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Introduction

Hello and welcome to the module on Introduction to Geometry! What follows is a module

intended to support the reader in learning this fascinating topic. The Prison Mathematics

Project (PMP) realises that you may be practising mathematics in an environment that is highly

restrictive, so this text can both be used independently and does not require a calculator.

What is Geometry?

Geometry is one of the most ancient branches of mathematics. One of the earliest recorded

instances of humans studying geometry comes from the second millennium BC. Ancient Greece

was a haven for geometers, including Thales, Pythagoras and Archimedes. Perhaps the most

influential of the time was Euclid, whose series of thirteen books, the Elements, introduced

mathematical rigour through an axiomatic system. It is the earliest format of the system of

axioms, definitions, theorems and proofs that we use today, see Chapter ?? for instance. Modern

geometry has been developed by many a mathematician, including Gauss, Riemann and Poincaré.

Learning in this Module

The best way to learn mathematics is to do mathematics. Indeed, education isn’t something that

happens more than it is something we should all participate in. You will find various exercise

questions and worked examples in these notes so that you may try to solve problems and deepen

your understanding of this topic. Although the aim is for everything to only require the content

of this module, you are encouraged to use any other sources you have at your disposal.
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1 Preliminaries



4 Axiomatic Two-Dimensional Geometry

2 Axiomatic Two-Dimensional Geometry

The first port of call is two-dimensional geometry, which will be discussed from both an axiomatic

and a coordinate point-of-view. Indeed, we begin with the former approach.

Note: A line is infinitely long but a line segment has finite length, connecting two points.

Now that we have cleared up the difference, we can make a start on the axiomatic approach

to plane geometry (where the word plane is the word we use to refer to a flat two-dimensional

surface which extends infinitely far – think of what a pair of (x, y)-axes form for a mathematical

example or an infinitely-large chess board for a ‘real world’ example).

Definition 2.1 A right angle is defined as one of the angles formed when a line segment

ends on a line, forming two equal angles; this is pictured in Figure 1. In this case, the line

and line segment are called perpendicular (or orthogonal).

line

line segment

Figure 1: The geometric picture of a right angle per Definition 2.1.

Definition 2.2 We say that two lines are parallel if they do not intersect each other.

Axiom 2.3 (Euclidean Axioms)

E1. There is a unique line segment between any two distinct points.

E2. Any line segment can be extended to a line.

E3. There is a circle at point P with radius r, for any P and length r line segment at P .

E4. All right angles are equal.

E5. For a line L and a point P not on L, there is a unique line through P parallel to L.

Remark 2.4 The axiom E5 is the Parallel Postulate. There was a time where mathematicians did

not know if it was redundant: could E5 be deduced from the others? The answer is no. In fact,

if we remove E5, we get more exotic forms of geometry (hyperbolic/elliptic geometry).
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Throughout, we will label our line segments by the endpoints, meaning if a segment connects A

and B, it will be denoted AB. We do this also for the line we get by extending the ray AB.

Definition 2.5 Let L be a line segment containing a point P . Then, a ray from P is the

subset which starts at P and extends infinitely along the rest of the line, as in Figure 2.

P ray

Figure 2: The geometric picture of a ray per Definition 2.5.

Definition 2.6 Let A,B,C be points. They are collinear if there exists a line containing

all of them. Otherwise, they are called non-collinear.

Exercise 1 We discuss three points in Definition 2.6, but what can we say about the

(simpler) situation of only two points: are two points always collinear? Are they always

non-collinear? Give a one-sentence proof of the correct statement by using Axiom 2.3.

In Definition 2.7, and throughout these notes, we use the measurement of radians for angles, not

degrees, unless stated otherwise. There is a quick conversion, however: degrees to radians can

be done by multiplying by π/180 and radians to degrees can be done by multiplying by 180/π.

Definition 2.7 Let A,B,C be non-collinear points. The non-reflexive angle between the

rays AB and AC is a number ∠ABC ∈ (0, π).

We can extend Definition 2.7 as follows:

� If B is between A and C and they are collinear, we set ∠ABC = π.

� If B is not between A and C and they are collinear, we set ∠ABC = 0.

Definition 2.8 Let A,B,C be non-collinear points. The triangle ABC is the shape formed

with line segments AB,BC,CA. The points A,B,C are then called the vertices of the

triangle and the aforementioned line segments are the edges of the triangle.

Remark 2.9 Strictly speaking, we should say that the points A,B,C are the triangle in Definition

2.8; the line segments AB,BC,CA should be called trilateral, i.e. they connect the points of a

triangle (there is a slightly more technical and general meaning but this won’t be covered here).
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Definition 2.10 We say that two triangles ABC and A′B′C ′ are congruent if there is a

bijective correspondence between the vertices such that corresponding edges are equal in

length and corresponding angles are equal in size. This is denoted by ABC ≃ A′B′C ′.

Example 2.11 Consider the triangles in Figure 3. We will detail the congruence between them.

2 4

A

B

C

π
8

4

2

D

E

F
π
8

Figure 3: Two triangles ABC and DEF (not drawn to scale).

Immediately, we know that our congruence (bijection) needs to be such that B 7→ F in order to

preserve the angle at that vertex. Then, to preserve the lengths of the sides, we see that A 7→ D

and C 7→ E. In practice, we will often immediately relabel the second triangle so that D := A′,

F := B′ and E := C ′. This makes clear that the triangles are congruent.

Exercise 2 Prove that triangle congruence is an equivalence relation.

