DAHA, Character Varieties and van Diejen's System

Leeds Integrable Systems Seminar Series, University of Leeds

Bradley Ryan (based on joint work with Oleg Chalykh: arXiv:2410.23456) University of Leeds

November 1st 2024

Goals of the Talk

1. Discuss the following result.

Theorem ([\[Chalykh–R. '24\]](#page-25-0))

Let H be the DAHA of type $C^{\vee}C_n$ at the classical level $q=1$, ${\bf e}$ the Hecke symmetriser and \mathcal{M}_n a certain character variety. Then, we have an isomorphism

eHe ≅ $\mathbb{C}[\mathcal{M}_n]$.

2. Convince you that this is still an integrable systems seminar!

The Double Affine Hecke Algebra of Type $C^{\vee}C_{n}$

 \overline{L}

Definition 1 ([Sahi '99])
\nLet
$$
q^{1/2}
$$
, k_0 , k_n , t , u_0 , $u_n \in \mathbb{C}^*$. The **DAHA** of type $C^{\vee}C_n$ is the algebra $\mathcal{H}_{q,\tau}$
\ngeneraled by $T_0^{\pm 1}$, $T_1^{\pm 1}$, ..., $T_n^{\pm 1}$ and $X_1^{\pm 1}$, ..., $X_n^{\pm 1}$ satisfying the following:
\n
$$
[T_i, T_j] = 0, \t\t |i-j| > 1
$$
\n
$$
T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0,
$$
\n
$$
T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \t i = 1, ..., n-2
$$
\n
$$
T_{n-1} T_n T_{n-1} T_n = T_n T_{n-1} T_n T_{n-1},
$$
\n
$$
[X_i, X_j] = 0, \t 1 \le i, j \le n
$$
\n
$$
[T_i, X_j] = 0, \t j \ne i, i+1
$$
\n
$$
T_i X_i T_i = X_{i+1}, \t i = 1, ..., n-1
$$
\n
$$
(T_0 - k_0) (T_0 + k_0^{-1}) = 0,
$$
\n
$$
(T_i - t) (T_i + t^{-1}) = 0,
$$
\n
$$
T_0^{\vee} - u_0 (T_0 + k_n^{-1}) = 0,
$$
\n
$$
T_0^{\vee} = q^{-1/2} T_0^{-1} X_1
$$
\n
$$
(T_n^{\vee} - u_n) (T_n^{\vee} + u_0^{-1}) = 0, \t T_n^{\vee} := q^{-1/2} T_0^{-1} X_1
$$
\n
$$
(T_n^{\vee} - u_n) (T_n^{\vee} + u_n^{-1}) = 0.
$$

PBW and Duality

Throughout, $Y_i \coloneqq T_i \cdots T_{n-1} T_n T_{n-1} \cdots T_1 T_0 T_1^{-1} \cdots T_{i-1}^{-1}$ and $W = S_n \ltimes \mathbb{Z}_2^n$.

Theorem 2 ([\[Cherednik '95\]](#page-25-1), PBW Property)

Any $h \in \mathcal{H}_{q,\tau}$ admits a unique presentation of the form

$$
h=\sum_{\lambda,\mu\in\mathbb{Z}^n,\omega\in W}h_{\lambda,\omega,\mu}\mathbf{X}^\lambda\mathcal{T}_\omega\mathbf{Y}^\mu, \qquad h_{\lambda,\omega,\mu}\in\mathbb{C}.
$$

Proposition 3 ([\[Sahi '99\]](#page-26-0), Duality Isomorphism)

There is a unique involutive algebra isomorphism ε : $\mathcal{H}_{q,\tau} \to \mathcal{H}_{q^{-1},\sigma}$ where

$$
T_0 \mapsto S(T_n^{\vee})^{-1}S^{-1},
$$

\n
$$
T_i \mapsto T_i^{-1},
$$

\n
$$
X_i \mapsto Y_i,
$$

\n
$$
q \mapsto q^{-1},
$$

\n
$$
\tau = (k_0, k_n, t, u_0, u_n) \mapsto (u_n^{-1}, k_n^{-1}, t^{-1}, u_0^{-1}, k_0^{-1}) =: \sigma.
$$

