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Goals of the Talk

1. Discuss the following result.

Theorem ([Chalykh–R. ’24])

Let H be the DAHA of type C∨Cn at the classical level q = 1, e the Hecke
symmetriser and Mn a certain character variety. Then, we have an isomorphism

eHe ∼= C[Mn].

2. Convince you that this is still an integrable systems seminar!

2 / 27



The Double Affine Hecke Algebra of Type C∨Cn

Definition 1 ([Sahi ’99])

Let q1/2, k0, kn, t, u0, un ∈ C∗. The DAHA of type C∨Cn is the algebra Hq,τ

generated by T±1
0 ,T±1

1 , . . . ,T±1
n and X±1

1 , . . . ,X±1
n satisfying the following:

[Ti ,Tj ] = 0, |i − j | > 1

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , n − 2

Tn−1TnTn−1Tn = TnTn−1TnTn−1,

[Xi ,Xj ] = 0, 1 ≤ i , j ≤ n

[Ti ,Xj ] = 0, j ̸= i , i + 1

TiXiTi = Xi+1, i = 1, . . . , n − 1

(T0 − k0)(T0 + k−1
0 ) = 0,

(Ti − t)(Ti + t−1) = 0, i = 1, . . . , n − 1

(Tn − kn)(Tn + k−1
n ) = 0,

(T∨
0 − u0)(T

∨
0 + u−1

0 ) = 0, T∨
0 := q−1/2T−1

0 X1

(T∨
n − un)(T

∨
n + u−1

n ) = 0. T∨
n := X−1

n T−1
n
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PBW and Duality

Throughout, Yi := Ti · · ·Tn−1TnTn−1 · · ·T1T0T
−1
1 · · ·T−1

i−1 and W = Sn ⋉ Zn
2.

Theorem 2 ([Cherednik ’95], PBW Property)

Any h ∈ Hq,τ admits a unique presentation of the form

h =
∑

λ,µ∈Zn,w∈W

hλ,w,µX
λTwY

µ, hλ,w,µ ∈ C.

Proposition 3 ([Sahi ’99], Duality Isomorphism)

There is a unique involutive algebra isomorphism ε : Hq,τ → Hq−1,σ where

T0 7→ S(T∨
n )−1S−1,

Ti 7→ T−1
i ,

Xi 7→ Yi ,

q 7→ q−1,

τ = (k0, kn, t, u0, un) 7→ (u−1
n , k−1

n , t−1, u−1
0 , k−1

0 ) =: σ.
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Spherical Subalgebra

Remark 4
Let W be an (affine) Weyl group. We can write any w ∈ W as a product of
simple reflections w = si1 · · · siℓ, which is reduced if ℓ is minimal. We associate
to a simple reflection a Hecke generator via Ti := Tsi , but this extends to W :

Tw := Tsi · · ·Tsℓ .

Definition 5
The spherical subalgebra of the DAHA is the subalgebra eHq,τe, where

e :=
1∑

w∈W τ 2
w

∑
w∈W

τwTw .

• When q = 1, the centre of the DAHA Z ∼= eHe.

• eHe is equipped with a Poisson bracket (q is a deformation parameter).
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Character Varieties

Definition 6
Fix conjugacy classes C1, . . . ,Ck ⊆ GLn(C), integers g ≥ 0, k ≥ 1 and define

Rg,k := {X1,Y1, . . . ,Xg ,Yg ∈ GLn(C),Ai ∈ Ci : X1Y1X
−1
1 Y−1

1 · · ·XgYgX
−1
g Y−1

g A1 · · ·Ak = 1n}.

The corresponding GLn(C)-character variety is the variety of closed orbits:

Mg,k := Rg,k // GLn(C).

Remark 7
In other words, points of the character variety are isomorphism classes of
representations of the fundamental group π1(Σg,k) by matrices in GLn(C).

Proposition 8 ([Hausel–Letellier–Rodriguez-Villegas ’13])

For “generic” semi-simple Ci , the varieties Mg,k are smooth and connected.
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Calogero-Moser Space in Type C∨Cn

Let g = 0 and k = 4, so we are working on the four-punctured sphere Σ0,4.