Fortunately, there are two useful axioms from which we can quickly determine congruences.

Axiom 2.12 (Side-Side-Side) If AB = A′B′ and BC = B′C ′ and CA = C ′A′, then ABC ≃
A′B′C ′; in words, triangles with three common side lengths are congruent.

Axiom 2.13 (Side-Angle-Side) If AB = A′B′ and BC = B′C ′ and ∠ABC = ∠A′B′C ′,

then ABC ≃ A′B′C ′; in words, triangles with two common side lengths and a common

angle between said common sides are congruent.

Note: Throughout, we refer to Axiom 2.12 as SSS and to Axiom 2.13 as SAS.

Proposition 2.14 (Angle-Side-Angle) IF AB = A′B′ and ∠CBA = ∠C ′B′A′ and ∠CAB =

∠C ′A′B′, then ABC ≃ A′B′C ′; in words, triangles with one common side length and two

common angles at either end of the common side are congruent.
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Proof : Suppose first that AC ≥ A′C ′ and let X be a point on the line segment AC such that

AX = A′C ′ (because AC is assumed equal to or longer than A′C ′, we find the point X along it

at which we have a length exactly equal to A′C ′). We will consult Figure 4 to prevent notation

from clouding the situation; note that the single-marked angles are equal and the double-marked

angles are equal. The perpendicular mark on the side lengths means that they are equal.

A B

C

X

A′ B′

C′

Figure 4: The construction for the proof of Angle-Side-Angle.

By definition of X, we have that AX = A′C ′, but given that AB = A′B′ and ∠BAX = ∠B′A′C ′,

we can conclude from SAS that ABX ≃ A′B′C ′. Hence, ∠XBA = ∠C ′B′A′, but this is just

∠CBA from what we assume in the statement. Consequently, we must have X = C , from which

we see that ABX = ABC ≃ A′B′C ′. An identical argument works if AC < A′C ′.

Note: Similarly to the previous note, we refer to Proposition 2.14 as ASA.

Exercise 3 We have seen that the conditions SSS, SAS and ASA guarantee congruence.

Can we conclude the same about ‘AAA’, that is does having all three angles in common

imply that two triangles are congruent? If so, prove it. If not, give a counterexample.

Example 2.11 (Revisited) Looking back at Example 2.11, we are now equipped with two useful

axioms and one useful proposition which allow us to demolish the task of determining congruence

with relative ease. Indeed, we can immediately see that ABC ≃ DEF as a result of SAS.

Definition 2.15 We call two triangles ABC and A′B′C ′ similar if there is a bijective

correspondence between the vertices such that the corresponding angles are equal in size.

This is denoted ABC ∼ A′B′C ′.

Remark 2.16 It is clear that, by comparing Definition 2.15 to Definition 2.10, a key assumption

is missing: similar triangles need not preserve the lengths of edges. So, congruent ⇒ similar.

Example 2.17 As per Remark 2.16, any pair of congruent triangles is automatically similar. For

an example of two similar triangles that are not a congruence, see Figure 5. Indeed, here we see



8 Axiomatic Two-Dimensional Geometry

that ABC ∼ DEF but where ABC ̸≃ DEF . Hence, the implication in Remark 2.16 is one-way

only. Again, we often relabel the second triangle so that D := A′, E := B′ and F := C ′.

2 4

3
A

B

C

5π
12

π
8

3 6

4.5
D

E

F

5π
12

π
8

Figure 5: Two similar (but incongruent) triangles.

That said, there is a way to determine similarity based entirely on the lengths of the sides (or,

more accurately, the ratios of the lengths between corresponding triangles).

Proposition 2.18 Let ABC and A′B′C ′ be triangles. They are similar if and only if

A′B′

AB
=

B′C ′

BC
=

C ′A′

CA
.

In words, Proposition 2.18 tells us that two triangles are similar if and only if the ratios of

corresponding sides is the same irrespective of the pair of sides chosen. This ratio is called the

scale factor and it is the constant that multiplies to transform the lengths in ABC to the lengths

in A′B′C ′.
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Definition 2.19 Let L1 and L2 be distinct lines. A line K is called a transversal of L1 and

L2 if it crosses them. We use Figure 6 for the remainder of the definition.

� The pairs of vertically-opposite angles are (α1, γ1), (β1, δ1), (α2, γ2), (β2, δ2).

� The pairs of corresponding angles are (α1, α2), (β1, β2), (γ1, γ2), (δ1, δ2).

� The pairs of alternate angles are (α2, γ1), (β1, δ2).

K

L1

L2

α1

β1
γ1

δ1

α2

β2
γ2

δ2

Figure 6: A transversal K of lines L1 and L2.

We wish to prove things about the angles at the intersections of a transversal of two lines, as in

Figure 6, and how knowing about the angles can inform us about the parallelity of L1 and L2.

Definition 2.20 Consider two angles θ and φ.

� They are complementary if θ + φ = π/2.

� They are supplementary if θ + φ = π.

Proposition 2.21 Vertically-opposite angles are equal.

Proof : Consider Figure 6. It is clear that the pairs (α1, β1) and (β1, γ1) are each supplementary

(angles on a line sum to π, from the extension to Definition 2.7). In other words, α1 + β1 = π

and β1 + γ1 = π. If we subtract the second equation from the first, we see that α1 − γ1 = 0,

which is to say that α1 = γ1. The same proof works for any vertically-opposite angles.