Spherical Subalgebra

Remark 4

Let W be an (affine) Weyl group. We can write any $w \in W$ as a product of simple reflections $w = s_{i1} \cdots s_{i\ell}$, which is **reduced** if ℓ is minimal. We associate to a simple reflection a Hecke generator via $\, T_{i} \coloneqq \, T_{s_{i}} ,$ but this extends to $\, W{:}$

$$
T_w:=T_{s_i}\cdots T_{s_\ell}.
$$

Definition 5

The spherical subalgebra of the DAHA is the subalgebra $e\mathcal{H}_{q,\tau}$ e, where

$$
\mathbf{e}:=\frac{1}{\sum_{w\in W}\tau^2_w}\sum_{w\in W}\tau_w\,\mathcal{T}_w.
$$

• When $q = 1$, the centre of the DAHA $\mathcal{Z} \cong e\mathcal{H}e$.

• eHe is equipped with a Poisson bracket (q is a deformation parameter).

Character Varieties

Definition 6

Fix conjugacy classes $C_1, \ldots, C_k \subseteq GL_n(\mathbb{C})$, integers $g \geq 0$, $k \geq 1$ and define

 $\mathfrak{R}_{g,k} \coloneqq \{X_1, Y_1, \ldots, X_g, Y_g \in \mathsf{GL}_n(\mathbb{C}), A_i \in \mathsf{C}_i : X_1 Y_1 X_1^{-1} Y_1^{-1} \cdots X_g Y_g X_g^{-1} Y_g^{-1} A_1 \cdots A_k = \mathbb{1}_n\}.$

The corresponding $GL_n(\mathbb{C})$ -character variety is the variety of closed orbits:

$$
\mathfrak{M}_{g,k}:=\mathfrak{R}_{g,k}\mathbin{/\!\!/} GL_n(\mathbb{C}).
$$

Remark 7

In other words, points of the character variety are isomorphism classes of representations of the fundamental group $\pi_1(\Sigma_{g,k})$ by matrices in $GL_n(\mathbb{C})$.

Proposition 8 ([\[Hausel–Letellier–Rodriguez-Villegas '13\]](#page-26-1))

For "generic" semi-simple C_i , the varieties $\mathfrak{M}_{g,k}$ are smooth and connected.

Calogero-Moser Space in Type $C^{\vee}C_n$

Let $g = 0$ and $k = 4$, so we are working on the four-punctured sphere $\Sigma_{0,4}$.

$$
C_1 = [\text{diag}(\underbrace{-k_0^{-1}, \dots, -k_0^{-1}}_{n}, \underbrace{k_0, \dots, k_0}_{n}),
$$
\n
$$
C_2 = [\text{diag}(\underbrace{-u_0^{-1}, \dots, -u_0^{-1}}_{n}, \underbrace{u_0, \dots, u_0}_{n})],
$$
\n
$$
C_3 = [\text{diag}(\underbrace{-u_n^{-1}, \dots, -u_n^{-1}}_{n}, \underbrace{u_n, \dots, u_n}_{n}),]
$$
\n
$$
C_4 = [\text{diag}(\underbrace{-k_n^{-1}, \dots, -k_n^{-1}}_{n}, \underbrace{k_n t^{-2}, \dots, k_n t^{-2}}_{n-1}, \underbrace{k_n t^{2n-2}}_{n})].
$$

Definition 9

The Calogero-Moser space is the character variety $\mathfrak{M}_{0,4}$ with the above data:

$$
\mathcal{M}_n \coloneqq \{A_i \in C_i : A_1 A_2 A_3 A_4 = \mathbb{1}_{2n}\} / GL_{2n}(\mathbb{C}).
$$

There is a correspondence between these matrices and DAHA elements as follows:

$$
A_1 \leftrightarrow q^{1/2} \, T_0, \qquad A_2 \leftrightarrow T_0^{\vee}, \qquad A_3 \leftrightarrow S T_n^{\vee} S^{-1}, \qquad A_4 \leftrightarrow S T_n S^{\dagger}.
$$

Local Coordinates

Solving $A_1A_2A_3A_4 = \mathbb{1}_{2n}$ where $A_i \in C_i$ can be split into two related problems.