C1 = [diag(−k−1
0 , . . . ,−k−1

0︸ ︷︷ ︸
n

, k0, . . . , k0︸ ︷︷ ︸
n

)],

C2 = [diag(−u−1
0 , . . . ,−u−1

0︸ ︷︷ ︸
n

, u0, . . . , u0︸ ︷︷ ︸
n

)],

C3 = [diag(−u−1
n , . . . ,−u−1

n︸ ︷︷ ︸
n

, un, . . . , un︸ ︷︷ ︸
n

)],

C4 = [diag(−k−1
n , . . . ,−k−1

n︸ ︷︷ ︸
n

, knt
−2, . . . , knt

−2

︸ ︷︷ ︸
n−1

, knt
2n−2︸ ︷︷ ︸
1

)].

Definition 9
The Calogero-Moser space is the character variety M0,4 with the above data:

Mn := {Ai ∈ Ci : A1A2A3A4 = 12n}/GL2n(C).

There is a correspondence between these matrices and DAHA elements as follows:

A1 ↔ q1/2T0, A2 ↔ T∨
0 , A3 ↔ ST∨

n S−1, A4 ↔ STnS
†.
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Local Coordinates

Solving A1A2A3A4 = 12n where Ai ∈ Ci can be split into two related problems.

2n

A1n

A2
n

2n − 12

X−1
1 · · ·

(a) The quiver Q1 for A1A2X
−1 = 12n.

2n

A3n

n
A4

1 A2

2n − 12
X

1 · · ·

(b) The quiver Q2 for XA3A4 = 12n.

This introduces a coordinate chart on Mn. Solving the problem encoded by Q1

is easy, but the problem encoded by Q2 is non-Dynkin and more difficult. We use
the theory from [Crawley-Boevey–Shaw ’06] when working with these quivers.

Lemma 10
Any solution to the Q1-problem is isomorphic to a direct sum of 2× 2 solutions.

8 / 27



Local Coordinates

From the DAHA, A1A2 ↔ q1/2T0T
∨
0 = X1. From the point-of-view of matrices,

A1A2 = diag(X1, . . . ,Xn,X
−1
1 , . . . ,X−1

n ).

Let A◦
1 , A

◦
2 be arbitrary 2×2 matrices with A◦

1A
◦
2 = diag(X1,X

−1
1 ) and A◦

i ∈ C◦
i

(the conjugacy classes defining Mn but in the 2× 2 case). Explicitly, we solve
ae + bg = X1, ad − bc = −1,

af + bh = 0, eh − fg = −1,

ce + dg = 0, a+ d = k0 − k−1
0 ,

cf + dh = X−1
1 , e + h = u0 − u−1

0 .

We obtain n coordinates X by solving this matrix problem and taking the direct
sum. Another n coordinates P encode how to glue the two problems together.
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The Matrix A1

Consider the rational functions

ai =
k−1
0 − qk0X

−2
i − q1/2(u0 − u−1

0 )X−1
i

1− X−2
i

,

bi =
(k0 − k−1

0 ) + q1/2(u0 − u−1
0 )X−1

i

1− qX−2
i

.

The matrix A1 in the local Calogero-Moser coordinates (X ,P) is

(A1)ij =


bi if i = j

aiP
−1
i if i − j = ±n

0 otherwise

,
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The Matrix A2

Consider the rational functions

ai =
k−1
0 − qk0X

−2
i − q1/2(u0 − u−1

0 )X−1
i

1− X−2
i

,

bi =
(k0 − k−1

0 ) + q1/2(u0 − u−1
0 )X−1

i

1− qX−2
i

.

The matrix A2 in the local Calogero-Moser coordinates (X ,P) is

(A2)ij =


q−1/2

(
bi − (k0 − k−1

0 )
)
Xi if i = j

q−1/2aiP
−1
i X−1

i if i − j = ±n

0 otherwise

,
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The Matrix A3

The matrix A3 in the local Calogero-Moser coordinates (X ,P) is

(A3)ij =



X−1
i c−j

2n

⋄
∏
k=1

a−ik if i − j = ±n

−X−1
i c−j b−

ij aij

2n

⋄
∏
k=1

a−jk if i − j ̸= 0,±n

X−1
i k−1

n t2−2n −
∑
k ̸=i

(A3)ik if i = j

,

aij =
t−1 − tXiX

−1
j

1− XiX
−1
j

,

bij =
t − t−1

1− XiX
−1
j

,

cj =
k−1
n − knX

2
j − (un − u−1

n )Xj

1− X 2
j

,

a−ij := aij(X
−1
i ,Xj),

b+
ij := bij(Xi ,X

−1
j ),

c−j := cj(X
−1
j ).
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The Matrix A4

