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Goals of the Talk

1. Discuss the following result.

Theorem ([Chalykh—R. '24])

Let H be the DAHA of type CY C, at the classical level g = 1, e the Hecke
symmetriser and M, a certain character variety. Then, we have an isomorphism

ete = C[M.,].

2. Convince you that this is still an integrable systems seminar!
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The Double Affine Hecke Algebra of Type CVC,

Definition 1 ([Sahi '99])
Let q'/2, ko, kn, t, o, u, € C*. The DAHA of type CV C, is the algebra H, ~

generated by Toj[l7 led,...,TnjEl and led7 ..., XF! satisfying the following:
[Ti, Tj]=0, li—j|>1
ToTiToT1 = TaToT1 To,
TiTisaTi = TisaTi Tiga, i=1,...,n—2
To-1ToToo1Ton= TpTao1 T Tooa,
[Xi, Xj] =0, 1<i,j<n
[Ti,X;] =0, jALI+1
T:XiTi = Xita, i=1,...,n—-1
(To—ko)(To+ k') =0,
(Ti—t)(Ti+t ) =0, i=1,...,n—1
(To = ka)(To + ky ') =0,
(To' — uo)(To' + 15 ') =0, T =q ’Ti' X
(T = u)(T) +ut)=0. T, =X"T, "'
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PBW and Duality

Throughout, Y; == T;-+ Tpo1 Ty Tp1--- TiTo Ty H--- T4 and W = S, x Z5.

Theorem 2 ([Cherednik '95], PBW Property)

Any h € Hq,+~ admits a unique presentation of the form

h=" Y hwuX TuY", A, € C.
AN, WEZN . weW

Proposition 3 ([Sahi '99], Duality Isomorphism)

There is a unique involutive algebra isomorphism € : Hqr — Hq-1 , where

TO — S(Tg/)_ls_17
T T
Xi—=Yi,

qg—q Y,

7 = (ko, kn, t, Uo, Up) —> (u;l, Kyttt ugt, k(;l) =o0.
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Spherical Subalgebra

Remark 4

Let W be an (affine) Weyl group. We can write any w € W as a product of
simple reflections w = sj1 - - - si¢, which is reduced if ¢ is minimal. We associate
to a simple reflection a Hecke generator via T; := T, but this extends to W:

Twi=Ty T

Definition 5
The spherical subalgebra of the DAHA is the subalgebra et ~e, where

e = ﬁ Z Tw Tw.

wew Tw wew

® When g =1, the centre of the DAHA Z = eHe.

® e?e is equipped with a Poisson bracket (g is a deformation parameter).
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Character Varieties

Definition 6
Fix conjugacy classes Ci,..., Cc C GL,(C), integers g > 0, k > 1 and define

R = {X1, Y1,..., Xg, Y € GLa(C), Ai € G - XaYAXT ' Yh o Xg Ye X Y TAL - A = L)
The corresponding GL,(C)-character variety is the variety of closed orbits:

gﬁgyk = ng( // GLn((C)

Remark 7
In other words, points of the character variety are isomorphism classes of
representations of the fundamental group m1(X,,x) by matrices in GL,(C).

Proposition 8 ([Hausel-Letellier-Rodriguez-Villegas '13])
For “generic” semi-simple C;, the varieties 9, « are smooth and connected.
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Calogero-Moser Space in Type CYC,

Let g = 0 and k = 4, so we are working on the four-punctured sphere ¥g 4.

G = [diag(—ky 'y ..., —ky ' ko, ko)),
—0 o7 5
G = [diag(—up ..., —up Y w0, .. ., to)],
N N U it A
[dlag( un IR 7“!1717 Un, ..., u")]a
—_— —
Co = [diag(—ky b, .. —ky o kat 2 ket 2 kat*" 2]
St
n n—1 1
Definition 9

The Calogero-Moser space is the character variety 9% 4 with the above data:

M, = {A,’ c G : AlA A3A, = ]].Qn}/GLz,,(C).

There is a correspondence between these matrices and DAHA elements as follows:

AL < g To, A Ty, As <> STYS™Y, Ay < ST,ST.
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Local Coordinates

Solving A1 A2A3As = 1o, where A; € C; can be split into two related problems.

nAl nAg
\/. )
2 2n—1  2p n—1 2p
X*1i4>- ° -\ Xe—e ) 2-<
) e{i——e A
A, n 4
(a) The quiver Qq for ALA XL = 1,,. (b) The quiver @, for XA3As = 15,.

This introduces a coordinate chart on M,. Solving the problem encoded by Q1
is easy, but the problem encoded by Q- is non-Dynkin and more difficult. We use
the theory from [Crawley-Boevey—Shaw '06] when working with these quivers.