This introduces a coordinate chart on M_n . Solving the problem encoded by Q_1 is easy, but the problem encoded by Q_2 is non-Dynkin and more difficult. We use the theory from [\[Crawley-Boevey–Shaw '06\]](#page-25-2) when working with these quivers.

Lemma 10

Any solution to the Q_1 -problem is isomorphic to a direct sum of 2×2 solutions.

Local Coordinates

From the DAHA, $A_1A_2 \leftrightarrow q^{1/2}T_0T_0^\vee = X_1$. From the point-of-view of matrices,

$$
A_1A_2 = diag(X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}).
$$

Let A_1° , A_2° be arbitrary 2 \times 2 matrices with $A_1^{\circ}A_2^{\circ}$ = diag(X_1, X_1^{-1}) and $A_i^{\circ} \in C_i^{\circ}$ (the conjugacy classes defining \mathcal{M}_n but in the 2 \times 2 case). Explicitly, we solve

$$
\begin{cases}\nae + bg = X_1, & ad - bc = -1, \\
af + bh = 0, & eh - fg = -1, \\
ce + dg = 0, & a + d = k_0 - k_0^{-1}, \\
cf + dh = X_1^{-1}, & e + h = u_0 - u_0^{-1}.\n\end{cases}
$$

We obtain n coordinates X by solving this matrix problem and taking the direct sum. Another n coordinates P encode how to glue the two problems together.

The Matrix A_1

Consider the rational functions

$$
a_i = \frac{k_0^{-1} - q k_0 X_i^{-2} - q^{1/2} (u_0 - u_0^{-1}) X_i^{-1}}{1 - X_i^{-2}},
$$

$$
b_i = \frac{(k_0 - k_0^{-1}) + q^{1/2} (u_0 - u_0^{-1}) X_i^{-1}}{1 - q X_i^{-2}}.
$$

The matrix A_1 in the local Calogero-Moser coordinates (X, P) is

$$
(A_1)_{ij} = \begin{cases} b_i & \text{if } i = j \\ a_i P_i^{-1} & \text{if } i - j = \pm n \\ 0 & \text{otherwise} \end{cases}
$$

The Matrix A_2

Consider the rational functions

$$
a_i = \frac{k_0^{-1} - q k_0 X_i^{-2} - q^{1/2} (u_0 - u_0^{-1}) X_i^{-1}}{1 - X_i^{-2}},
$$

$$
b_i = \frac{(k_0 - k_0^{-1}) + q^{1/2} (u_0 - u_0^{-1}) X_i^{-1}}{1 - q X_i^{-2}}.
$$

The matrix A_2 in the local Calogero-Moser coordinates (X, P) is

$$
(A_2)_{ij} = \begin{cases} q^{-1/2} (b_i - (k_0 - k_0^{-1})) X_i & \text{if } i = j \\ q^{-1/2} a_i P_i^{-1} X_i^{-1} & \text{if } i - j = \pm n \\ 0 & \text{otherwise} \end{cases}
$$

The Matrix A_3

The matrix A_3 in the local Calogero-Moser coordinates (X, P) is

(A3)ij = X −1 ⁱ c − j 2n ⋄ Y k=1 a − ik if i − j = ±n −X −1 ⁱ c − ^j b − ij aij 2n ⋄ Y k=1 a − jk if i − j ̸= 0, ±n X −1 ⁱ k −1 ⁿ t ²−2ⁿ − X k̸=i (A3)ik if i = j , aij = t [−]¹ − tXiX −1 j 1 − XiX −1 j , bij = t − t −1 1 − XiX −1 j , c^j = k −1 ⁿ − knX 2 ^j − (uⁿ − u −1 ⁿ)X^j 1 − X 2 j , a − ij := aij(X −1 i , Xj), b + ij := bij(Xi, X −1 ^j), c − j := cj(X −1 ^j).