Lemma 2.22 Let L1 and L2 be distinct lines and K a transversal. If L1 and L2 are

parallel, then the alternate angles are equal.

Proof : Again using Figure 6, assume to the contrary that β1 ̸= δ2. In particular, this means one

of the angles will be greater than the other. Without loss of generality, suppose that β1 > δ2.
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Because angles on a line are supplementary, we know that β1 + γ1 = π, which implies that

δ2 + γ1 < π. But now, lines extending from angles which sum to less than π must meet, i.e. L1

and L2 are not parallel, a contradiction.

Theorem 2.23 Let L1 and L2 be distinct lines and K a transversal. Then, L1 and L2 are

parallel if and only if the alternate angles are equal.

Proof : (⇒) This is Lemma 2.22.

(⇐) Suppose that all alternate angles are equal. In particular, this means that α2 = γ1. By

the Parallel Postulate, there exists a line through the intersection point P of the lines K and L1

which is parallel to L2; call this line L3. Because L2 and L3 are parallel, by construction, Lemma

2.22 implies that α2 = γ3 (since they are alternate), where γ3 is as in Figure 7. Combining this

with the first equation implies that γ1 = γ3, which is equivalent to L1 = L3. Thus, L1 and L2

are parallel.

K

L1

L2

L3
γ3

α1

β1
γ1

δ1

α2

β2
γ2

δ2

Figure 7: The construction in the proof of Theorem 2.23.

Corollary 2.24 Let L1 and L2 be distinct lines and K a transversal. If one pair of alternate

angles are equal, then L1 and L2 are parallel.

Proof : If α2 = γ1, then proceed as in the proof of Theorem 2.23. Suppose β1 = δ2. Then,

β1 + γ1 = π and α2 + δ2 = π, rearranging and substituting into the original equation will yield

the first case α2 = γ1 anyway.

Proposition 2.25 Let L1 and L2 be distinct lines and K a transversal. If L1 and L2 are

parallel, then the corresponding angles are equal.
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Proof : By Theorem 2.23, since L1 and L2 are parallel, we know that the alternate angles are

equal. In particular, α2 = γ1 and β1 = δ2. By Proposition 2.21, we know that vertically-opposite

angles are equal. In particular, α1 = γ1 and β1 = δ1. Combining these sets of equations gives that

α1 = α2 and β1 = β2. A near-identical argument works to show that γ1 = γ2 and δ1 = δ2.

Note: The converse to Proposition 2.25 is also true. Combining this statement with its

converse, we get this: corresponding angles are equal if and only if L1 and L2 are parallel.

Exercise 4 State and prove the converse to Proposition 2.25.

[Hint: Consider the angles α1, δ1, δ2 and combine Proposition 2.21 with Corollary 2.24.]

We can use some of the theory we have of angles to prove more important results.

Theorem 2.26 The sum of the interior angles in a triangle is π.

Proof : Let ABC be a triangle where ∠CAB = α,∠ABC = β,∠BCA = γ. By the Parallel

Postulate, we can draw the line L through B which is parallel to AC. We can see from Theorem

2.23 and Proposition 2.25 that the other angles between the (extended) line AB and L are as in

Figure 8.

A
B

C L

α β

γ

γ
α

Figure 8: The setting for the proof of the sum of the interior angles of a triangle.

Indeed, the former result applies to angle γ and the latter result applies to angle α. Since angles

on a straight line sum to π, we see precisely what we set out to prove: α+ β + γ = π.

Definition 2.27 A bisector is a line which splits something exactly into two halves.

� An angle bisector of ∠ABC is a ray from B dividing the angle into two equal angles.

� A perpendicular bisector of AB is a line perpendicular to AB through its midpoint.
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Theorem 2.28 Let L be a line and P be a point not on L. One can drop a perpendicular

from P to L, i.e. there is a line segment PX, with X on L, which is perpendicular to L.

Sketch of Proof : Given that L splits the plane into two sides, P will be on one of those sides.

As such, let D be a point not on L but on the opposing side to P . We can construct a circle

with centre P and radius PD by Axiom 2.3, specifically E3. By construction, L will intersect

this circle at two points, called E and F . We can bisect the line segment EF , that is find its

midpoint X. We then simply form line segments by connecting P to each of E,F,X. Then, the

line segment PX is perpendicular to L, by construction. This is all pictured in Figure 9.

L

P

D

EF X

Figure 9: The foundations for the existence of a dropped perpendicular.

Definition 2.29 The distance from P to L is the length of the dropped perpendicular.

Remark 2.30 The above is only a sketch of a proof because we do not fully justify why this

construction works. It might be a bit difficult if this is your first time looking at content like

this but it is possible to flesh out the details a bit. On this one occasion, I will provide more

(so you are comfortable with a proof vs a sketch of a proof). Indeed, we know that PE = PF

because both are radii of a circle, which is known to be constant. Since X is the midpoint of

EF , we know that EX = FX. Therefore, by the SSS criterion, we know that PXE ≃ PXF .

In particular, ∠PXE = ∠PXF . Since both PX and L are straight line (segment)s which meet

at equal angles, said angles are both right angles, as required.

Definition 2.31 A parallelogram ABCD has four vertices and edges AB,BC,CD,DA

where each pair of opposite sides (AB,CD) and (AD,BC) is parallel.

Note: In general, we label a shape ABCDE · · · with vertices going around anticlockwise.

Throughout the discussion, we use height to mean perpendicular height, that is the height drawn

from a chosen base edge which meets that edge at right angles.
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Proposition 2.32 Opposite sides and opposite angles in a parallelogram are equal.

