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Introduction

Hello and welcome to the module on Real Analysis! What follows is a module intended to support

the reader in learning this fascinating topic. The Prison Mathematics Project (PMP) realises

that you may be practising mathematics in an environment that is highly restrictive, so this text

can both be used independently and does not require a calculator.

What is Real Analysis?

You may or may not be used to calculus (for familiarity, you can also find notes made through the

PMP on this topic) but it doesn’t matter so much. We will introduce calculus informally and then

make everything precise; this is the job of analysis. If any of these words seem a bit foreign, don’t

fret! We will provide a self-contained introduction to everything required for the understanding

of this topic. Because this is an introductory course, we will restrict ourselves to looking at real

functions of one variable only; although we could go wild and consider multivariable functions,

we will broadly stick to what we can imagine in our heads.

Learning in this Module

The best way to learn mathematics is to do mathematics. Indeed, education isn’t something that

happens more than it is something we should all participate in. You will find various exercise

questions and worked examples in these notes so that you may try to solve problems and deepen

your understanding of this topic. Although the aim is for everything to only require the content

of this module, you are encouraged to use any other sources you have at your disposal.
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1 Preliminaries



4 Sequences

2 Sequences

Now we have the foundations set by Chapter ??, we can formalise the notion of a limit of

a sequence. We may have been introduced to the notation lim
x→a

before but this is not quite

rigorous.

Definition 2.1 A real sequence is a function a : Z+ → R which assigns to each positive

integer n a real number a(n), which we henceforth write an. The sequence is denoted (an).

Example 2.2 Here are some examples of sequences.

(i) The sequence (an) where an = n is the identity sequence (1, 2, 3, 4, ...).

(ii) The sequence (bn) where bn = n2 is the sequence (1, 4, 9, 16, ...).

(iii) The sequence (cn) where cn = 1 + 5/n2 is the sequence (6, 9/4, 14/9, 21/16, ...).

Exercise 1 Find the first n with cn = 1 to five decimal places, for (cn) in Example 2.2.

[Hint: This means that 0.999995 ≤ cn < 1.000005, so simply rearrange this for n.]

Definition 2.3 An inductively-defined sequence is a sequence (an) where a1 is given and

an+1 is stated in terms of an, i.e. each entry of (an) is defined by the previous entry.

Example 2.4 Consider the sequence (an) where a1 = 1 which is inductively-defined as follows:

an+1 =
an

1 + a2n
.

We can determine the first four values, say, by iterating, that is find the next value, substitute it

in, find the next value, and so on. Clearly, the first value a1 = 1 (because it is given). Now then,

a2 =
a1

1 + a21
=

1

1 + 12
=

1

2
,

a3 =
a2

1 + a22
=

1/2

1 + (1/2)2
=

2

5
,

a4 =
a3

1 + a23
=

2/5

1 + (2/5)2
=

10

29
.

In fact, if we ‘went to infinity’ with this, we would see that the output would be ‘very’ close to

one. We will actually prove later that this is true irregardless of what the starting value a1 is

(but note that this is not the case for all inductively-defined sequences).
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To talk about convergence, that is the notion of a limit, when discussing real sequences, we need

to use the absolute value. Recall that Definition ?? told us the absolute value of an integer, but

we can define this concept for R in the exact same way, albeit more rigorously now we know

what a function is.

Definition 2.5 The absolute value is a function |·| : R → R defined by

|x| =

x, if x ≥ 0,

−x, if x < 0
.

Note: Recall the more succinct way to write the function in Definition 2.5: |x| =
√
x2.

Exercise 2 Explain the properties x ≤ |x| and |xy| = |x||y| for all x, y ∈ R.

Proposition 2.6 (Triangle Inequality) Let x, y ∈ R. Then, |x+ y| ≤ |x|+ |y|.

Proof : Assume to the contrary that |x+ y| > |x|+ |y|. Because both sides are non-negative, we

get the following chain of implications when we square the assumed inequality:

|x+ y|2 > ( |x|+ |y|)2

⇒ (x+ y)2 > |x|2 + 2|x||y|+ |y|2

⇒ x2 + 2xy + y2 > |x|2 + 2|xy|+ |y|2

⇒ xy > |xy|,

but this is a contradiction to Exercise 2.

Definition 2.7 A real sequence (an) converges to a number L ∈ R if, for each ε > 0, there

exists N ∈ Z+ such that, for all n ≥ N , we have |an − L| < ε. This is denoted an → L.

The number L is called the limit of (an) and may be denoted either lim an or limn→∞ an.

Remark 2.8 Let’s take a breather; Definition 2.7 is the first rigorous definition of a limit we have

encountered, and other definitions will be built from it. Thus, it is important you have an idea

of what this definition says. Indeed, we will explain it in words and we will provide a geometric

interpretation (picture).

(i) Given a sequence (an), we can show that it ‘approaches’ the number L as n ∈ Z+ gets large



6 Sequences

by showing that for any positive number (ε > 0), there exists a point in the sequence aN

(there exists N ∈ Z+) after which (for all n ≥ N) every term in the sequence lies within

distance that positive number of the number L ( |an − L| < ε). Because this needs to work

for any ε, the idea is that the distance can be as large or as small as you like and we should

still be able to find N ∈ Z+ to make this work.

(ii) Geometrically, this means that, if we plot n against an on a pair of axes, then after N ,

every pair of points will live inside a rectangle with width 2ε centred on the line an = L.

L

N

2ε

Figure 1: The geometric interpretation of the convergence of some sequence (an).

Definition 2.9 An ε-N proof is a proof of convergence using Definition 2.7. Although this

terminology is used elsewhere, a proof from first principles also refers to an ε-N proof.

