}^{\ell_i} \mu_{ij}^2 + 2.$

Theorem 10 ([Hausel, Letellier and Rodriguez-Villegas])

For generic semi-simple conjugacy classes, the variety $\mathcal{M}_{g,k}$ is connected.

Calogero-Moser Space in Type $C^{\vee}C_n$

Fix the following generic semi-simple conjugacy classes in $GL_{2n}(\mathbb{C})$:

$$C_{1} = [\operatorname{diag}(\underbrace{k_{0}, \dots, k_{0}}_{n}, \underbrace{-k_{0}^{-1}, \dots, -k_{0}^{-1}}_{n})],$$

$$C_{2} = [\operatorname{diag}(\underbrace{u_{0}, \dots, u_{0}}_{n}, \underbrace{-u_{0}^{-1}, \dots, -u_{0}^{-1}}_{n})],$$

$$C_{3} = [\operatorname{diag}(\underbrace{u_{n}, \dots, u_{n}}_{n}, \underbrace{-u_{n}^{-1}, \dots, -u_{n}^{-1}}_{n})],$$

$$C_{4} = [\operatorname{diag}(\underbrace{-k_{n}^{-1}, \dots, -k_{n}^{-1}}_{n}, \underbrace{k_{n}t^{-2}, \dots, k_{n}t^{-2}}_{n-1}, \underbrace{k_{n}t^{2n-2}}_{1})].$$

Definition 11

The Calogero-Moser space is character variety of the four-punctured sphere:

$$\mathsf{CM} \coloneqq \{(A_1, A_2, A_3, A_4) : A_i \in \mathcal{C}_i \text{ and } A_1A_2A_3A_4 = \mathbb{1}_{2n}\}/\operatorname{\mathsf{GL}}_{2n}(\mathbb{C}).$$

Theorem (conjectured in [Etingof, Gan and Oblomkov])

The centre Z of the DAHA $\mathcal{H} := \mathcal{H}_{n,t,1}$ when q = 1 is isomorphic to the algebra of functions on the Calogero-Moser space, that is $Z \cong \mathbb{C}[CM]$.

A Map from the DAHA to Calogero-Moser Space

Proposition 12 (cf. [Etingof, Gan and Oblomkov]) There is an explicit map Φ : Spec(Z) \rightarrow CM.

The correspondence between matrices and DAHA elements via $\boldsymbol{\Phi}$ is as follows:

$$A_1 \leftrightarrow T_0, \qquad A_2 \leftrightarrow T_0^{\lor}, \qquad A_3 \leftrightarrow ST_n^{\lor}S^{-1}, \qquad A_4 \leftrightarrow ST_nS^{\dagger}.$$

Problem 13

An explicit inverse is completely unknown; this is an open and difficult problem.

Multiplicative Quiver Varieties

Definition 14 ([Crawley-Boevey and Shaw]) Fix $\mathbf{q} = (q_v) \in (\mathbb{C}^*)^{Q_0}$. The multiplicative preprojective algebra is

$$\Lambda^{\mathbf{q}} \coloneqq \mathbb{C}\overline{Q}[(1+a^*a)^{-1}] \Bigg/ \left\langle \prod_{a\in\overline{Q}_1}(1+a^*a)^{arepsilon(\mathfrak{a})} - \sum_{
u\in Q_1}q_
u e_
u
ight
angle.$$

Remark 15

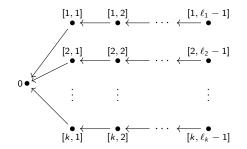
Identify $\operatorname{Rep}(\Lambda^{q}, \alpha)$ with a subset of $\operatorname{Rep}(\overline{Q}, \alpha)$ where the relations are akin to those in Λ^{q} except the role of the arrows is now replaced by linear maps.

Definition 16

The **multiplicative quiver variety** associated with Q is $\operatorname{Rep}(\Lambda^{q}, \alpha) /\!\!/ G(\alpha)$, where $G(\alpha) := (\prod_{\nu} \operatorname{GL}_{\alpha_{\nu}})/\mathbb{C}^{*}$ acts on a representation by conjugation.