Proof : Let ABCD be a parallelogram and consider its diagonal BD, as in Figure 10.

A B

CD

Figure 10: The parallelogram ABCD with its diagonal BD.

By Definition 2.31, we have that AB and CD are parallel, with BD intersecting both (if we

extend these segments to lines, we get a picture similar to Figure 6). By Theorem 2.23, we see

that ∠ABC = ∠BDC. Similarly, we know that AD and BC are parallel and BD intersecting

them both also, so the same theorem implies that ∠ADB = ∠DBC. Thus, the ASA condition

applies, giving us ABD ≃ BCD. Thus is sufficient; the congruence guarantees that opposite

sides are of the same length and angles of the same size (we could actually conclude the angles

fact before applying ASA).

Corollary 2.33 The diagonal of a parallelogram bisects it.

Proposition 2.34 Parallelograms with the same base and height have equal areas.

Proof : Let ABCD and ABEF be two parallelograms sharing the base AB, as in Figure 11.

A B

CDEF

G

Figure 11: The parallelograms ABCD and ABEF .

Thus, we have that DC = AB = ED by Proposition 2.32. From this, it follows that CE = DF .

The latter result also guarantees that AD = BC and Proposition 2.25 implies ∠CEB = ∠ACE

as they are corresponding. By SAS, we get ADF ≃ BCE. In particular, they necessarily have

the same area (this is actually hidden in the definition of congruence; all congruent shapes have
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equal areas – this is what gives area its meaning). If we subtract the area DEG, from each

triangle, we get two four-sided shapes AGEF and BGDC of equal areas. Thus, adding the area

ABG to each preserves the equality, but adding this gives us the areas for each parallelogram.

Exercise 5 State and prove the triangle version of Proposition 2.34.

[Hint: Use Proposition 2.34; draw a picture and tweak it to make it look like Figure 11.]

Note: Both Proposition 2.34 and Exercise 5 can be generalised to two parallelograms

(resp. triangles) with equal base lengths and heights will have the same area, not just two

parallelograms (resp. triangles) with exactly the same bases. We won’t go into detail on

this as it isn’t very illuminating; it uses the proof of Proposition 2.34 (resp. Exercise 5).

Corollary 2.35 The area of a parallelogram is bh, for b the base length and h the height.

Proposition 2.36 A parallelogram with the same base and height as a triangle has twice

the triangle’s area.

Proof : Suppose we have a parallelogram ABCD and a triangle ABE, as in Figure 12.

A B

CDE

Figure 12: The parallelogram ABCD and triangle ABE.

If we draw the diagonal AC of the parallelogram, then we can see that the areas of triangles

ABE and ABC are equal by Exercise 5. But now, Corollary 2.33 tells us that AC bisects the

parallelogram, so its area is twice that of the area of triangle ABE, as needed.

Corollary 2.37 The area of a triangle is bh/2, for b the base length and h the height.

Definition 2.38 A triangle is a right-angled triangle if it contains a right angle.
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Theorem 2.39 (Pythagoras’ Theorem) Let ABC be a triangle with side lengths a, b, c op-

posite vertices A,B,C respectively. Then, ∠BCA = π/2 if and only if a2 + b2 = c2.

Proof : (⇒) First suppose that the triangle is right-angled, with the angle at vertex C. Consider

the square with side lengths a+ b formed from triangles congruent to ABC, as in Figure 13.

c
c

c
c

D E F

G

HIJ

K

a

a

a

a

b

b

b

b

Figure 13: The square in the proof of Pythagoras’ Theorem.

As noted, the four right-angled triangles are congruent to ABC, hence the labelling in Figure

13. Recall that Theorem 2.26 guarantees that the sum of the interior angles of a triangle is π; it

follows from this that ∠DEK + ∠FEG = π/2, but then angles on a straight line sum to π, so

∠KEG = π/2. Similar reasoning works also for the vertices G, I,K. The conclusion: we indeed

see that EGIK is a square. Now, we can use Corollary 2.37 to write the area of the square

DFHJ in two different-yet-equal ways:

(a+ b)2 = 4(ab/2) + c2 ⇔ a2 + 2ab+ b2 = 2ab+ c2,

where the left-hand-side is simply the area of the square DFHJ and the right-hand-side is

the sum of the areas of the triangles and the inner square EGIK. If we expand this out and

rearrange, we immediately conclude that a2 + b2 = c2.

(⇐) Suppose now that ABC is a triangle such that a2+ b2 = c2. We will construct a new shape.

Draw two line segments B′C ′ and A′C ′ of lengths a and b, respectively, such that they are

perpendicular. Then, we can complete this to a triangle A′B′C ′ by adding the line segment A′B′

of length c′, say. By construction, this is a right-angled triangle with side lengths a, b, c′ opposite

vertices A′, B′, C ′ respectively. Therefore, the forward direction of Pythagoras’ Theorem (proved

above) applies, meaning that a2 + b2 = (c′)2. Combining this with what we assumed at the
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beginning, we have c = c′. Hence, SSS congruence tells us that A′B′C ′ ≃ ABC. In particular,

ABC is a right-angled triangle.

Exercise 6 A trapezium is a four-sided shape with one pair of parallel edges, one such

example is the shape DEFG in Figure 14, with parallel sides DE and FG. The area of

a trapezium is computed as follows:

(i) Add the lengths of the two parallel sides.

(ii) Multiply this by the (perpendicular) height.