Note: When reading an ε-N proof, it may be that the writer has chosen a very specific

(and/or complicated) expression for N in terms of ε; this is fine because it is expected that

how far along our sequence we need to go before all the points are in the desired region,

as in Figure 1, will very much depend on how wide our region is. However, when you are

asked to do an ε-N proof, choosing this N isn’t just by magic. You must ‘estimate’ (get

a rigorous upper bound on) the quantity |an − L|, from which the choice should be clear.

Example 2.10 Suppose we wish to prove from first principles that, for an = 1 + 5/n2, we have

an → 1. We first look at the quantity |an − 1|. Indeed,

|an − 1| =
∣∣∣1 + 5/n2 − 1

∣∣∣
=
∣∣∣5/n2

∣∣∣
= 5/n2

≤ 5/n.
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All this uses is the fact that the absolute value of a positive quantity, e.g. 5/n2, is the same as

the positive quantity (this allowed us to ditch the absolute value on the third line) and that,

for all n ∈ Z+, we have n2 ≥ n which is equivalent to 1/n2 ≤ 1/n (this allowed us to simplify

the denominator in the last line). Recall that we consider all n ≥ N when looking at the limit,

which means that 1/n ≤ 1/N . In particular, we can add an additional inequality:

≤ 5/N.

Thus, to ensure that this is less than any given ε > 0, we just rearrange 5/N < ε to get that

N > 5/ε. One final problem? How do we know that there exists an integer N satisfying this?

By the Archimedean Property of R, of course. Thus, we are set. Here is what the proof would

look like (i.e. where we hide all of our thought processes and scrap work from view).

Proof : Let ε > 0 be given. There is N ∈ Z+ with N > 5/ε by the Archimedean Property of R.
Then, for all n ≥ N , it follows that

|an − 1| =
∣∣∣1 + 5/n2 − 1

∣∣∣
=
∣∣∣5/n2

∣∣∣
= 5/n2

≤ 5/n

≤ 5/N

< ε.

Therefore, we can conclude that an → 1.

Exercise 3 Give a direct ε-N proof that the sequence (an) where an = 1/n converges.

[Hint: You must first suggest what the limit L is and then go ahead with the proof.]

Exercise 4 Give a direct ε-N proof that the so-called constant sequence (bn) converges,

that is the sequence is defined by bn = k for all n, where k ∈ R is some fixed number.

Example 2.11 (Harder) We will give a direct ε-N proof that the following is true:

an =
n2 − sin(n)

(2n− 7)(3n+ 1)
→ 1

6
.

We will not write this up formally, rather we perform the informal ‘estimation’ and discuss how
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we choose N to ensure that
∣∣an − 1/6

∣∣ < ε. So, let’s work with this absolute value, as usual:

∣∣an − 1/6
∣∣ = ∣∣∣∣∣ n2 − sin(n)

(2n− 7)(3n+ 1)
− 1

6

∣∣∣∣∣
=

∣∣∣∣∣6n2 − 6 sin(n)− (2n− 7)(3n+ 1)

6(2n− 7)(3n+ 1)

∣∣∣∣∣
=

1

6

∣∣∣∣19n− 6 sin(n) + 7

(2n− 7)(3n+ 1)

∣∣∣∣
=

1

6

∣∣19n− 6 sin(n) + 7
∣∣

(2n− 7)(3n+ 1)
, if n ≥ 4,

≤ 1

6

19n+ 6
∣∣sin(n)∣∣+ 7

(2n− 7)(3n+ 1)
, by the Triangle Inequality,

≤ 1

6

32n

(2n− 7)(3n+ 1)
, since

∣∣sin(n)∣∣ ≤ 1 ≤ n,

≤ 1

6

32n

(2n− n)(3n)
, if n ≥ 7,

=
2

n
.

Therefore, to ensure that the final line 2/N < ε, we need to choose N > 2/ε. However, we are

not done yet; as you will have noticed, there were two extra stipulations we used to get to our

‘nice’ estimate: n ≥ 4 and n ≥ 7. Of course, we really only need to consider n ≥ 7 because this

automatically covers the n ≥ 4 situation. Consequently, we just need to choose N > max{2/ε, 7}
to make the direct proof work. Why? Because then, for all n ≥ N , it is true that both n ≥ 7

and that 2/n ≤ 2/N < ε.

Definition 2.12 A real sequence (an) diverges if it does not converge. If the sequence does

not converge to a specific value L ∈ R, then we denote this by an ̸→ L.

Note: There is a subtlety: a divergent sequence (an) is one where an ̸→ L for all L ∈ R.

Example 2.13 We will show directly, that is using an ε-N argument, that the sequence (an)

given by an = (−1)n diverges. Assume to the contrary that an → L for some L ∈ R. Then, this
means that for each ε > 0, there exists N ∈ Z+ such that, for all n ≥ N , we have |an − L| < ε.

Because this is true for any ε, it is certainly true for a specific choice, namely ε = 1/2. Now, note

that N,N +1 ∈ Z+ are consecutive, so one is odd and the other is even. Thus, |aN+1 − aN | = 2.

But from the Triangle Inequality, we get

|aN+1 − aN | = |aN+1 − L+ L− aN |
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≤ |aN+1 − L|+ |L− aN |

= |aN+1 − L|+ |aN − L|

< 1/2 + 1/2

= 1.

Therefore, 2 = |aN+1 − aN | < 1, a clear contradiction. Thus, no such L exists so (an) diverges.

Exercise 5 Prove that the sequence (an) given by an = n is divergent.

