A Deligne-Simpson Problem

Bradley Ryan

School of Mathematics Postgraduate Research Conference, University of Leeds

17/06/2022

The Problem

We consider this multiplicative Deligne-Simpson problem: for given conjugacy classes C_{1}, \ldots, C_{k} in $\mathrm{GL}_{n}(\mathbb{C})$, determine irreducible solutions of the equation

$$
A_{1} \cdots A_{k}=\mathbb{1}_{n}, \quad \text { where } A_{i} \in C_{i}
$$

Remark 1

The term irreducible above means there is no common proper invariant subspace under the action of the matrices A_{i}. If we omit this condition, the problem will be harder.

Example 2 (Our Situation)

We want to solve $A_{1} A_{2} A_{3} A_{4}=\mathbb{1}_{2 n}$, where each matrix is of size $2 n \times 2 n$ with prescribed eigenvalues (i.e. they are each diagonalisable).

We focus on the general case for now.

Monodromy

Monodromy is the study of an object's behaviour near a singularity (apparently, the word comes from Greek and means 'uniformly running').

Definition 3

Let A_{1}, \ldots, A_{k} be $n \times n$ matrices. A Fuchsian system is a linear system

$$
\frac{\mathrm{d} \Phi}{\mathrm{~d} \lambda}=\left(\sum_{i=1}^{k} \frac{A_{i}}{\lambda-t_{i}}\right) \Phi
$$

where $\lambda \in \mathbb{C P}^{1} \backslash\left\{t_{1}, \ldots, t_{k}\right\}$ and Φ is an $n \times n$ matrix of dependent variables.

Remark 4

Recall that $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$, the one-point compactification of the complex plane. In Definition 3, if we impose the additive Deligne Simpson condition

$$
A_{1}+\cdots+A_{k}=0
$$

then the point at infinity $\lambda=\infty$ is a so-called regular point of the system; any neighbourhood of this point contains a solution of the Fuchsian system with the condition that $\left.\Phi\right|_{\lambda=\infty}=\mathbb{1}_{n}$.

Monodromy

Notation 5

Throughout, let Σ_{k} be the k-punctured Riemann sphere $\mathbb{C P}^{1} \backslash\left\{t_{1}, \ldots, t_{k}\right\}$.
We now define a group associated with the punctured Riemann sphere. To do this, we first fix a base-point $x \in \Sigma_{k}$ and a matrix $B \in \mathrm{GL}_{n}(\mathbb{C})$.

Definition 6

Let γ be a loop at $x \in \Sigma_{k}$ which encircles the punctures. The corresponding monodromy operator is a linear operator $M: \Phi \mapsto \Phi_{\gamma}$, where $\left.\Phi\right|_{\lambda=x}=B$ is a solution of the Fuchsian system and Φ_{γ} is its analytic continuation along γ.

Remark 7

This is a bit technical already so note the punchline: the monodromy group is a subgroup of $G L_{n}(\mathbb{C})$ generated by these monodromy operators M. Essentially, the group is understood as a representation (homomorphism) of the form

$$
\rho: \pi_{1}(\Sigma, x) \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

- $\pi_{1}(\Sigma, x)$ is generated by loops γ_{i} at x, where γ_{i} encircles the puncture t_{i}.
- The representation assigns to each generator a monodromy matrix M_{i}.
- Hence, the concatenation of paths $\gamma_{k} \cdots \gamma_{1} \simeq 0$ tells us $M_{1} \cdots M_{k}=\mathbb{1}_{n}$.

Monodromy

The headline is the following:
Multiplicative Deligne-Simpson $\xrightarrow{\text { monodromy }}$ Additive Deligne-Simpson.

Example 8

Let A_{1}, A_{2}, A_{3} be 2×2 matrices and consider the 4 -punctured Riemann sphere $\Sigma:=\mathbb{C P}^{1} \backslash\{0,1, t, \infty\}$. The Fuchsian system of interest is the following:

$$
\frac{\mathrm{d} \Phi}{\mathrm{~d} \lambda}=\left(\frac{A_{1}}{\lambda}+\frac{A_{2}}{\lambda-1}+\frac{A_{3}}{\lambda-t}\right) \Phi,
$$

where we define the matrix corresponding to infinity as $A_{\infty}:=-A_{1}-A_{2}-A_{3}$.
Theorem 9 ([CM10, $(5.30,5.31)])$
The $M_{i} \in \mathrm{GL}_{2}(\mathbb{C})$ corresponding to Example 8 are given locally as

$$
M_{i} \sim \exp \left(A_{i}\right) \sim\left(\begin{array}{cc}
e^{\theta_{i} / 2} & 0 \\
0 & -e^{-\theta_{i} / 2}
\end{array}\right),
$$

where $\pm \theta_{i} / 2$ are the eigenvalues of the matrix A_{i}.

Other Areas

My research has concerned the double affine Hecke algebra of type $B C$. Through this, we can obtain a family of solutions to the multiplicative Deligne-Simpson problem described at the beginning as a by-product.

- The generalised double affine Hecke algebra in [EGO06] has the relation

$$
U_{1} U_{2} U_{3} U_{4} S S^{\dagger}=1
$$

and there is an injection from this to 'our' double affine Hecke algebra.

- Using methods in the paper [Cha19], I was able to construct an explicit $2 n$-parameter family of matrices $A_{1}, A_{2}, A_{3}, A_{4}$ and prove that they have prescribed eigenvalues - straightforward for A_{1}, A_{2}, A_{3} and harder for A_{4}.
- The eigendata can define a representation of a star-like quiver (or rather the multiplicative quiver variety) in the spirit of [CBS04].
- Lately, we interpret the $2 n$ parameters as defining a chart on an algebraic variety. Proving that said variety is connected boils down to the cohomology of Σ_{4}, information obtainable via [Mel17, Theorem 7.12].

Thanks for Listening!

References

[CBS04] William Crawley-Boevey and Peter Shaw. Multiplicative Preprojective Algebras, Middle Convolution and the Deligne-Simpson Problem, 2004. arXiv:math.RA/0404186.
[Cha19] Oleg Chalykh. Quantum Lax Pairs via Dunkl and Cherednik Operators. Communications in Mathematical Physics, 369(1):261-316, 2019. doi:10.1007/s00220-019-03289-8.
[CM10] Leonid Chekhov and Marta Mazzocco. Shear Coordinate Description of the Quantized Versal Unfolding of a D_{4} Singularity. Journal of Physics A: Mathematical and Theoretical, 43(44):442002, 2010. doi: 10.1088/1751-8113/43/44/442002.
[EGO06] Pavel Etingof, Wee Liang Gan, and Alexei Oblomkov. Generalised Double Affine Hecke Algebras of Higher Rank, 2006. arXiv:math. QA/ 0504089.
[Mel17] Anton Mellit. Poincaré Polynomials of Character Varieties, Macdonald Polynomials and Affine Springer Fibers, 2017. arXiv:1710.04513.