(iii) Divide the result by two.

Now you are equipped with this, give an alternate proof of Pythagoras’ Theorem (the

forward direction) by computing the area of Figure 14, as we did for Figure 13 above.

c

c

D E

FG

H

a

a

b

b

Figure 14: The trapezium for an alternate proof of Pythagoras’ Theorem.

Corollary 2.40 Let ABC be a right-angled triangle with side lengths a, b, c opposite vertices

A,B,C respectively and ∠BCA = π/2. Then, a+ b > c.

Proof : Assume to the contrary that a+ b ≤ c. Then, squaring both sides gives us (a+ b)2 ≤ c2,

which expands out to a2+2ab+b2 ≤ c2. However, Pythagoras’ Theorem tells us that a2+b2 = c2,

so we can re-write this inequality as c2 + 2ab ≤ c2, which is obviously equivalent to 2ab ≤ 0,

which is a contradiction since a > 0 and b > 0 (because they are side lengths).

Let ABC be a right-angled triangle with side lengths a, b, c opposite vertices A,B,C respectively

and ∠BCA = π/2. We denote the angle ∠ABC = θ. Then, we can ‘define’ the following:

� The sine of angle θ is sin(θ) = b/c.

� The cosine of angle θ is cos(θ) = a/c.
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� The tangent of angle θ is tan(θ) = b/a.

Note: This is a very generous use of the word ‘define’ because we will see a much more

rigorous definition of the trigonometric functions in Chapter ??. As such, we have done

away with the usual pomp of putting it in a blue box and assigning it a definition number.

Remark 2.41 This adheres to the informal rule taught to high school students:

� The sine is found by doing the opposite ÷ hypotenuse.

� The cosine is found by doing the adjacent ÷ hypotenuse.

� The tangent is found by doing the opposite ÷ adjacent.

Recall that the hypotenuse is defined as the longest edge in a right-angled triangle, that is the

edge opposite the right angle. At least here in the UK, we remember this as ‘SOHCAHTOA’,

which stands for S = O/H and C = A/H and T = O/A. It is encouraged to sketch a picture of

triangle ABC with the labels defined above to visualise sin(θ), cos(θ), tan(θ).

Proposition 2.42 For any angle θ, we have sin(θ)/ cos(θ) = tan(θ).

Sketch of Proof : This follows from the informal discussion in Remark 2.41.

Theorem 2.43 (Cosine Rule) Let ABC be a triangle with side lengths a, b, c opposite ver-

tices A,B,C respectively and ∠BCA = α. Then, a2 = b2 + c2 − 2bc cos(α).

Proof : We do the proof assuming all angles in the triangle are acute, that is strictly less than

π/2 but the result holds in other cases. We will drop a perpendicular from C to the edge AB to

the point P . We will say h is the length of this line segment CP . Then, we have two right-angled

triangles ACP and BCP on which to apply Pythagoras’ Theorem. Before proceeding, we will

create Figure 15 to assist in our visualisation.

b ah

A B

C

Px c− x

α

Figure 15: The triangle in the proof of the Cosine Rule.
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If we say that AP has length x, it follows that BP has length c − x (since the whole segment

AB has length c). We can truly now apply Pythagoras’ Theorem on each triangle:

x2 + h2 = b2 and (c− x)2 + h2 = a2

Subtracting one from the other, we see that

a2 − b2 = (c− x)2 − x2

= c2 − 2cx+ x2 − x2

= c2 − 2cx.

The final thing to note is that cos(α) = x/b which is equivalent to x = b cos(α). If we substitute

this in and add b2 to both sides of the above, we get the result.

Exercise 7 Determine what happens in the degenerate case α = π/2.

[Hint: You can work out the value of cos
(
π/2

)
from the identity cos(π − θ) = − cos(θ).]
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3 Coordinate Two-Dimensional Geometry

An alternative to the axiomatic geometric approach discussed so far is to introduce coordinates.

The most standard form of coordinates is Cartesian coordinates, named after René Déscartes

who played an important role in the development of this discipline.

Definition 3.1 A coordinate system is a choice of the following:

� An origin, O.

� A pair of perpendicular axes that intersect at O.

� A scale on each axis.

� An orientation.

In words, Definition 3.1 says that we can form coordinates in two-dimensions by specifying a

reference point (the origin) and a notion of how far away from said origin we move (scaled axes),

where we write this movement as a pair of numbers, one each for how far we move parallel to

the axes (orientation).

The most standard coordinate system is Cartesian coordinates, with the usual x-axis and y-axis

going through the origin O = (0, 0). The scale allows for any real number to appear on each axis.

Therefore, we can think of our two-dimensional plane as the set of pairs of real numbers, that is

R × R = {(x, y) : x, y ∈ R}. Recall this is the Cartesian product from Definition ??, hence the

name of the coordinate system.

Note: For shorthand, we write R2 := R × R to mean the two-dimensional plane. This

notation sets us up for discussing three-dimensional space in Section 5, but even more so

it establishes that we can define higher-dimensional spaces (e.g. Rn is n-dimensional).

Definition 3.2 An equation of a line is ax+ by + c = 0, for a, b, c ∈ R not all zero.

Remark 3.3 You may be familiar with the equation y = mx+p of a line, where m is the ‘gradient’

of the line and p is the ‘y-intercept’ of the line. This is almost good, but this expression will

never work for vertical lines of the form x = k, for any k ∈ R. Moreover, any line in R2 can be

expressed as ax+ by + c = 0 for an appropriate choice of a, b, c but the converse is not true:

� If we choose a = 0, b = 0, c = 0, the equation describes the whole plane R2.