Thus far, we have used the language the limit, but this does require proof. Strictly speaking,

we really should be saying that L is a limit of (an) if Definition 2.7 is satisfied. Thankfully, the

proof is relatively simple.

Proposition 2.14 (Uniqueness of Limits) The limit of a convergent sequence is unique.

Proof : Suppose that (an) converges to both L1 ∈ R and L2 ∈ R and let ε > 0:

� an → L1 means there exists N1 ∈ Z+ such that, for all n ≥ N1, we have |an − L1| < ε/2.

� an → L2 means there exists N2 ∈ Z+ such that, for all n ≥ N2, we have |an − L2| < ε/2.

Let N = max{N1, N2}. Then, for all n ≥ N ,

|L1 − L2| = |L1 − an + an − L2|

≤ |an − L1|+ |an − L2|

< ε/2 + ε/2

= ε.

But ε is arbitrary, so |L1 − L2| < ε is equivalent to |L1 − L2| = 0, which is to say L1 = L2.

Definition 2.15 Consider some real sequence (an).

(i) We say (an) is bounded above if there exists M ∈ R such that an ≤ M for all n.

(ii) We say (an) is bounded below if there exists K ∈ R such that an ≥ K for all n.

Example 2.16 Here are some examples and non-examples of bounded sequences.

(i) The sequence defined by an = n is bounded below but not above.

(ii) The sequence defined by bn = −n5 is bounded above but not below.

(iii) The sequence defined by cn = 3 is bounded (above and below).
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(iv) The sequence defined by dn = (−1)nn is not bounded (above or below).

Proposition 2.17 Any convergent sequence is bounded.

Proof : Let (an) be a sequence such that an → L. Then, for any ε > 0, there exists N ∈ Z+ such

that, for all n ≥ N , we have |an − L| < ε. In particular, this holds for ε = 1, i.e. we can choose

N to ensure that |an − L| < 1 for n ≥ N . Now, consider the number

M = max{ |a1 − L|, . . . , |aN − L|, 1},

which certainly exists because the maximum is taken from a finite set. It is now clear that

|an − L| ≤ M for all n, which is equivalent to saying that L−M ≤ an ≤ L+M , by definition of

the absolute value. Thus, the sequence is bounded above and below, i.e. (an) is bounded.

Remark 2.18 In the proof of Proposition 2.17, where did M come from? Well, by the assumption

that (an) converges, we know that for large enough n, that is for all n ≥ N , we would have

|an − L| < 1, so the ‘tail’ of the sequence is bounded below by L − 1 and above by L + 1.

However, there is no guarantee that the first N − 1 terms will fall in this interval, so we must

take the largest distance these points gets from the limit; this is where M comes from.

Exercise 6 State the converse to Proposition 2.17 and determine if it is true.

Theorem 2.19 (Algebra of Limits) Let (an) and (bn) be convergent sequences such that

an → A and bn → B. Then, the following are true.

(i) an + bn → A+B.

(ii) anbn → AB.

(iii) 1/an → 1/A so long as an ̸= 0 for any n and A ̸= 0.

Proof : (i) See Exercise 7.

(ii) Let ε > 0. By Proposition 2.17, (bn) is is bounded since it is assumed convergent. Indeed,

there exists K > 0 such that |bn| < K. Define the number ε′ := ε/(K + |A|) > 0 and consider

what it means for these sequences to converge:

� an → A means there exists N1 ∈ Z+ such that, for all n ≥ N1, we have |an −A| < ε′.

� bn → B means there exists N2 ∈ Z+ such that, for all n ≥ N2, we have |bn −B| < ε′.
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Let N = max{N1, N2}. Then, for all n ≥ N ,

|anbn −AB| =
∣∣(an −A)bn −A(bn −B)

∣∣
≤
∣∣(an −A)bn

∣∣+ ∣∣A(bn −B)
∣∣

= |an −A||bn|+ |A||bn −B|

< ε′K + |A|ε′

= ε.

Therefore, it is true that anbn → AB, as required.

(iii) Let ε > 0. Since A ̸= 0, we have that |A|/2 > 0, which means that ε′ := ε|A|2/2 > 0 and we

again consider what it means for this sequence to converge in two different ways:

� an → A means there exists N1 ∈ Z+ such that, for all n ≥ N1, we have |an −A| < |A|/2.

� an → A means there exists N2 ∈ Z+ such that, for all n ≥ N2, we have |an −A| < ε′.

Let N = max{N1, N2}. Then, for all n ≥ N ,∣∣∣∣ 1an − 1

A

∣∣∣∣ = |an −A|
|an||A|

<
ε′

|A||A|/2
= ε.

Therefore, it is true that 1/an → 1/A, as required.

Exercise 7 Prove part (i) of the Algebra of Limits.

[Hint: Use an ε/2 argument similar to the one in the proof of Proposition 2.14.]

Example 2.20 We can now use the Algebra of Limits to see that the sequence (an) is such that

an =
2n2 + n

n2 + 7
→ 2.

Indeed, we can first re-write this in such a way to use some convergences we already know about

(e.g. Exercise 3); this is achieved by dividing through by n2 to get

an =
2 + 1/n

1 + 7/n2
.
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We proved 1/n → 0 so the Algebra of Limits implies 1/n2 → 0. As a result, we conclude that

an =
2 + 1/n

1 + 7/n2
→ 2 + 0

1 + 0
= 2.

Exercise 8 Using the Algebra of Limits, prove that the sequence

bn =
n4

2(n+ 1)2(n2 + 1)
→ 1

2
.

The next result will be very useful to refer to, in order to avoid the difficulties of ε-N proofs.