Lemma 10

Any solution to the Q-problem is isomorphic to a direct sum of 2 x 2 solutions.
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Local Coordinates

From the DAHA, A1 A; < ql/2 To TOv = Xi. From the point-of-view of matrices,

AA; = diag(Xi, ..., Xo, X7 b X0,

Let A7, A3 be arbitrary 2 x 2 matrices with A A3 = diag(X1, X;') and A? € C?
(the conjugacy classes defining M, but in the 2 x 2 case). Explicitly, we solve
ae + bg = Xi, ad — bc = —1,
af + bh =0, eh — fg = —1,
ce+dg =0, at+d=k — k',
of +dh= X1, e+h=up—up".

We obtain n coordinates X by solving this matrix problem and taking the direct
sum. Another n coordinates P encode how to glue the two problems together.
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The Matrix A

Consider the rational functions

ko—l _ koX,'_2 _ ql/Z(uO _ UO_I)X,'_I
1-X7° ’

aj =

(ko — kg ') + a2 (uo — ug )X

bj = !
1-— quz

The matrix A; in the local Calogero-Moser coordinates (X, P) is

b; ifi=j
(A)j =R aPt ifi—j=xn,
0 otherwise
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The Matrix Ap

Consider the rational functions

2 = kot = qko X2 = "% (uo — ug )X

1- X2

(ko — kg ') + a2 (uo — ug )X

bj = !
1-— quz

The matrix A; in the local Calogero-Moser coordinates (X, P) is

g (b= (ko — k) X fi=]
()i =\ g +/2a,P Xt if i —j=+n"

0 otherwise
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The Matrix Az

The matrix A3 in the local Calogero-Moser coordinates (X, P) is

2n
1 —
=X ¢ by ajj H aj
k=1
X’.—lkn—ltZ—Qn _ Z(A?,)ik

ki

(As); =

ifi—j=d4n
ifi—j#0,+n>
ifi=j

-t X !
j = (/v -1
1—- XX
J
_ 41
by = %,
1-— X,-Xj
kot = ko XP = (un — 0 )X
G =

1- ij
5 = a(X X)),

U

by = by(X, X,

s
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The Matrix Ay

The matrix A4 in the local Calogero-Moser coordinates (X, P) is

7~ tX«'Xfl
= i
ij -1
1— XX
J
. po— t=t
4 H ifi—j=n T
k=1
2n kit — ko X? — (un — up )X
o - ~ o -k n Xj n n A
(As)ij = <fjbij+'aij]§[ajk ifi—j#0,£n- di = 17)<j2 »
k=1
2n—2 T
knt — Z(A4)ik ifi=j a; = a,'j(X,-_l,Xj)7
k#j

by = bi(X:, X71),
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More Local Coordinates

The Duality Isomorphism ¢ induces an isomorphism on character varieties:

£ My 3 (A, A, A, Ad) > (A3 A AT ALY € M,

For another chart on M, work on the dual M/, and transfer coordinates over:

® (X, P) coordinates: A;, A, are straightforward; As, As are complicated.

® (Y, Q) coordinates: Az, A, are straightforward; A;, As are complicated.

Remark 11
The proof of the main result is now possible by adapting [Oblomkov '04].

14/27



Poisson Bracket

Proposition 12
The (X, P) coordinates on M, are log-canonical, i.e.

{Xi,X;} ={Pi,Pi} =0,  {Pi, X} =;PiXj.
Proof

Embed the DAHA Hy » < Cq(X)[P*'] (Basic Representation). The brackets
follow by viewing the coordinates P;, X; in this quantised algebra, with relations

(X, X1 =[P, P1 =0, P.X;=q""XP. =

Lemma 13
The hy = tr X are in Poisson involution, and for each i =1,...,n, we have

{Xi,h} =0,  {Pih}=kP(X} = X7%).
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Hamiltonian Dynamics

The Hamiltonian dynamics governed by hy in (X, P) coordinates is separated:

X(8)=X(0),  Pi(t) = NP0,

Proposition 14

The Hamiltonian dynamics on M, governed by h, = tr X* can be obtained by
projecting the following dynamics from the pre-quotient R 4 onto M,:

Al = —k(AXK = XFAD),  Ar= —k(AXK = X¥Ar), As=A;=0.

The above dynamics integrate, giving X = A; A constant and

Al(t) = " Ar(0)e > ", As(t) = As(0),
Ag(t) = " Ay(0)e ", Au(t) = Aq(0).
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Dual Hamiltonian Dynamics

The Duality Isomorphism £ on the character variety interchanges X = A; A> with
Y = A4A1, a Lax matrix for the van Diejen system [Chalykh '19, Corollary 4.4].

Proposition 15

The Hamiltonian dynamics on M, governed by Hy := tr Y* can be obtained by
projecting the following dynamics from the pre-quotient Ro 4 onto M,:

A=Ay =0, Ar=—k(YAr—AYY),  As=—k(Y*A;s — A3Y5).

