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Ivan Cherednik [Che92] introduced the double affine Hecke algebra (DAHA) associated to a

reduced irreducible root system in order to prove conjectures regarding Macdonald polynomials.

Subsequent work by Masatoshi Noumi [Nou95] and Siddhartha Sahi [Sah99] extended the theory

to cover the setting of an arbitrary irreducible affine root system. In particular, the non-reduced

irreducible affine root system of type C∨Cn contains, as subsystems, all non-reduced irreducible

affine root systems of classical type; this is noted in Ian Macdonald’s book [Mac03, p.12].

Slide 2 – Hecke Algebras of Type Cn

Definition The Weyl group of type Cn is generated by s1, ..., sn which satisfy the quadratic

relation s2i = 1 for all i = 1, ..., n and satisfy the braid relations sisjsi · · · = sjsisj · · · where

there are ord(sisj)-many terms on each side. The affine Weyl group of type C̃n is generated by

an additional element s0 which satisfies the quadratic relation, as well as s0s1s0s1 = s1s0s1s0.

The affine Coxeter diagram of type C̃n encodes the braid relations in the affine Weyl group:

ord(sisj) = 2, 3, 4 says the ith and jth nodes are connected by zero/one/two edges respectively.

0 1 2 . . . n− 1 n

Remark We can think of the quadratic relations as being deformed into the Hecke relations:

s2i = 1 ⇔ (si − 1)(si + 1) = 0 ⇝ (Ti − τi)(Ti + τ−1
i ) = 0.

Slide 3 – Generators of the Affine Hecke Algebra

Approach 1: an affine Hecke algebra associated to the affine Weyl group W̃ has basis {Tw}w∈W̃ .

The idea is to write any affine Weyl element w = si1 · · · sik as a product of simple reflections in

a reduced (minimal) way. Having defined Ti := Tsi , this can be extended to Tw := Ti1 · · ·Tik .
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Approach 2: the affine Weyl group W̃ ∼= W ⋉ τ(Zn), where τ(Zn) are translations in an integer

lattice (really the coroot lattice Q∨ associated with the root system of type Cn). The Yi are now

Hecke elements corresponding to a translation in the direction of εi.

Slide 4 – The DAHA of Type C∨Cn

We can clearly see the finite Hecke algebra of type C∨Cn inside Definition 5 with the quoted braid

relations, and an obvious copy of one affine Hecke algebra of type C̃n sitting inside. However,

the second affine Hecke algebra is a little more obscure. We now justify why the DAHA contains

two copies of an affine Hecke algebra that overlap on a finite Hecke algebra.

We can use the theorem of Lusztig to obtain a linear basis of the DAHA. Indeed, the previous

result tells us that Xi pairwise commute and generate a subalgebra C[X±1]. Hence, since the

DAHA is the affine Hecke algebra with this extra collection of elements, we have this vector

space isomorphism where H̃ is the affine Hecke algebra:

H ∼= C[X±1]⊗ H̃.

Corollary As vector spaces, we have H ∼= C[X±1]⊗H ⊗ C[Y ±1] for H the finite Hecke algebra.

Notice we can use the relation TiXiTi = Xi+1 recursively to write any Xj in terms of T1, ..., Tj−1

and X1. But the penultimate relation tells us that X1 = qT0T
∨
0 . On the other hand, we can

write Xj in terms of Tj , ..., Tn and Xn. But the final relation says Xn = (T∨
n Tn)

−1. Therefore,

the X-generators can be replaced and the whole DAHA is generated by T∨
0 , T0, T1, ..., Tn, T

∨
n .

This is discussed in [Sto05, Theorem 3.4] and is captured by the affine Coxeter diagram of type

C̃n:

T0

T∨
0

T1

T1

T2

T2

. . .
Tn−1

Tn−1

Tn

T∨
n

Slide 5 – Spherical Subalgebra

Our goal is to relate the DAHA to a commutative algebra, so that we can interpret it somewhat

more geometrically. However, it is generically highly non-commutative (and its centre is trivial).

That said, upon specialising q = 1, the DAHA turns out to have a large centre.

Remark The Hecke symmetriser e ∈ H and satisfies Tie = eTi = τie for all i = 1, ..., n.

The Hecke symmetriser kills (a lot of) the finite Hecke algebra in the above decomposition to

make the algebra “more commutative”. The subalgebras eHn,t,qe are thought of as quantisation

deformations of the spherical subalgebra eHn,t,1e at the classical level. But why do we care?
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Theorem When q = 1, we have an isomorphism Z(Hn,t,1) ∼= eHn,t,1e given by z 7→ ze.