Theorem 2.21 (Squeeze Rule) Let (an), (bn) and (cn) be sequences such that an → L and

cn → L. If an ≤ bn ≤ cn for all n, then it follows that bn → L.

Proof : Let ε > 0 and consider what it means for these sequences to converge:

� an → L means there exists N1 ∈ Z+ such that, for all n ≥ N1, we have |an − L| < ε.

� cn → L means there exists N2 ∈ Z+ such that, for all n ≥ N2, we have |cn − L| < ε.

In particular, these mean that an > L− ε and cn < L+ ε. Thus, we conclude the following:

bn − L ≥ an − L > −ε and bn − L ≤ cn − L < ε.

Combining these inequalities gives −ε < bn − L < ε, equivalent to |bn − L| < ε, so bn → L.

Example 2.22 We exploit the Squeeze Rule to show that the sequence bn = cos(n)/(n2+1) → 0.

Indeed, we can take an = −1/n2 and cn = 1/n2, which both converge to zero, and note the

bounds −1 ≤ cos(n) ≤ 1 implies an ≤ bn ≤ cn. Thus, the Squeeze Rule guarantees that bn → 0.

Definition 2.23 Consider some real sequence (an).

(i) We say (an) is increasing if an+1 ≥ an for all n.

(ii) We say (an) is decreasing if an+1 ≤ an for all n.

(iii) We say (an) is strictly increasing if an+1 > an for all n.

(iv) We say (an) is strictly decreasing if an+1 < an for all n.

A sequence is (strictly) monotone if it is either (strictly) increasing or (strictly) decreasing.

Exercise 9 Give an example of a sequence (an) which is increasing and decreasing. How

many other examples are there? Describe them all.
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We now develop theory which allows us to state a pseudo-converse to Proposition 2.17 (spoilers

for Exercise 6), since we noticed in said exercise that the converse of the result is not true; there

exist bounded sequences which do not converge. Indeed, if we add an additional hypothesis to

the converse, we do get something which is true. We first need an auxiliary result.

Lemma 2.24 Let (an) be increasing and bounded above. Then, it is convergent.

Proof : Let A = {an : n ∈ Z+} be the set of numbers in this sequence. It is clearly non-empty

and bounded above, so the Axiom of Completeness guarantees that sup(A) = L exists. Let ε > 0

be given. Then, L−ε < L so L−ε is not an upper bound on A. Thus, there exists N ∈ Z+ such

that aN > L − ε. That being said, (an) is increasing, so an ≥ aN for all n ≥ N . Furthermore,

since L is an upper bound on A, we have an ≤ L < L + ε for all n. Combining these three

inequalities gives that L− ε < an < L+ ε, which is to say |an − L| < ε, for every n ≥ N , so we

get convergence: an → L.

Lemma 2.25 Let (an) be decreasing and bounded below. Then, it is convergent.

Exercise 10 Prove Lemma 2.25.

[Hint: You can do a direct proof by modifying the proof of Lemma 2.24 or you can define a new sequence

(bn) by bn = −an and note that since (an) is decreasing, (bn) is increasing.]

Theorem 2.26 (Monotone Convergence Theorem) Bounded monotone sequences converge.

Proof : Bounded means bounded above and bounded below, so Lemmata 2.24 and 2.25 apply.

Example 2.4 (Revisited) Consider the sequence (an) where a1 = k for any k ∈ R and

an+1 =
an

1 + a2n
.

Note that this is slightly more general than the version we encountered in Example 2.4 since

we allow the starting value a1 to be arbitrary. We now have the machinery to prove that

this inductively-defined sequence converges for any k. Indeed, it is first clear that the ratio

an+1/an < 1 for every n, which means that (an) is decreasing. Because it is decreasing, it is

automatically bounded above by its initial value a1, but since an > 0 for all n, it is also bounded

below by 0. Hence, (an) is a bounded decreasing sequence; the Monotone Convergence Theorem

implies that it converges. We can actually compute the limit. Suppose an → L, for some L ∈ R
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and define bn = an+1; it is clear that the sequence bn → L but, by the Algebra of Limits applied

to the formula for an+1, we see that bn → L/(1 + L2). By the Uniqueness of Limits, we have

L =
L

1 + L2
⇒ L = 0.

Exercise 11 Let k ∈ (0, 1) be fixed in this interval and define a sequence (an) by an = kn.

Prove that an → 0 using the Monotone Convergence Theorem.

Exercise 12 (Harder) Consider the sequence (an) where a1 = 2 and

an+1 =
1

2

(
an +

2

an

)
.

(i) Prove inductively that an ∈ [1, 2] for all n.

(ii) Prove inductively that a2n ≥ 2 for all n.

(iii) Hence, prove that (an) is decreasing.

[Hint: Consider the ratio an+1/an.]

(iv) Show that an → L where L > 0 such that L2 = 2.

[Note: As a consequence, we now know that the (irrational) number
√
2 exists.]

The final part of this section is on so-called subsequences; on a basic level, a subsequence is

obtained from a sequence by skipping over (possibly infinitely-many) terms in the original se-

quence. The main goal is to use this theory to avoid the guesswork involved with Definition 2.7,

namely we need to ‘guess’ the correct L to show that a sequence an → L.

Definition 2.27 Let (an) be a real sequence. A subsequence is a sequence (bk) where there

exists a strictly increasing sequence (nk) of positive integers such that bk = ank
.

Example 2.28 Here are some examples and non-examples of subsequences.

(i) Let (an) be any sequence; (ak) is a subsequence of itself, where nk = k.

(ii) Let (an) be any sequence; (bk) = (am+1, am+2, ...) is a subsequence, where nk = m+ k.