The Matrix A⁴

The matrix A_4 in the local Calogero-Moser coordinates (X, P) is

$$
a_{ij} = \frac{t^{-1} - tX_iX_j^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
a_{ij} = \frac{t^{-1} - tX_iX_j^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
b_{ij} = \frac{t - t^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
b_{ij} = \frac{t - t^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
b_{ij} = \frac{t - t^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
b_{ij} = \frac{t - t^{-1}}{1 - X_iX_j^{-1}},
$$

\n
$$
d_i = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

\n
$$
a_{ij} = \frac{k_n^{-1} - k_nX_j^2 - (u_n - u_n^{-1})X_j}{1 - X_i^2},
$$

More Local Coordinates

The Duality Isomorphism ε induces an isomorphism on character varieties:

$$
\mathcal{E}: \mathcal{M}_n \ni (A_1, A_2, A_3, A_4) \mapsto (A_3^{-1}, A_2^{-1}, A_1^{-1}, A_4^{-1}) \in \mathcal{M}'_n.
$$

For another chart on \mathcal{M}_n , work on the dual \mathcal{M}'_n and transfer coordinates over:

- (X, P) coordinates: A_1 , A_2 are straightforward; A_3 , A_4 are complicated.
- (Y, Q) coordinates: A_3 , A_2 are straightforward; A_1 , A_4 are complicated.

Remark 11

The proof of the main result is now possible by adapting [\[Oblomkov '04\]](#page-26-2).

Poisson Bracket

Proposition 12

The (X, P) coordinates on \mathcal{M}_n are log-canonical, i.e.

$$
\{X_i, X_j\} = \{P_i, P_j\} = 0, \qquad \{P_i, X_j\} = \delta_{ij} P_i X_j.
$$

Proof

Embed the DAHA $\mathcal{H}_{q, \bm{\tau}} \hookrightarrow \mathbb{C}_q(\bm{X})[\bm{P}^{\pm 1}]$ (Basic Representation). The brackets follow by viewing the coordinates P_i , X_i in this quantised algebra, with relations

$$
[X_i,X_j]=[P_i,P_j]=0, \qquad P_iX_j=q^{\delta_{ij}}X_jP_i.
$$

Lemma 13 The $h_k := \text{tr } X^k$ are in Poisson involution, and for each $i = 1, \ldots, n$, we have $\{X_i, h_k\} = 0, \qquad \{P_i, h_k\} = kP_i(X_i^k - X_i^{-k}).$

Hamiltonian Dynamics

The Hamiltonian dynamics governed by h_k in (X, P) coordinates is separated:

$$
X_i(t) = X_i(0), \qquad P_i(t) = e^{kt(X_i^k - X_i^{-k})} P_i(0).
$$

Proposition 14

The Hamiltonian dynamics on \mathcal{M}_n governed by $h_k = \text{tr } X^k$ can be obtained by projecting the following dynamics from the pre-quotient $\mathfrak{R}_{0,4}$ onto \mathcal{M}_n :

$$
\dot{A}_1 = -k(A_1X^k - X^kA_1), \qquad \dot{A}_2 = -k(A_2X^k - X^kA_2), \qquad \dot{A}_3 = \dot{A}_4 = 0.
$$

The above dynamics integrate, giving $X = A_1 A_2$ constant and

$$
A_1(t) = e^{ktX^k} A_1(0) e^{-ktX^{-k}}, \qquad A_3(t) = A_3(0),
$$

\n
$$
A_2(t) = e^{ktX^k} A_2(0) e^{-ktX^{-k}}, \qquad A_4(t) = A_4(0).
$$

Dual Hamiltonian Dynamics

The Duality Isomorphism $\mathcal E$ on the character variety interchanges $X = A_1A_2$ with $Y = A_4A_1$, a Lax matrix for the van Diejen system [\[Chalykh '19,](#page-25-3) Corollary 4.4].