The above dynamics integrate, giving Y = A4A; constant and

Au(t) = Ar(0), Ao(t) = e  Ay(0)e ",
Aa(t) = As(0), As(t) = e As(0)e "
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van Diejen Hamiltonians

In dual coordinates, we see that

X(t) = Al(t)A2(t) = Al(O)eithkAz(O)ethk f— X(O)ekt(kaY*k)

Remark 16
The two-parameter case ko = up = u, = 1, well-studied by [Pusztai-Gérbe '17],
complements our setting in that the above formula matches (4.113) in op. cit..

We have two integrable systems: one dictated by hx, and another by H.

Remark 17

The dual chart on M, provides the action-angle variables for the van Diejen
system. The action variables are the eigenvalues of Y, and the angle variables
are the dual counterparts of the P;.

Writing the first set of Hamiltonians hy, = tr X¥ in terms of these action-angle
coordinates, one obtains the van Diejen Hamiltonians in dual parameters. This

acts as an analogue to Ruijsenaars duality.
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Space of Graph Connections

Fock and Rosly explain how to obtain M, via Hamiltonian reduction by considering
combinatorial connections on embedded graphs (so-called graph connections).

Figure: The graph ¢ corresponding to M.
General Set-up: The space of graph connections is Af = [1G, so we attach

to each edge a group element, and we quotient out by the natural action of the
gauge group G°.

Our Set-up: For the above graph, we have A* = GL2,(C) X GL4(C) x GL2,(C),
with the gauge group G* = GL,,(C) acting on A* by simultaneous conjugation.
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Fock—Rosly Bracket

Due to [Fock—Rosly '99], the Poisson structure on A is dictated by choosing a
classical r-matrix at each vertex. In our set-up, we make the standard choice

2n 2n
r:ZEU®Eji+%ZEH®Eﬁ~

i<j i=1

Notation 18 1 1
The respective (skew-)symmetric parts are r, = E(r —rm1)and t = E(r + ra).

Let A be the matrix representing the edge a, and so forth. Then, we have

A~ A, AT'B ~ A, B7!C ~ As, C !~ A

Lemma 19

The Poisson brackets on A* are (all given analogously to)
{AA}=rn(AQA)+ (A®A)L+(1®A)m(A®1)— (A®1)r(1®A),
{A,B}=r(A®B)— (A®B)rn1 +(1®B)m(A® 1) - (A®1)r(l®B).
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Application to the Main Result

Proposition 20

The main isomorphism eHe = C[M,] is a Poisson map, i.e. it identifies the
natural Poisson bracket on the spherical subalgebra with the Fock—Rosly
bracket on the character variety.

Corollary 21

The (X, P) coordinates on M, are log-canonical with respect to the
Fock—Rosly bracket, and the spherical subalgebra provides a quantisation of the
character variety.

Remark 22

Let M be the moduli space of flat GL2,(C)-connections on the four-punctured
sphere Yo 4. Then, M, is a symplectic leaf (by specifying the conjugacy classes
Ci) and we can view it as a completed phase space for the van Diejen system.
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Alternative Description

Proposition 23
Mp 2R,/ Glon(C), where R, is the set of X, Y, T € GL2y(C) subject to

T—T "= (w—uy")ly,
XT ' —TX ' = (ko— kg )1y,
Tyt - T:(un—u,, )11\/,
tYTX ' — ¢ IXT Yy ™ = (k, )Ly + (-t )vw,
t2n_1 1_t72n 1
wv = t271kn+ 17t_2k,, .

Lemma 24 ([Chalykh "19])

n
Letv=(1,...,1)" andw = (¢1,...,¢2), where ¢; == ¢, [[ axay. The
P
Hecke symmetriser acts by a constant multiple of the rank-one matrix vw.

22/27



Quantisation

For g = 1, the ring of functions C[M,] is generated by traces of words in A;.

Lemma 25
The algebra C[M.] is generated by wa(X, Y, T)v for a € C (X*!, y*! T*1)

Notation 26
Let 4 = Co(X)[PT!] x CW be the ring of g-difference-reflection operators.

Proposition 27

The elements wa(X, Y, T)v generate a subalgebra of @){V isomorphic to the
spherical subalgebra e} e, for a € C(X*!, Y+ T+,

Corollary 28
As an algebra, eHq, e is generated by eX{'Y{"e and eX{'Y{" Ty'e for n,m € Z.
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Future Work

® The conjecture of [Etingof-Gan—-Oblomkov '06] that we prove is actually
only part of a more general statement about generalised DAHAs with
underlying star-ihaped quiver Q. We have settled the case Q = Da, but
the cases Q = Eg 7,8 remain open.

® Using the interpretation as a moduli space of flat connections, this leads
to a mapping class group action. This suggests the study of a spin version
which would yield a new integrable system.

® Recent work [Braverman—Finkelberg—Nakajima '19] on quantised Coulomb
branches of 3d N = 4 gauge theories suggests a further generalisation to
D., where m > 4.
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Thanks for Listening!
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