� If we choose a = 0, b = 0, c ̸= 0, the equation describes the empty set ∅.
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Exercise 8 Demonstrate that the equation ax + by + c = 0 can describe both our usual

line y = mx + p and our vertical line x = k. In other words, choose values for a, b, c so

that the equation rearranges to get y = mx+p (and again so that it rearranges to x = k).

Our goal is to now better understand this Cartesian coordinate description of lines. In particular,

we wish to know what the least amount of information is needed to determine a line and how,

with that information, we can find the equation of the line.

Definition 3.4 The gradient of a non-vertical line L that passes through distinct (x1, y1)

and (x2, y2) is the number m = (y2 − y1)/(x2 − x1).

Lemma 3.5 Let L be a line with gradient m such that it meets the x-axis at angle θ,

measured anti-clockwise from the x-axis. Then, tan(θ) = m.

Proof : (i) If θ = 0, L is the x-axis and has gradient 0; we recover the known fact tan(0) = 0.

(ii) If θ ∈ (0, π/2) is acute, we let (x0, 0) be the x-intercept of L and we choose another point

(x1, y1) on L such that x1 > x0. Dropping a perpendicular from (x1, y1) to the x-axis, i.e. to

the point (x1, 0), we obtain a right-angled triangle with vertices (x0, 0), (x1, 0), (x1, y1). By the

discussion in and around Remark 2.41, we see that tan(θ) = y1/(x1 − x0), which is precisely m.

(iii) If θ ∈ (π/2, π) is obtuse, we can look to the other angle φ formed between the x-axis

and L (which will be acute). Proceeding as above but with φ, we see that tan(φ) = −m and,

consequently, it follows that tan(θ) = tan(π − φ) = − tan(φ) = m.

x

y

O (x0, 0)

(x1, y1)

(x1, 0)

θ

Figure 16: The line L in part (ii) of the proof of Lemma 3.5.
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Note: We take some liberties in the proof of Theorem 3.6 below by using so-called

‘compound-angle formulae’. These will be formally introduced later (you may have seen

some of them in your mathematical youth) when we properly discuss the trigonometric

functions. For now, we note the specific ones used in the next proof:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
.

Theorem 3.6 Let L1 and L2 be lines with gradients m1 ̸= 0 and m2, respectively. Then,

L1 and L2 are perpendicular if and only if m2 = −1/m1.

Proof : (⇒) Let θ be the angle between L1 and the x-axis, again measured anti-clockwise from the

x-axis. Assume first that θ ∈ (0, π/2) is acute. Because L1 and L2 are assumed perpendicular,

this means that rotating L1 by π/2 about their point of intersection will transform it onto L2.

Now, we can apply Lemma 3.5 to these two lines:

m2 = tan
(
θ + π/2

)
=

sin
(
θ + π/2

)
cos
(
θ + π/2

)
=

sin(θ) cos
(
π/2

)
+ cos(θ) sin

(
π/2

)
cos(θ) cos

(
π/2

)
− sin(θ) sin

(
π/2

)
=

cos(θ)

− sin(θ)

= − 1

tan(θ)

= − 1

m1
.

A near-identical argument works for when θ ∈ (π/2, π) is obtuse.

(⇐) Suppose that m2 = −1/m1 and let both m1 = tan(θ) and −1/m1 = tan(φ). By assumption,

we have −1/ tan(θ) = tan(φ) which rearranges to 1−tan(θ) tan(φ) = 0. Using a compound-angle

formula, this implies that tan(θ + φ) is undefined, but this can only be the case when θ+φ = π/2

(or an odd-multiple of it, but our angles are restricted to (0, π) only). Hence, the angle between

L1 and L2 is a right angle, as required.
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Theorem 3.7 Consider an arbitrary line L.

(i) If L is non-vertical, passes through (x1, y1) and has gradient m, then it is given by

y − y1 = m(x− x1).

(ii) If L is non-vertical and passes through distinct (x1, y1), (x2, y2), then it is given by

y − y1
x− x1

=
y2 − y1
x2 − x1

, for all x ̸= x1.

(iii) If L passes through (p, 0) and (0, q) for p, q ̸= 0, then it is given by

x

p
+

y

q
= 1.

Proof : (i) Using the y = mx + p form, since L is assumed non-vertical, it can be described by

y1 = mx1 + p, implying that the y-intercept p = y1 −mx1. Therefore, the equation of the line

is y = mx+ y1 −mx1; this easily rearranges to the desired formula.

(ii) Since L is non-vertical, it satisfies (i), i.e. it is described by the equation y− y1 = m(x−x1).

Therefore, assuming that x ̸= x1, we can divide this to get the following expression:

m =
y − y1
x− x1

.

Alternatively, Definition 3.4 gives us the gradient in terms of the two distinct points (x1, y1) and

(x2, y2), so equating this with our expression for m above gives the result.

(iii) Consider the general equation of a line ax + by + c = 0. We can substitute (x, y) = (p, 0)

and (x, y) = (0, q) in turn into this equation. Doing so yields

ap+ c = 0 and bq + c = 0.

We assumed that p, q ̸= 0, so we can rearrange these to get a = −c/p and b = −c/q. Hence, the

equation of our line is −cx/p − cy/q + c = 0. We can factorise this to −c(x/p + y/q − 1) = 0.