Proposition 15

The Hamiltonian dynamics on \mathcal{M}_n governed by $H_k \coloneqq \text{tr } Y^k$ can be obtained by projecting the following dynamics from the pre-quotient $\mathfrak{R}_{0,4}$ onto \mathcal{M}_n .

$$
\dot{A}_1 = \dot{A}_4 = 0, \qquad \dot{A}_2 = -k(Y^k A_2 - A_2 Y^k), \qquad \dot{A}_3 = -k(Y^k A_3 - A_3 Y^k).
$$

The above dynamics integrate, giving $Y = A_4A_1$ constant and

$$
A_1(t) = A_1(0), \qquad A_2(t) = e^{-ktY^{-k}} A_2(0) e^{ktY^{k}},
$$

$$
A_4(t) = A_4(0), \qquad A_3(t) = e^{-ktY^{-k}} A_3(0) e^{ktY^{k}}.
$$

van Diejen Hamiltonians

In dual coordinates, we see that

$$
X(t) = A_1(t)A_2(t) = A_1(0)e^{-ktY^k}A_2(0)e^{ktY^k} = X(0)e^{kt(Y^k - Y^{-k})}
$$

Remark 16

The two-parameter case $k_0 = u_0 = u_n = 1$, well-studied by [Pusztai–Görbe '17], complements our setting in that the above formula matches (4.113) in op. cit..

We have two integrable systems: one dictated by h_k , and another by H_k .

Remark 17

The dual chart on \mathcal{M}_n provides the action-angle variables for the van Diejen system. The action variables are the eigenvalues of Y , and the angle variables are the dual counterparts of the P_i .

Writing the first set of Hamiltonians $h_k = \operatorname{tr} X^k$ in terms of these action-angle coordinates, one obtains the van Diejen Hamiltonians in dual parameters. This acts as an analogue to Ruijsenaars duality.

Space of Graph Connections

Fock and Rosly explain how to obtain \mathcal{M}_n via Hamiltonian reduction by considering combinatorial connections on embedded graphs (so-called graph connections).

Figure: The graph ℓ corresponding to \mathcal{M}_n .

General Set-up: The space of graph connections is $\mathcal{A}^{\ell} = \prod G$, so we attach to each edge a group element, and we quotient out by the natural action of the gauge group $\mathcal{G}^{\ell}.$

 $\bf{Our Set-up:}$ For the above graph, we have ${\cal A}^\ell=\sf{GL}_{2n}(\mathbb{C})\times\sf{GL}_{2n}(\mathbb{C})\times\sf{GL}_{2n}(\mathbb{C}),$ with the gauge group $\mathcal{G}^\ell=\mathsf{GL}_{2n}(\mathbb{C})$ acting on \mathcal{A}^ℓ by simultaneous conjugation.

Fock–Rosly Bracket

Due to [\[Fock–Rosly '99\]](#page-25-4), the Poisson structure on \mathcal{A}^{ℓ} is dictated by choosing a classical r-matrix at each vertex. In our set-up, we make the standard choice

$$
r=\sum_{i
$$

Notation 18
The respective (skew-)symmetric parts are
$$
r_a = \frac{1}{2}(r - r_{21})
$$
 and $t = \frac{1}{2}(r + r_{21})$.