We now give a brief overview of some known results relating the DAHA to certain varieties.

Rational Cherednik Algebra

In [EG01], Pavel Etingof and Victor Ginzburg describe the centre Z(H0,c) of a so-called rational

limit of the DAHA. They identify it with the quiver variety of the tadpole quiver, drawn below.

We won’t dwell much on this; something similar is done for the usual DAHA of type An−1.

DAHA of Type An−1

In [Obl03a], Alexei Oblomkov describes the centre Z(H1,t) of the DAHA of type An−1 by find-

ing an isomorphism to the so-called Calogero-Moser space (which is really a type of character

variety).

Definition The Calogero-Moser space CMt is the (GIT-)quotient of the subset

{(X,Y, u, v) : X−1Y −1XY − t−2
1n = u⊗ v} ⊆ GLn×GLn×Cn × (Cn)⋆

where the action by elements of g ∈ GLn is given as follows:

g • (X,Y, u, v) = (gXg−1, gY g−1, gu, vg−1).

Proposition The action of GLn on CMt is free.

Sketch of Proof : The crux of the argument is to assume we have a non-trivial stabiliser, and

show that this allows us to find a non-zero X- and Y -invariant proper subspace on which we can

restrict these matrices. But no such subspace exists; see the proof of [Obl03a, Lemma 2.1].

We will determine the eigenvalues of (X,Y ) := X−1Y −1XY by acting on an arbitrary w ∈ Cn.

� If v(w) = 0, then (X,Y )w = t−2w + 0, giving an eigenvalue t−2 with multiplicity n− 1.

� But det
(
X−1Y −1XY

)
= 1, which gives a remaining eigenvalue t2n−2 with multiplicity 1.

Generalised DAHA

Lastly, [EGO06] conjecture a similar result for some generalised DAHA; these are defined in

terms of some star-shaped quiver Q. Specifically, their conjecture is about Q = D̃4, Ẽ6, Ẽ7, Ẽ8.

Fortunately, there is a straightforward isomorphism between the generalised DAHA associated

with D̃4 and the DAHA of type C∨Cn. Consequently, Problem 7 is refined in the sense that

[EGO06] conjecture specifically the variety V we should be looking at.
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Slide 6 – Character Varieties

We will interpret Definition 8 geometrically. First, let Σg be a compact Riemann surface with

genus g. Then, the fundamental group π1(Σg) is generated by based loops a1, ..., ag around

each hole and b1, ..., bg through each hole. The character variety here is Hom(π1(Σg),GLm)/ ∼,

where GLm acts on the group of homomorphisms by conjugation, and ∼ declares that two

homomorphisms equivalent if the closures of their orbits intersect. Recall we have a presentation

π1(Σg) = ⟨a1, ..., ag, b1, ..., bg : (a1b1a
−1
1 b−1

1 ) · · · (agbga−1
g b−1

g ) = 1⟩.

If we remove k points, we obtain the compact Riemann surface with genus g and k punctures,

denoted Σg,k. We have additional π1(Σg,k)-generators ci around each puncture. Hence, we obtain

π1(Σg,k) = ⟨a1, ..., ag, b1, ..., bg, c1, ..., ck : (a1b1a
−1
1 b−1

1 ) · · · (agbga−1
g b−1

g )c1 · · · ck = 1⟩.

Remark The meaning of // is that we take only the closed orbits under the GLm-conjugation

action; this is because there may be singular points. However, we can impose certain conditions

on the conjugacy classes to guarantee that the action is free; it is really the näıve quotient.

It is clear that M̂, and thus the variety Mg,k itself, is empty if the product of the determinants

k∏
i=1

det(Ci) ̸= 1.

Lemma ([HLRV11, Lemma 2.1.2]) There exists a generic tuple of semi-simple conjugacy classes.

The Calogero-Moser space CMt in [Obl03a] is a character variety of the one-punctured torus.

Indeed, the defining equation can be re-written as (XYX−1Y −1)A = 1n and thus we see that

g = 1, k = 1 and m = n. The genericity of the eigendata is not too bad to verify; it is almost

immediate from looking at the eigenvalues and multiplicities we obtained earlier.