(iii) Let (an) = (−1, 1,−1, 1, ...); (bk) = (1, 1, 1, 1, ...) is a subsequence, where nk = 2k.

(iv) Let (an) = (1, 1/2, 1/3, ...); (bk) = (1/2, 1/4, 1/8, ...) is a subsequence, where nk = 2k.

(v) Let (an) = (1, 2, 3, 4, ...); (bk) = (2, 1, 3, 4, ...) is not a subsequence.
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Theorem 2.29 Let (an) be such that an → L. If (bk) is a subsequence, then bk → L.

Proof : Let ε > 0 be given. Then, there exists N ∈ Z+ such that, for all n ≥ N , we have

|an − L| < ε. Because (bk) is a subsequence, it is of the form bk = ank
where (nk) is a strictly

increasing sequence of positive integers. Obviously, n1 ≥ 1 but, more than that, if we assume

that nk ≥ k, then we can conclude nk+1 ≥ nk + 1 ≥ k + 1; we have really just done a stealthy

induction argument to show that nk ≥ k for all k. Therefore, for all k ≥ N , we see that

nk ≥ nN ≥ N ⇒ |bk − L| =
∣∣ank

− L
∣∣ < ε.

Example 2.13 (Revisited) We can now give a much slicker proof that the sequence defined by

an = (−1)n diverges, as opposed to messing about with ε-N arguments. Indeed, we see that this

sequence has the following subsequences:

(a2k) = (1, 1, 1, 1, ...) and (a2k+1) = (−1,−1,−1,−1, ...).

These are constant sequences, so we see that a2k → 1 and a2k+1 → −1. Assume to the contrary

that an → L for some L ∈ R. By Theorem 2.29, it must be that all subsequences converge to

this limit also, so 1 = L = −1, a contradiction.

Lemma 2.30 (Tail Lemma) Let (an) be a sequence and define the subsequence (bn) by

bn = an+m for some m ∈ Z+, i.e. remove the first m terms. If bn → L, then an → L.

Proof : Let ε > 0 be given. Then, there exists K ∈ Z+ such that |bn − L| < ε for all n ≥ K.

Now, define N = K +m ∈ Z+. Then, for all n ≥ N , which is equivalent to all n−m ≥ K,

|an − L| = |bn−m − L| < ε.

In simple terms, the Tail Lemma allows us to remove a troublesome start to a sequence; if we

can say something about the convergence of ‘the rest of’ a sequence, then we now know that

putting back the cut-off points will not change the convergence.

Example 2.31 Consider the sequence given by an = n3/2n. Ideally, we use the Monotone Con-

vergence Theorem, but we can convince ourselves this sequence isn’t monotone. However,

an+1

an
=

(n+ 1)3

2n3
=

n3 + 3n2 + 3n+ 1

2n3
≤ n3 + 3n2 + 3n2 + n2

2n3
=

1

2
+

7

2n
.

Now, 1/2+7/2n < 1 for n > 7 (equivalent to n ≥ 8 since we are working with positive integers).
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Thus, the ‘tail’ defined by bn = an+7 is decreasing and bounded (above by b1 and below by 0)

so the Monotone Convergence Theorem implies that (bn) converges, to which the Tail Lemma

applies, giving that (an) converges.

Definition 2.32 Let (an) be a real sequence. We say a term am is dominant if every

subsequent term is not larger than it, that is to say an ≤ am for all n > m.

Lemma 2.33 Every sequence has a monotone subsequence.

Proof : Let (an) be a sequence and D the set of dominant terms. There are two cases to consider.

(i) If |D| = ∞, then the subsequence consisting of the dominant terms is decreasing, by

definition of dominant. Thus, (an) has a decreasing subsequence.

(ii) If |D| < ∞ (or if D = ∅), then there exists a term am, say, beyond which there are no

dominant terms. Let n1 = m+1; since an1 is not dominant, there exists n2 > n1 such that

an2 > an1 , but since an2 is not dominant, there exists n3 > n2 such that an3 > an2 , etc. In

this way, we get a strictly increasing sequence of positive integers (n1, n2, n3, ...) such that

ank+1
> ank

for all k. Thus, (ank
) is an increasing subsequence.

Theorem 2.34 (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent

subsequence.

Exercise 13 Prove the Bolzano-Weierstrass Theorem.

We now reach the point where we develop important theory which allows us to circumvent

‘knowing’ what the limit L of a sequence (an) is before actually proving an → L rigorously. This

is known as the Cauchy property.

Definition 2.35 A real sequence (an) is Cauchy if, for each ε > 0, there exists N ∈ Z+

such that, for all n,m ≥ N , we have |an − am| < ε.

Remark 2.36 The Cauchy property is awfully similar to Definition 2.7 with a key difference; no

mention of a real number L. Instead, we look at the difference between two terms an and am. In

words, where convergence is about having all terms after a certain point being within distance ε

of the limit L, the Cauchy property is about having all terms after a certain point being within

distance ε of each other.
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Exercise 14 Prove that the sequence (an) given by an = 1 + 1/n is Cauchy.

Proposition 2.37 If (an) is convergent, then it is Cauchy.

Proof : Assume an → L and let ε > 0. Then, there exists N ∈ Z+ such that, for all n,≥ N , we

have |an − L| < ε/2. Then, for all n,m ≥ N ,

|an − am| = |an − L+ L− am|

≤ |an − L|+ |am − L|

< ε/2 + ε/2

= ε.

Lemma 2.38 If (an) is Cauchy, then it is bounded.