Let A be the matrix representing the edge a , and so forth. Then, we have

$$
\mathbf{A} \sim A_1, \qquad \mathbf{A}^{-1} \mathbf{B} \sim A_2, \qquad \mathbf{B}^{-1} \mathbf{C} \sim A_3, \qquad \mathbf{C}^{-1} \sim A_4.
$$

Lemma 19

The Poisson brackets on A^{ℓ} are (all given analogously to)

$$
{\bf \{A,B\}}=r_a({\bf A}\otimes {\bf A})+({\bf A}\otimes {\bf A})r_a+(1\otimes {\bf A})r_{21}({\bf A}\otimes 1)-({\bf A}\otimes 1)r(1\otimes {\bf A}),
$$

Application to the Main Result

Proposition 20

The main isomorphism $eHe \cong \mathbb{C}[\mathcal{M}_n]$ is a Poisson map, i.e. it identifies the natural Poisson bracket on the spherical subalgebra with the Fock–Rosly bracket on the character variety.

Corollary 21

The (X, P) coordinates on \mathcal{M}_n are log-canonical with respect to the Fock–Rosly bracket, and the spherical subalgebra provides a quantisation of the character variety.

Remark 22

Let M be the moduli space of flat $GL_{2n}(\mathbb{C})$ -connections on the four-punctured sphere $\Sigma_{0,4}$. Then, \mathcal{M}_n is a symplectic leaf (by specifying the conjugacy classes C_i) and we can view it as a completed phase space for the van Diejen system.

Alternative Description

Proposition 23 $\mathcal{M}_n \cong \mathcal{R}_n/\mathsf{GL}_{2n}(\mathbb{C})$, where \mathcal{R}_n is the set of X, Y, $\mathcal{T} \in \mathsf{GL}_{2n}(\mathbb{C})$ subject to $T - T^{-1} = (u_0 - u_0^{-1}) \mathbb{1}_V,$ $XT^{-1} - TX^{-1} = (k_0 - k_0^{-1}) \mathbb{1}_V,$ $T^{-1}Y^{-1} - YT = (u_n - u_n^{-1}) \mathbb{1}_V,$ $tYTX^{-1} - t^{-1}XT^{-1}Y^{-1} = (k_nt^{-1} - k_n^{-1}t)\mathbb{1}_V + (t - t^{-1})vw,$ $wv = \frac{t^{2n} - 1}{t^2 - 1}$ $\frac{t^{2n}-1}{t^2-1}k_n+\frac{1-t^{-2n}}{1-t^{-2}}$ $\frac{1-t}{1-t^{-2}}k_n^{-1}.$

Lemma 24 ([\[Chalykh '19\]](#page-25-3))

Let $\mathsf{v}=(1,\ldots,1)^{\mathsf{T}}$ and $\mathsf{w}=(\phi_1,\ldots,\phi_{2n}),$ where $\phi_i\coloneqq c_i^{-}\prod\limits_{k\neq i}^n a_{ki}a_{ki}^{-}.$ The Hecke symmetriser acts by a constant multiple of the rank-one matrix vw.

Quantisation

For $q = 1$, the ring of functions $\mathbb{C}[\mathcal{M}_n]$ is generated by traces of words in A_i .

Lemma 25

The algebra $\mathbb{C}[\mathcal{M}_n]$ is generated by wa (X, Y, T) v for a $\in \mathbb{C} \langle X^{\pm 1}, Y^{\pm 1}, T^{\pm 1} \rangle$.

Notation 26 Let $\mathscr{D}_q = \mathbb{C}_q(\bm{X})[\bm{P}^{\pm 1}] \rtimes \mathbb{C}$ W be the ring of q -difference-reflection operators.

Proposition 27

The elements $\mathsf{wa}(X, Y, T)\mathsf{v}$ generate a subalgebra of \mathscr{D}_q^W isomorphic to the spherical subalgebra $\mathbf{e}\mathcal{H}_{q,\boldsymbol{\tau}}\mathbf{e}$, for $\mathsf{a}\in\mathbb{C}\left\langle X^{\pm1},Y^{\pm1},\mathcal{T}^{\pm1}\right\rangle$.

Corollary 28

As an algebra, $e\mathcal{H}_{q,\tau}$ e is generated by $eX_1^nY_1^m$ e and $eX_1^nY_1^mT_0^{\vee}$ e for $n,m\in\mathbb{Z}$.