Because c ̸= 0 (if it was, all three of a, b, c = 0 which is not allowed in Definition 3.2), this final

equation holds precisely when x/p+ y/q = 1.

What are the benefits of this coordinate description of the two-dimensional plane? Perhaps

things look a little more concrete than the justifications involving seemingly-arbitrary axioms.

One useful benefit is that we get a neat formula for the distance described in Definition 2.29.

First, we provide an exercise which informs the next result.
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Exercise 9 Prove the distance between two points (x1, y1) and (x2, y2) in R2 is given by√
(x1 − x2)2 + (y1 − y2)2.

[Hint: This is an application of Pythagoras’ Theorem; draw a picture.]

Proposition 3.8 Let L be a line given by ax+ by+ c = 0 with a, b ̸= 0 and P = (x1, y1) be

a point not on L. Then, the distance between P and L is

dist(P,L) =
|ax1 + by1 + c|√

a2 + b2
.

Proof : Rearranging the equation of L shows that it has gradient −a/b. Hence, Theorem 3.6

implies that the perpendicular dropped from P to L will have gradient b/a. By Theorem 3.7(i),

the perpendicular line L⊥ is described by y − y1 = b
a(x − x1). Written in standard form, this

becomes bx − ay + ay1 − bx1 = 0. To find the base of the dropped perpendicular, that is the

intersection of L with L⊥, it amounts to solving the equations of each line simultaneously. Indeed,

this gives us the intersection point

(x2, y2) =

(
b2x1 − aby1 − ac

a2 + b2
,
a2y1 − abx1 − bc

a2 + b2

)
.

Using Exercise 9, we know that dist(P,L) =
√

(x1 − x2)2 + (y1 − y2)2 and so substituting the

expressions for x2 and y2 above will give the result.

Note: The notation L⊥ refers to a line perpendicular to L. The symbol ⊥ is actually

called the ‘perp’ symbol. This will be used later when we look at vectors and describing

orthogonality (which is another word for perpendicularity).

Example 3.9 Consider the line L given by y = 3x − 4 and the point P = (3, 2). It is first clear

that P is not on L, since 3(3)−4 = 5 ̸= 2. Second, the standard form of the line is −3x+y+4 = 0

so we certainly see that a, b ̸= 0. Hence, we are in a position to use Proposition 3.8. Indeed,

dist(P,L) =

∣∣−3(3) + 1(2) + 4
∣∣√

(−3)2 + 12
=

|−3|√
10

=
3√
10

.
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Note: The absolute value |x| =
√
x2 for any x; this is one way to generalise Definition ??

and we will use it often. An equivalent generalisation is given in Definition ??.

We have spent time looking at the coordinate form of a line. In Section 4, we will look at some

more interesting curves. Before that, there is another fundamental geometric object that we

should be able to describe: a circle. Here, we will see a more rigorous (but still not the best)

introduction to the trigonometric functions.

Definition 3.10 Let θ ∈ R and, starting at the point (1, 0) ∈ R2, let P be the point achieved

by rotating (1, 0) by angle θ about the origin. The convention is that the rotation is anti-

clockwise for θ > 0 and clockwise for θ < 0.

� The cosine of θ is defined as the x-coordinate of P .

� The sine of θ is defined as the y-coordinate of P .

x

y

O (1, 0)

P = (cos θ, sin θ)

θ

Figure 17: The descriptions of cos(θ) and sin(θ) from Definition 3.10.

Note: We will still refer to cosine and sine as trigonometric functions, despite the fact it

is not clear from any description of them given so far that they are functions. This will be

clarified when we give them their the most rigorous treatment in terms of power series.

Lemma 3.11 The cosine and sine definitions in Remark 2.41 and Definition 3.10 coincide.

Proof : Let P be the point achieved by rotating (1, 0) about the origin by θ, as in Figure 17.

If we drop a perpendicular from P to the x-axis, i.e. to the point X = (cos θ, 0), then we see

that OPX is a right-angled triangle where ∠POX = θ. There are three cases to consider.

Throughout, cosold and sinold denote the older definitions presented in Remark 2.41 whereas cos

and sin denote the better-introduced newer versions in Definition 3.10.

(i) If θ ∈ (0, π/2) is acute, then we see that

cosold(θ) = OX/OP = cos(θ), sinold(θ) = PX/OP = sin(θ).
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(ii) If θ = π/2, then we see that

cosold(θ) = 0 = cos(θ), sinold(θ) = 1 = sin(θ).

(iii) If θ ∈ (π/2, π) is obtuse, then P = (− cosφ, sinφ) where φ = π − θ and we see that

cosold(θ) = − cos(φ) = cos(θ), sinold(θ) = sin(φ) = sin(θ).

As we can see from Figure 17, there may be a relationship between these trigonometric functions

and circles, since a circle is just a rotation by a fixed length (the radius) about a point. Before

moving over to describing said shapes, we will first note a number of useful properties of these

trigonometric functions.

Proposition 3.12 Let θ ∈ R be treated as a signed angle.

(i) sin(θ + 2π) = sin(θ).

(ii) cos(θ + 2π) = cos(θ).

(iii) sin(π − θ) = sin(θ).

(iv) cos(π − θ) = − cos(θ).

(v) sin(−θ) = − sin(θ).

(vi) cos(−θ) = cos(θ).

(vii) sin2(θ) + cos2(θ) = 1.

(viii) sin
(
θ + π/2

)
= cos(θ).

Exercise 10 Prove (or justify some of) Proposition 3.12.