Slide 7 – Generic Semi-Simple Eigendata

We will give more of a flavour for how this genericity condition arises. Indeed, if a point in M̂ has

non-trivial stabiliser, then we can restrict to a subspace invariant under the matrices Aj , Bj , Ci

(i.e. a non-simple subrepresentation of the fundamental group π1). Assume
∏

i det(Ci) = 1, so

the character variety might be non-empty. The genericity condition in Definition 9 is equivalent

to this: let W ⊆ Cm be a subspace stable under each matrix Ci. Then, the only two such

subspaces are W = 0 or W = Cm that make the following product true:
∏

i det
(
Ci

∣∣
W

)
= 1.
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Slide 8 – Calogero-Moser Space in Type C∨Cn

The definition of Calogero-Moser space in our situation comes by fixing some analytic data λ

and combinatorial data µ in the way as presented; these define some diagonal conjugacy classes.

Showing genericity requires a bit (but not too much) effort; it relies on the ‘splitting’ in C4.

Note the Calogero-Moser space CM = M0,4 is a character variety of CP1 \ {4 points}. We can

compute its dimension by using the combinatorial formula from the previous slide. Indeed then,

dim(CM) = (0− 2 + 4)(2n)2 − 7n2 − (n− 1)2 − 1 + 2 = 8n2 − 7n2 − n2 + 2n− 1− 1 + 2 = 2n.

Remark The Calogero-Moser space is so-named because it is the phase space of the corresponding

Calogero-Moser system. There is interesting dynamics here, something we want to investigate

soon. Based on [Cha19], our case should correspond to the Koornwinder-van Diejen system.

Slide 9 – Headline of the Talk

Alternatively, we can think of it as an isomorphism Spec(Z) ∼= CM. We now want to associate

to one-dimensional representations (characters χ : Z → C) a point in Calogero-Moser space. We

can use [Cha19] to interpret said restrictions as 2n × 2n matrices. Such an association is also

described in [EGO06]; see the next slide for a (very vague and) brief idea.

Slide 10 – A Map from the DAHA to Calogero-Moser Space

A proper set-up would sadly take too much time here. However, we aim to provide a flavour as to

what is happening here. The idea comes from [EGO06, §5], who introduce a map that associates

to a (certain class of) irreducible representation some point in the Calogero-Moser space.

Remark The idea is to analyse Φ in greater detail, and use theory from algebraic geometry to

show it is an isomorphism; this is analogous to [EG01] and [Obl03a] in their respective settings.

The trick is to embed Z ⊆ H into a “bigger algebra” D1 generated by meromorphic functions

C(X) and translations τ(Zn). If we localise the centre on some ideal generated by δ(X), then

this is isomorphic to the W -invariant localised Laurent polynomials C[P±1,X±1]Wδ(X).

Remark In general, this is the algebra of q-difference operators and is denoted Dq. But at the

classical level q = 1, the lattice of translations τ(Zn) reduces to Laurent polynomials C[P±1].

To relate this to the affine/finite Weyl groups, we can encode s0 by P1. In this way, we obtain

C(X)⋊ W̃ ∼= Dq ⋊W.
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Slide 11 – Multiplicative Quiver Varieties

Explicitly, a representation of the multiplicative preprojective algebra is a collection of vector

spaces and linear maps {(Xv, fa)}v∈Q0,a∈Q1
which form a representation of Q but satisfy these:

(i) For each a ∈ Q1, we have idXh(a)
+ (fa∗ ◦ fa) is invertible.

(ii) For each v ∈ Q0, we have
∏

a∈Q1
h(a)=v

(
idXh(a)

+ (fa∗ ◦ fa)
)ε(a)

= qv idXv .

Remark We can view the space of representations as a level set of a moment map. Indeed, if we

define Ψ :=
∏

a (1+ a∗a)ε(a) and q :=
∑

v qvev, then Rep(Λq,α) is viewed as a level set {Ψ = q},
and is thus a closed sub-variety of the variety of representations of the double quiver.

Slide 12 – From Character to Quiver Varieties

In the case that the genus g > 0, one can work with a similar underlying quiver except there are

now also g-many loops at the central vertex. This is discussed a bit more in [HLRV11].

Lemma ([CBS04, Lemma 1.5]) If
∏

v∈Q0
qαv
v ̸= 1, the representation space Rep(Λq,α) is empty.

On the level of quiver varieties then, we can think of this product condition as capturing the

genericity we impose on the level of character varieties. This is made clear in the next example.

Example For the quiver variety associated with CM, we work with the following quiver data:

q0 = −k−1
0 u−1

0 u−1
n kn, q[1,1] = −k20, q[2,1] = −u20,

q[3,1] = −u2n, q[4,1] = −k−2
n t2, q[4,2] = t−2n.