From Character to Quiver Varieties

Let $\mathcal{M}_{0,k}$ be a character variety with semi-simple generic conjugacy classes. One can associate to it a quiver variety with this underlying *star-shaped* quiver:

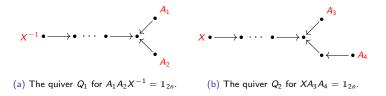


At each vertex, fix the following non-zero numbers (in terms of eigenvalues λ_{ij}):

$$q_0\coloneqq \prod_{i=1}^krac{1}{\lambda_{i1}}, \qquad q_{[i,j]}\coloneqq rac{\lambda_{ij}}{\lambda_{i\,j+1}}.$$

Local Coordinates on Calogero-Moser Space

Solving $A_1A_2A_3A_4 = \mathbb{1}_{2n}$ where $A_i \in C_i$ can be split into two related problems.



Theorem 17

The map Φ restricts to an isomorphism $\text{Spec}(Z_{\delta(\mathbf{X})}) \xrightarrow{\sim} \text{CM}_{\delta(\mathbf{X})}$.

The Duality Isomorphism

Recall we have $Y_i = T_i \cdots T_{n-1} T_n T_{n-1} \cdots T_1 T_0 T_1^{-1} \cdots T_{i-1}^{-1}$ for i = 1, ..., n.

Proposition 18 ([Sahi], Duality Isomorphism)

There is a unique involutive algebra isomorphism $\varepsilon : \mathcal{H}_{n,\mathbf{t},q} \to \mathcal{H}_{n,\widetilde{\mathbf{t}}^{-1},q^{-1}}$ where

$$T_{0} \mapsto S(T_{n}^{\vee})^{-1}S^{-1},$$

$$T_{i} \mapsto T_{i}^{-1},$$

$$X_{i} \mapsto Y_{i},$$

$$q \mapsto q^{-1},$$

$$\mathbf{t} = (k_{0}, k_{n}, t, u_{0}, u_{n}) \mapsto (u_{n}^{-1}, k_{n}^{-1}, t^{-1}, u_{0}^{-1}, k_{0}^{-1}) \eqqcolon \widetilde{\mathbf{t}}^{-1}.$$

Sketching the Main Argument

• We have an isomorphism $\Phi : \operatorname{Spec}(Z_{\delta(\mathbf{X})}) \xrightarrow{\sim} \operatorname{CM}_{\delta(\mathbf{X})}$.

- But we also have an isomorphism $\varepsilon: Z_{\delta(\mathbf{X})} \xrightarrow{\sim} Z_{\delta(\mathbf{Y})}$.
- Composing ε⁻¹_{CM} Φ ε gives us an isomorphism Spec(Z_{δ(Y)}) → CM_{δ(Y)}.
- Use [Oblomkov] to extend Φ to a regular map on all of Spec(Z).

Theorem 19 (cf. [Oblomkov])

The variety Spec(Z) is normal, irreducible and Cohen-Macaulay.

Thanks for Listening!

References

- [CBS04] William Crawley-Boevey and Peter Shaw. Multiplicative Preprojective Algebras, Middle Convolution and the Deligne-Simpson Problem, 2004. arXiv:math.RA/0404186.
- [EGO06] Pavel Etingof, Wee Liang Gan, and Alexei Oblomkov. Generalised Double Affine Hecke Algebras of Higher Rank, 2006. arXiv:math. QA/0504089.
- [HLRV13] Tamás Hausel, Emmanuel Letellier, and Fernando Rodriguez-Villegas. Arithmetic Harmonic Analysis on Character and Quiver Varieties II. Advances in Mathematics, 234:85–128, 2013. doi:10.1016/j.aim. 2012.10.009.
 - [Lus89] George Lusztig. Affine Hecke Algebras and their Graded Version. Journal of the American Mathematical Society, 3(2):599-635, 1989. doi:10.2307/1990945.
 - [Obl03] Alexei Oblomkov. Double Affine Hecke Algebras and Calogero-Moser Spaces, 2003. arXiv:math.RT/0303190.
 - [Sah99] Siddhartha Sahi. Nonsymmetric Koornwinder Polynomials and Duality. Annals of Mathematics, 150(1):267–282, 1999. doi: 10.2307/121102.