Proof : Let (an) be Cauchy. Then, there exists N ∈ Z+ such that, for all n,m ≥ N , we have

|an − am| < 1. In particular, we have |an| < 1 + |aN |. Similar to the proof of Proposition 2.17,

we note that |an| is bounded at least for all n ≥ N , so we need to consider the maximum of this

upper bound with the absolute values of the points that came before, namely

M = max{ |a1|, . . . , |aN−1|, 1 + |aN |},

which certainly exists. Thus, it is clear that |an| ≤ M for all n, as required.

Lemma 2.39 If (an) is Cauchy and it has a subsequence ank
→ L, then an → L.

Proof : Let ε > 0 and consider both the convergence and the Cauchy property:

� ank
→ L means there is N1 ∈ Z+ such that, for all n ≥ N1, we have

∣∣ank
− L

∣∣ < ε/2.

� (an) Cauchy means there is N2 ∈ Z+ such that, for all n,m ≥ N2, we have |an − am| < ε/2.

Let N = max{N1, N2}. Then, for all n ≥ N ,

|an − L| =
∣∣an − anN + anN − L

∣∣
≤
∣∣an − anN

∣∣+ ∣∣anN − L
∣∣

< ε/2 + ε/2

= ε.
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Theorem 2.40 A sequence (an) is convergent if and only if it is Cauchy.

Proof : If (an) converges, then it is Cauchy (Proposition 2.37). Conversely, if (an) is Cauchy, it

is bounded (Lemma 2.38), so it has a convergent subsequence (Bolzano-Weierstrass Theorem),

which means it converges (Lemma 2.39).

Exercise 15 Prove directly from Definition 2.35 that the sum of two Cauchy sequences is

Cauchy. Can we say anything about the product of two Cauchy sequences? What about

the reciprocal of a (non-zero) Cauchy sequence?

3 Series

We have looked at some examples of finite series before, notably when looking at proof by

induction. However, a series really means an infinite sum. We will give a rigorous definition and

discuss what it means for a series to converge.

Definition 3.1 A real series is an infinite sum of the form
∑∞

n=1 an = a1 + a2 + a3 + · · · .
We call sk =

∑k
n=1 an = a1 + · · ·+ ak the kth partial sum of the series.

Definition 3.2 A real series
∑∞

n=1 an converges to a number L ∈ R if the sequence of

partial sums (sk) converges in the usual sense, that is for each ε > 0, there exists K ∈ Z+

such that, for all k ≥ K, we have |sk − L| < ε. Otherwise, we say the real series diverges.

Example 3.3 Consider the series
∑∞

n=1 1/n(n+1). We can re-write the summand as the difference

of two fractions, from which we can see that the kth partial sum is as follows:

sk =

k∑
n=1

(
1

n
− 1

n+ 1

)

=

k∑
n=1

1

n
−

k∑
n=1

1

n+ 1

=

(
1 +

1

2
+ · · ·+ 1

k

)
−
(
1

2
+

1

3
+ · · ·+ 1

k + 1

)
= 1− 1

k + 1

→ 1

by the Algebra of Limits; the sum converges.
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Proposition 3.4 (Harmonic Series) The series
∑∞

n=1 1/n diverges.

Proof : We consider the 2pth partial sum as follows:

s2p = 1 +
1

2
+ · · ·+ 1

2p

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2p−1 − 1
+ · · ·+ 1

2p

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2p
+ · · ·+ 1

2p

)
= 1 +

1

2
+

1

2
+ · · ·+ 1

2

= 1 +
p

2
.

Hence, the subsequence (s2p) is unbounded above, so the Bolzano-Weierstrass Theorem implies

that it diverges. Consequently, the Harmonic Series diverges.

Proposition 3.5 (Geometric Series) The series
∑∞

n=0 α
n = 1/(1− α) for |α| < 1.

Proof : We consider the kth partial sum as follows:

sk = 1 + α+ α2 + · · ·+ αk

⇒ αsk = α+ α2 + α3 + · · ·+ αk+1

⇒ (1− α)sk = 1− αk+1

⇒ sk =
1− αk+1

1− α
.

This proves Proposition ??. Finally, Exercise 11 implies αk+1 → 0 and so sk → 1/(1− α).

4 Continuous Functions

5 Differentiation

6 Integration

7 Basic Functional Analysis
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8 Exercise Solutions

We provide detailed solutions to the exercises interwoven within each section of the module.

Hopefully you have given these questions a try whilst on your learning journey with the module.

But mathematics is difficult, so don’t feel disheartened if you had to look up an answer before

you knew where to begin (we have all done it)!

Solutions to Exercises in Section 2

Exercise 1 Find the first n with cn = 1 to five decimal places, for (cn) in Example 2.2.

[Hint: This means that 0.999995 ≤ cn < 1.000005, so simply rearrange this for n.]

Solution : Per the hint, we have that 0.999995 ≤ 1 + 5/n2 < 1.000005 which is to say that

−0.00001 ≤ 1

n2
≤ 0.000001 ⇒ n2 > 1 000 000,

where we ignore the negative part since n ∈ Z+. It follows from this that n > 1000, so the first

such approximation of one to give decimal places occurs at n = 1001.

Exercise 2 Explain the properties x ≤ |x| and |xy| = |x||y| for all x, y ∈ R.

Solution : If x ≤ 0, then x = |x|, whereas if x < 0, then x < |x| since |x| is non-negative by

definition. Combining these two cases gives us that x ≤ |x|. Next, we see that xy ≥ 0 precisely

when both x, y ≥ 0 or both x, y < 0. On the other hand, xy < 0 precisely when one of x < 0 and

y < 0. Therefore, |xy| = |x||y| is a quick consequence of these cases.