The dimension vector here is α = (2n, n, n, n, n, 1) and we can quickly see that
∏

v∈Q0
qαv
v = 1.

Slide 13 – Local Coordinates on Calogero-Moser Space

The defining equation on the Calogero-Moser space we work with is A1A2A3A4 = 12n. If we

instead restrict to a three-tuple by defining X := A1A2, then we obtain two related problems:

A1A2X
−1 = 12n and XA3A4 = 12n.

Example Suppose that n = 1 and we want to solve A1A2A3A4 = 12 (these are all 2×2 matrices).

This is a well-studied problem with a relationship to Fuchsian systems and Painlevé theory (in
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particular to the Painlevé VI equation, some second-order ODE). We can use the above idea to

obtain coordinates on the character variety. Begin by assuming that X is diagonalisable:

� Since det(X) = 1, we know the eigenvalues are X1 and X−1
1 ; this gives us coordinate one.

� But the other problem also involves X. Since conjugation on the character variety is

simultaneous (affecting all Ai concurrently), this lack of independence between the two

equations gives rise to conjugation by diag(P1, P
−1
1 ); this gives us coordinate two.

We know that dim(CM) = 2n = 2 in this case, and we have two coordinates on this variety.

Not only did [Obl03b] discuss this n = 1 case in a separate paper, but he shows that the character

variety is an explicit affine cubic. Moreover, he even considers Poisson structures on both sides.

Remark Geometrically, we have cut the four-punctured Riemann sphere Σ0,4 into hemispheres,

each containing two punctures. If we then contract each new boundary component to a point,

we see that the two problems above correspond to the three-punctured Riemann sphere Σ0,3.

The idea for higher-rank is similar: the first set of coordinates encodes the diagonal matrix X,

and the second encodes the glueing of the two solutions for Σ0,3 to obtain a solution for Σ0,4.

The aim now is to play these smaller problems off of each other and use [CBS04]:

� Analysing Q2 tells us that X has distinct eigenvalues and the moduli space is rigid.

� Ensuring that the eigenvalues are generic-enough, they are pairwise reciprocal.

� This allows us to write X as a direct sum of 2× 2 matrices.

� Such a solution also fixes A3 and A4 by the rigidity.

Remark By generic-enough we mean to localise by some function δ(X) of the eigenvalues. Think

of the isomorphism as defining local coordinates on Calogero-Moser space. Obtaining explicit

formulae for the Ai is difficult but possible by using the DAHA (i.e. the Basic Representation).

Slide 14 – The Duality Isomorphism

We apply the duality isomorphism to the elements A1, A2, A3, A4 to see what their corresponding

elements are. It is a straightforward calculation using Proposition 18 to determine this:

A1 7→ q−1A−1
3 , A2 7→ A−1

2 , A3 7→ qA−1
1 , A4 7→ A−1

4 .

In particular, we see that X = A1A2 7→ (qA2A3)
−1 = q−1A4A1 under the duality isomorphism.

This acts as motivation for us defining the matrix Y := A2A3. Indeed, we now get a completely

7



similar pair of problems on Σ0,3 to that which we had when we set X = A1A2. Namely, we have

A2A3Y
−1 = 12n and A1Y A4 = 12n.

The argument is identical to before: we get an isomorphism to an open subset of this Calogero-

Moser space. But then we can pull this back to the usual Calogero-Moser space CM to obtain a

second set of local coordinates. The idea is that ε on DAHAs induces a map εCM on Calogero-

Moser spaces: for Φ the map in [EGO06, Proposition 5.2.10] which sends an irreducible module

induced by a character to a point in Calogero-Moser space, we can say

εCM ◦ Φ = Φ ◦ ε.

Slide 15 – Sketching the Main Argument

� Nothing much else to say.

� Nothing much else to say.

� We are really working with Φ = ε−1
CM ◦ Φ ◦ ε, where we defined εCM just above.

� The Cohen-Macaulay property allows us to extend to the whole spectrum, and irreducibility

tells us that the extension is dominant (meaning its image is dense). One can then use a

general theorem [Sha13, Theorem 2.21] about normal varieties to give the existence of a

birational inverse and thus we are done.

Remark As mentioned, this is also conjectured for the GDAHA by [EGO06] in the case that the

underlying quiver is instead Ẽ6, Ẽ7, Ẽ8. However, our method will not carry across because there

is no obvious way to obtain coordinates on the character variety. Also, the DAHA is not well

understood (there is no explicit Basic Representation and this is actually a key ingredient).
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