The matrix A4 in the local Calogero-Moser coordinates (X ,P) is

(A4)ij =



d−
j

2n

⋄
∏
k=1

a−jk if i − j = ±n

d−
j b+

ij aij

2n

⋄
∏
k=1

a−jk if i − j ̸= 0,±n

knt
2n−2 −

∑
k ̸=j

(A4)ik if i = j

,

aij =
t−1 − tXiX

−1
j

1− XiX
−1
j

,

bij =
t − t−1

1− XiX
−1
j

,

di =
k−1
n − knX

2
j − (un − u−1

n )Xj

1− X 2
j

,

a−ij := aij(X
−1
i ,Xj),

b+
ij := bij(Xi ,X

−1
j ),

d−
j := fj(X

−1
j ).
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More Local Coordinates

The Duality Isomorphism ε induces an isomorphism on character varieties:

E : Mn ∋ (A1,A2,A3,A4) 7→ (A−1
3 ,A−1

2 ,A−1
1 ,A−1

4 ) ∈ M′
n.

For another chart on Mn, work on the dual M′
n and transfer coordinates over:

• (X ,P) coordinates: A1, A2 are straightforward; A3, A4 are complicated.

• (Y ,Q) coordinates: A3, A2 are straightforward; A1, A4 are complicated.

Remark 11
The proof of the main result is now possible by adapting [Oblomkov ’04].
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Poisson Bracket

Proposition 12

The (X ,P) coordinates on Mn are log-canonical, i.e.

{Xi ,Xj} = {Pi ,Pj} = 0, {Pi ,Xj} = δijPiXj .

Proof
Embed the DAHA Hq,τ ↪→ Cq(X )[P±1] (Basic Representation). The brackets
follow by viewing the coordinates Pi ,Xj in this quantised algebra, with relations

[Xi ,Xj ] = [Pi ,Pj ] = 0, PiXj = qδijXjPi .

Lemma 13
The hk := trX k are in Poisson involution, and for each i = 1, . . . , n, we have

{Xi , hk} = 0, {Pi , hk} = kPi (X
k
i − X−k

i ).
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Hamiltonian Dynamics

The Hamiltonian dynamics governed by hk in (X ,P) coordinates is separated:

Xi (t) = Xi (0), Pi (t) = ekt(X
k
i −X−k

i )Pi (0).

Proposition 14

The Hamiltonian dynamics on Mn governed by hk = trX k can be obtained by
projecting the following dynamics from the pre-quotient R0,4 onto Mn:

Ȧ1 = −k(A1X
k − X kA1), Ȧ2 = −k(A2X

k − X kA2), Ȧ3 = Ȧ4 = 0.

The above dynamics integrate, giving X = A1A2 constant and

A1(t) = ektX
k

A1(0)e
−ktX−k

, A3(t) = A3(0),

A2(t) = ektX
k

A2(0)e
−ktX−k

, A4(t) = A4(0).
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Dual Hamiltonian Dynamics

The Duality Isomorphism E on the character variety interchanges X = A1A2 with
Y = A4A1, a Lax matrix for the van Diejen system [Chalykh ’19, Corollary 4.4].

Proposition 15

The Hamiltonian dynamics on Mn governed by Hk := trY k can be obtained by
projecting the following dynamics from the pre-quotient R0,4 onto Mn:

Ȧ1 = Ȧ4 = 0, Ȧ2 = −k(Y kA2 − A2Y
k), Ȧ3 = −k(Y kA3 − A3Y

k).

The above dynamics integrate, giving Y = A4A1 constant and

A1(t) = A1(0), A2(t) = e−ktY−k

A2(0)e
ktY k

,

A4(t) = A4(0), A3(t) = e−ktY−k

A3(0)e
ktY k

.
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van Diejen Hamiltonians

In dual coordinates, we see that

X (t) = A1(t)A2(t) = A1(0)e
−ktY k

A2(0)e
ktY k

= X (0)ekt(Y
k−Y−k )

Remark 16
The two-parameter case k0 = u0 = un = 1, well-studied by [Pusztai–Görbe ’17],
complements our setting in that the above formula matches (4.113) in op. cit..

We have two integrable systems: one dictated by hk , and another by Hk .

Remark 17
The dual chart on Mn provides the action-angle variables for the van Diejen
system. The action variables are the eigenvalues of Y , and the angle variables
are the dual counterparts of the Pi .

Writing the first set of Hamiltonians hk = trX k in terms of these action-angle
coordinates, one obtains the van Diejen Hamiltonians in dual parameters. This
acts as an analogue to Ruijsenaars duality.
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Space of Graph Connections

Fock and Rosly explain how to obtainMn via Hamiltonian reduction by considering
combinatorial connections on embedded graphs (so-called graph connections).

a

b

c

Figure: The graph ℓ corresponding to Mn.