Future Work

- The conjecture of [Etingof-Gan-Oblomkov '06] that we prove is actually only part of a more general statement about generalised DAHAs with underlying star-shaped quiver Q. We have settled the case $Q = D_4$, but the cases $Q = \overline{E}_{6,7,8}$ remain open.
- Using the interpretation as a moduli space of flat connections, this leads to a mapping class group action. This suggests the study of a spin version which would yield a new integrable system.
- Recent work [\[Braverman–Finkelberg–Nakajima '19\]](#page-25-6) on quantised Coulomb branches of 3d $\mathcal{N} = 4$ gauge theories suggests a further generalisation to D_m where $m > 4$.

Thanks for Listening!

References

- [BFN19] A. Braverman, M. Finkelberg, and H. Nakajima. Coulomb branches of 3d $\mathcal{N} = 4$ quiver gauge theories and slices in the affine Grassmannian. Adv. Theor. Math. Phys., 23(1):75–166, 2019. [doi:10.4310/ATMP.2019.v23.](https://doi.org/10.4310/ATMP.2019.v23.n1.a3) [n1.a3](https://doi.org/10.4310/ATMP.2019.v23.n1.a3).
- [CBS06] W. Crawley-Boevey and P. Shaw. Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem. Adv. Math., 201:180–208, 2006. [doi:10.1016/j.aim.2005.02.003](https://doi.org/10.1016/j.aim.2005.02.003).
- [Cha19] O. Chalykh. Quantum Lax Pairs via Dunkl and Cherednik Operators. Commun. Math. Phys., 369(1):261–316, 2019. [doi:10.1007/s00220-019-03289-8](https://doi.org/10.1007/s00220-019-03289-8).
- [Che95] I. Cherednik. Macdonald's evaluation conjectures and difference Fourier transform. Invent. Math., 122(1):119–145, 1995. [doi:10.1007/](https://doi.org/10.1007/bf01231441) [bf01231441](https://doi.org/10.1007/bf01231441).
- [CR24] O. Chalykh and B. Ryan. DAHAs of Type $C^{\vee}C_{n}$ and Character Varieties, 2024. in preparation.
- [EGO06] P. Etingof, W. L. Gan, and A. Oblomkov. Generalized double affine Hecke algebras of higher rank. J. Reine Angew. Math., 600:177–201, 2006. [doi:](https://doi.org/10.1515/CRELLE.2006.091) [10.1515/CRELLE.2006.091](https://doi.org/10.1515/CRELLE.2006.091).
	- [FR99] V. Fock and A. Rosly. Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. Am. Math. Soc. Transl., 191:67–86, 1999. [doi:10.1090/trans2/191](https://doi.org/10.1090/trans2/191).

References

- [HLRV13] T. Hausel, E. Letellier, and F. Rodriguez-Villegas. Arithmetic harmonic analysis on character and quiver varieties II. Adv. Math., 234:85–128, 2013. [doi:10.1016/j.aim.2012.10.009](https://doi.org/10.1016/j.aim.2012.10.009).
	- [Obl04] A. Oblomkov. Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory, 8:243–266, 2004. [doi:10.1090/](https://doi.org/10.1090/S1088-4165-04-00246-8) [S1088-4165-04-00246-8](https://doi.org/10.1090/S1088-4165-04-00246-8).
	- [PG17] B. G. Pusztai and T. Görbe. Lax Representation of the Hyperbolic van Diejen Dynamics with Two Coupling Parameters. Comm. Math. Phys., 354:829–864, 2017. [doi:10.1007/s00220-017-2935-5](https://doi.org/10.1007/s00220-017-2935-5).
	- [Sah99] S. Sahi. Nonsymmetric Koornwinder Polynomials and Duality. Ann. Math., 150(1):267–282, 1999. [doi:10.2307/121102](https://doi.org/10.2307/121102).