Exercise 3 Give a direct ε-N proof that the sequence (an) where an = 1/n converges.

[Hint: You must first suggest what the limit L is and then go ahead with the proof.]

Solution : (Rough Work) We should suggest that an → 0. Intuitively, when n is large, we will

see that 1/n becomes very small. Since n > 0, it follows that 1/n > 0, but it will get smaller and

smaller, so a ‘good guess’ at the limit is indeed L = 0. Now, we need to estimate the quantity

|an − 1| in order to be able to determine what our N ∈ Z+ will depend on:

|an − 0| =
∣∣1/n− 0

∣∣ =
∣∣1/n∣∣ = 1/n ≤ 1/N,
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whenever n ≥ N . Therefore, to ensure that 1/N ≤ ε, we must pick N > 1/ε.

(Proof) Let ε > 0 be given. There is N ∈ Z+ with N > 1/ε by the Archimedean Property of R.
Then, for all n ≥ N , it follows that

|an − 0| =
∣∣1/n− 0

∣∣
=
∣∣1/n∣∣

= 1/n

≤ 1/N

< ε.

Therefore, we can conclude that an → 0.

Note: We will often miss out the rough work part in future when writing a direct ε-N

proof (but, of course, this is still how we got to the solutions that are presented here).

Exercise 4 Give a direct ε-N proof that the so-called constant sequence (bn) converges,

that is the sequence is defined by bn = k for all n, where k ∈ R is some fixed number.

Solution : Let ε > 0 be given. Then, choosing N = 1, for all n ≥ 1, it follows that

|bn − k| = |k − k|

= 0

< ε.

Therefore, we can conclude that bn → k.

Exercise 5 Prove that the sequence (an) given by an = n is divergent.

Solution : Assume to the contrary that an → L for some L ∈ R. Then, this means that for each

ε > 0, there exists N ∈ Z+ such that, for all n ≥ N , we have |an − L| < ε. In particular, this

should work for ε = 1/2, meaning that |an − L| < 1/2 for every n ≥ N . In particular then,

|aN − L| = |N − L| < 1

2
and |aN+2 − L| = |N + 2− L| < 1

2
.
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However, we can see that

2 = N + 2−N

= |N + 2−N |

= |N + 2− L+ L−N |

≤ |N + 2− L|+ |N − L|

< 1/2 + 1/2

= 1,

a clear contradiction.

Exercise 6 State the converse to Proposition 2.17 and determine if it is true.

Solution : This is the converse: “if a sequence is bounded, then it is convergent”. It is not true.

Indeed, Example 2.13 provides us with a counterexample, because the sequence an = (−1)n is

clearly bounded above by 1 and below by −1, but we have proved that (an) diverges.

Exercise 7 Prove part (i) of the Algebra of Limits.

[Hint: Use an ε/2 argument similar to the one in the proof of Proposition 2.14.]

Solution : Let ε > 0. We consider what it means for these sequences to converge separately:

� an → A means there exists N1 ∈ Z+ such that, for all n ≥ N1, we have |an −A| < ε/2.

� bn → B means there exists N2 ∈ Z+ such that, for all n ≥ N2, we have |bn −B| < ε/2.

Let N = max{N1, N2}. Then, for all n ≥ N ,

∣∣an + bn − (A+B)
∣∣ = |an −A+ bn −B|

≤ |an −A|+ |bn −B|

< ε/2 + ε/2

= ε.

Therefore, it is true that an + bn → A+B.
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Exercise 8 Using the Algebra of Limits, prove that the sequence

bn =
n4

2(n+ 1)2(n2 + 1)
→ 1

2
.

Solution : First, we can expand the denominator and then divide through by n4 to see that

bn =
n4

2n4 + 4n3 + 4n2 + 4n+ 2
=

1

2 + 4/n+ 4/n2 + 4/n3 + 2/n4
,

so by the Algebra of Limits, we have that 1/nk → 0 for any k ≥ 1 and so each of the fractions

in the denominator are zero in the limit. Consequently, bn → 1/2, as required.

Exercise 9 Give an example of a sequence (an) which is increasing and decreasing. How

many other examples are there? Describe them all.

Solution : A sequence is increasing and decreasing precisely when an+1 ≤ an ≤ an+1 for all n,

that is an = an+1 for all n. The only such sequences satisfying this are constant sequences. As

for a particular example, the sequence (an) defined by an = πe/200! will do.

Exercise 10 Prove Lemma 2.25.

[Hint: You can do a direct proof by modifying the proof of Lemma 2.24 or you can define a new sequence

(bn) by bn = −an and note that since (an) is decreasing, (bn) is increasing.]

Solution : (Direct) Let A = {an : n ∈ Z+} be the set of numbers in this sequence. It is clearly

non-empty and bounded below, so Proposition ?? guarantees that inf(A) = K exists. Let ε > 0

be given. Then, K+ ε > K so K+ ε is not a lower bound on A. Thus, there exists N ∈ Z+ such

that aN < K + ε. That being said, (an) is decreasing, so an ≤ aN for all n ≥ N . Furthermore,

since K is a lower bound on A, we have an ≥ K > K − ε for all n. Combining these three

inequalities gives that K − ε < an < K + ε, which is to say |an −K| < ε, for every n ≥ N , so

we get convergence: an → K.

(Easy) Let (an) be decreasing and bounded below by K. The sequence (bn) defined by bn = −an

is increasing and bounded above by −K. By Lemma 2.24, (bn) is convergent; the Algebra of

Limits implies that (an) is convergent.
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Exercise 11 Let k ∈ (0, 1) be fixed in this interval and define a sequence (an) by an = kn.