General Set-up: The space of graph connections is Aℓ =
∏

G , so we attach
to each edge a group element, and we quotient out by the natural action of the
gauge group Gℓ.

Our Set-up: For the above graph, we have Aℓ = GL2n(C)×GL2n(C)×GL2n(C),
with the gauge group Gℓ = GL2n(C) acting on Aℓ by simultaneous conjugation.
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Fock–Rosly Bracket

Due to [Fock–Rosly ’99], the Poisson structure on Aℓ is dictated by choosing a
classical r -matrix at each vertex. In our set-up, we make the standard choice

r =
2n∑
i<j

Eij ⊗ Eji +
1

2

2n∑
i=1

Eii ⊗ Eii .

Notation 18

The respective (skew-)symmetric parts are ra =
1

2
(r − r21) and t =

1

2
(r + r21).

Let A be the matrix representing the edge a, and so forth. Then, we have

A ∼ A1, A−1B ∼ A2, B−1C ∼ A3, C−1 ∼ A4.

Lemma 19
The Poisson brackets on Aℓ are (all given analogously to)

{A,A} = ra(A⊗ A) + (A⊗ A)ra + (1⊗ A)r21(A⊗ 1)− (A⊗ 1)r(1⊗ A),

{A,B} = r(A⊗ B)− (A⊗ B)r21 + (1⊗ B)r21(A⊗ 1)− (A⊗ 1)r(1⊗ B).
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Application to the Main Result

Proposition 20

The main isomorphism eHe ∼= C[Mn] is a Poisson map, i.e. it identifies the
natural Poisson bracket on the spherical subalgebra with the Fock–Rosly
bracket on the character variety.

Corollary 21

The (X ,P) coordinates on Mn are log-canonical with respect to the
Fock–Rosly bracket, and the spherical subalgebra provides a quantisation of the
character variety.

Remark 22
Let M be the moduli space of flat GL2n(C)-connections on the four-punctured
sphere Σ0,4. Then, Mn is a symplectic leaf (by specifying the conjugacy classes
Ci ) and we can view it as a completed phase space for the van Diejen system.
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Alternative Description

Proposition 23

Mn
∼= Rn/GL2n(C), where Rn is the set of X ,Y ,T ∈ GL2n(C) subject to

T − T−1 = (u0 − u−1
0 )1V ,

XT−1 − TX−1 = (k0 − k−1
0 )1V ,

T−1Y−1 − YT = (un − u−1
n )1V ,

tYTX−1 − t−1XT−1Y−1 = (knt
−1 − k−1

n t)1V + (t − t−1)vw ,

wv =
t2n − 1

t2 − 1
kn +

1− t−2n

1− t−2
k−1
n .

Lemma 24 ([Chalykh ’19])

Let v = (1, . . . , 1)T and w = (ϕ1, . . . , ϕ2n), where ϕi := c−i
n∏

k ̸=i

akia
−
ki . The

Hecke symmetriser acts by a constant multiple of the rank-one matrix vw.
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Quantisation

For q = 1, the ring of functions C[Mn] is generated by traces of words in Ai .

Lemma 25
The algebra C[Mn] is generated by wa(X ,Y ,T )v for a ∈ C

〈
X±1,Y±1,T±1

〉
.

Notation 26
Let Dq = Cq(X )[P±1]⋊ CW be the ring of q-difference-reflection operators.

Proposition 27

The elements wa(X ,Y ,T )v generate a subalgebra of DW
q isomorphic to the

spherical subalgebra eHq,τe, for a ∈ C
〈
X±1,Y±1,T±1

〉
.

Corollary 28

As an algebra, eHq,τe is generated by eX n
1 Y

m
1 e and eX n

1 Y
m
1 T∨

0 e for n,m ∈ Z.
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Future Work

• The conjecture of [Etingof–Gan–Oblomkov ’06] that we prove is actually
only part of a more general statement about generalised DAHAs with
underlying star-shaped quiver Q. We have settled the case Q = D̃4, but
the cases Q = Ẽ6,7,8 remain open.

• Using the interpretation as a moduli space of flat connections, this leads
to a mapping class group action. This suggests the study of a spin version
which would yield a new integrable system.

• Recent work [Braverman–Finkelberg–Nakajima ’19] on quantised Coulomb
branches of 3d N = 4 gauge theories suggests a further generalisation to
D̃m where m > 4.
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Thanks for Listening!
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