Prove that an → 0 using the Monotone Convergence Theorem.

Solution : It is obvious that an > 0 for all n. Furthermore, it is clear that an+1 = kan < an

because k ∈ (0, 1). Therefore, (an) is a (Strictly) decreasing sequence which is bounded below.

The Monotone Convergence Theorem implies that it converges to some limit, say an → L. We

now define a new sequence (bn) by bn = an+1, that is we ignore the first term in (an), from

which it’s trivial that bn → L also. However, we can also write bn = kan, to which we apply the

Algebra of Limits to get bn → kL. By the Uniqueness of Limits, it must be that L = kL, and so

L = 0 is the only option. We therefore conclude that an → 0.

Exercise 12 (Harder) Consider the sequence (an) where a1 = 2 and

an+1 =
1

2

(
an +

2

an

)
.

(i) Prove inductively that an ∈ [1, 2] for all n.

(ii) Prove inductively that a2n ≥ 2 for all n.

(iii) Hence, prove that (an) is decreasing.

[Hint: Consider the ratio an+1/an.]

(iv) Show that an → L where L > 0 such that L2 = 2.

[Note: As a consequence, we now know that the (irrational) number
√
2 exists.]

Solution : (i) The base case n = 1 is clear. Suppose now that ak ∈ [1, 2] for some k ∈ Z+. Thus,

ak+1 =
1

2

(
ak +

2

ak

)
≥ 1

2

(
1 +

2

2

)
= 1 and ak+1 =

1

2

(
ak +

2

ak

)
≤ 1

2

(
2 +

2

1

)
= 2,

where we have used the fact ak ≤ 2 ⇔ 1/ak ≥ 1/2 and ak ≥ 1 ⇔ 1/ak ≤ 1. Therefore,

ak+1 ∈ [1, 2] and the result holds for all n by the principal of mathematical induction.

(ii) The base case n = 1 is clear. Assume to the contrary a2k < 2 for some integer k ≥ 2, i.e.

1

4

(
a2k−1 + 4 +

4

a2k−1

)
< 2

⇒ a4k−1 + 4a2k−1 + 4 < 8a2k−1

⇒ a4k−1 − 4a2k−1 + 4 < 0
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⇔ (a2k−1 − 2)2 < 0,

which is a contradiction because the left-hand-side is a square and must be non-negative. Thus,

by the principal of mathematical induction, the result holds for all n.

(iii) Because a2n ≥ 2 for all n by (ii), we see that

an+1

an
=

1

2
+

2

a2n
≤ 1

2
+

1

2
= 1,

which is to say an+1 ≤ an, meaning the sequence is decreasing.

(iv) Finally, because (an) is bounded by (i) and decreasing by (iii), the Monotone Convergence

Theorem implies that an → L for some L ∈ R. But then, the sequence missing the first term

an+1 → L also. Hence, applying the Algebra of Limits to the formula for an+1 means that

L =
1

2

(
L+

2

L

)
⇒ L2 = 2.

Because an ≥ 1 for all n, it must be that L ≥ 1 > 0, allowing us to conclude that L =
√
2.

Note: We can generalise the sequence in Exercise 12 to show that the square root of any

positive number exists. Indeed, we can consider the sequence (an) where a1 = β > 0 and

an+1 =
1

2

(
an +

β

an

)
.

We can proceed as above to show that an → L where L > 0 such that L2 = β. Not only

does this prove that square roots of positive real numbers exist, but that the limit of a

sequence of rational numbers (as Q is closed under division by non-zeros) can be irrational!

Exercise 13 Prove the Bolzano-Weierstrass Theorem.

Solution : Let (an) be a bounded sequence. By Lemma 2.33, it has a monotone subsequence

(ank
), which is clearly bounded. By the Monotone Convergence Theorem, (ank

) converges.

Exercise 14 Prove that the sequence (an) given by an = 1 + 1/n is Cauchy.

Solution : Let ε > 0 be given. Then, there exists N ∈ Z+ such that N > 2/ε by the Archimedean
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Property of R. Then, for all n,m ≥ N , it follows that

|an − am| =
∣∣1 + 1/n− (1 + 1/m)

∣∣
=
∣∣1/n− 1/m

∣∣
≤
∣∣1/n∣∣+ ∣∣1/m∣∣

= 1/n+ 1/m

≤ 1/N + 1/N

= 2/N

< ε.

Therefore, (an) is Cauchy.

Exercise 15 Prove directly from Definition 2.35 that the sum of two Cauchy sequences is

Cauchy. Can we say anything about the product of two Cauchy sequences? What about

the reciprocal of a (non-zero) Cauchy sequence?

Solution : Let ε > 0 be given. We consider what it means for two sequences to be Cauchy:

� (an) Cauchy means there is N1 ∈ Z+ such that, for all n,m ≥ N1, we have |an − am| < ε/2.

� (bn) Cauchy means there is N2 ∈ Z+ such that, for all n,m ≥ N2, we have |bn − bm| < ε/2.

Let N = max{N1, N2}. Then, for all n,m ≥ N ,

∣∣an + bn − (am + bm)
∣∣ = |an − am + bn − bm|

≤ |an − am|+ |bn − bm|

< ε/2 + ε/2

= ε.

Therefore, it is true that (an) + (bn) is Cauchy. By Theorem 2.40, we know that convergence

and the Cauchy property are equivalent (for sequences in R), so the Algebra of Limits can

be translated into the language of Cauchy sequences: the product of two Cauchy sequences is

Cauchy and the reciprocal of a (non-zero) Cauchy sequence is Cauchy.
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