[Hint: (iii) and (iv) follow from the old definitions; (v) and (vi) follow from Figure 17; (vii) is Pythagoras’

Theorem; (viii) is simply a compound-angle formula.]

Even though we have (likely) all seen circles before, and even referenced them earlier in these

notes, we now provide a definition for what a circle is, before we proceed in prescribing a coor-

dinate description.

Definition 3.13 A circle is the set of points a fixed distance away from a chosen point. We

call the fixed distance the radius and the chosen point the centre.

Remark 3.14 A tempting alternate definition of a circle may be this:

A circle is a shape with constant width, where we call the width the diameter.
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This is actually not sufficient to describe only a circle. Indeed, there are plenty of other shapes

that have a constant width which are not circles. Real-world examples include 20p and 50p coins

in the UK. The width is defined as the distance between parallel supporting lines, that is the

pair of parallel lines on either side of the shape that each touch the shape at precisely one point.

We can see an example of such a shape in Figure 18 below.

Figure 18: A shape of constant width known as a Reuleaux triangle.

Definition 3.15 The equation of a circle (or locus equation of a circle) with radius r > 0

and centre (a, b) is (x− a)2 + (y − b)2 = r2.

Note: This is a direct consequence of Pythagoras’ Theorem, specifically of Exercise 9.

Proposition 3.16 (Parametric Equation of a Circle) A point P = (x, y) lies on the circle of

radius r and centre (a, b) if and only if there is a t ∈ [0, 2π) with P = (a+r cos t, b+r sin t).

Proof : (⇐) If said t exists, then (x−a)2+(y−b)2 = (r cos t)2+(r sin t)2 = r2(cos2 t+sin2 t) = r2,

where we have used Proposition 3.12(vii) to get the final equality.

(⇒) Suppose P lies on the circle of radius r and centre A = (a, b). Define the point Q = (a+r, b).

Then, the line segment AQ is a horizontal radius of the circle, and the segment AP is obtained

from AQ via a rotation of angle t ∈ [0, 2π) about the centre A. In the case that t ∈ (0, π/2) is

acute, it is clear that

cos(t) =
x− a

r
and sin(t) =

y − b

r
,

from which they rearrange to give x = a + r cos(t) and y = b + r sin(t), as required. One can

proceed similarly for the other values of t.

Remark 3.17 It is immensely useful to have parametric equations for some of the curves that

we see in geometry. Why? Because all one needs to do to generate points on such a curve is

substitute in a number. On the other hand, with our usual description of a line or circle, say,

we need to substitute in one coordinate (either x or y) and rearrange for the other; this is much

more work. We will see much later on in Chapter ?? how parametrising curves (and surfaces)

can make our mathematical lives easier.
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For the end of this section, we move away from the Cartesian coordinate system (although this is

the system we will use almost always) to discuss an alternative, and very useful, set of coordinates

which will allow us to describe curves in a neat way. Ultimately, this will inform the discussion

in Section 4.

Definition 3.18 The system of polar coordinates is defined by the following:

� A pole, O.

� A polar axis X through the pole.

� A scale on the polar axis.

In this way, any point P in the plane is specified by the distance r from the pole and the

angle θ between the line segment PO and X. Polar coordinates are denoted (r, θ).

Note: Again, we use the convention that θ > 0 is an anti-clockwise rotation and θ < 0 is

a clockwise rotation. Generally, we also restrict either to θ ∈ [0, 2π) or to θ ∈ (−π, π].

X

r

O

P

θ

Figure 19: The plane as described by polar coordinates.

Lemma 3.19 Let P be a point in the plane with polar coordinates (r, θ). Then, it has

Cartesian coordinates (x, y) = (r cos θ, r sin θ).

Proof : By Definition 3.10, the point arrived at by rotating (1, 0) about O by angle θ is precisely

(cos θ, sin θ). Since P is obtained by rotating (r, 0) around O by angle θ, it is an easy consequence

that it has Cartesian coordinates (r cos θ, r sin θ).

Example 3.20 Suppose we wish to convert the polar point (
√
2, 5π/4) to Cartesian coordinates.

Then, Lemma 3.19 tells us that x =
√
2 cos

(
5π/4

)
= −1 and y =

√
2 sin

(
5π/4

)
= −1.

Note: In general, for a ∈ R, the number tan−1(a) isn’t well-defined because if tan(θ) = a,

then tan(θ + nπ) = a for all n ∈ Z. Thus, by tan−1(a), we restrict to θ ∈ (−π/2, π/2).
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Lemma 3.21 Let P be a point in the plane with Cartesian coordinates (x, y). Then, it has

polar coordinates (r, θ), where

r =
√
x2 + y2 and θ =



tan−1(y/x), if x > 0

tan−1(y/x) + π, if x < 0

π/2, if x = 0 and y > 0

−π/2, if x = 0 and y < 0

undefined, if x = 0 and y = 0

.

Proof : There are a number of cases to consider.

(i) If P is in quadrant one (x > 0, y > 0), then θ ∈ (0, π/2) which is simply tan−1(y/x).

(ii) If P is in quadrant two (x < 0, y > 0), then θ ∈ (π/2, π), so there is an acute angle

α = π − θ. Substitute in α = tan−1(y/− x) = − tan−1(y/x) and rearrange.

(iii) If P is in quadrant three (x < 0, y < 0), then θ ∈ (π, 3π/2), so there is an acute angle

α = θ − π. Substitute in α = tan−1(−y/− x) = tan−1(y/x) and rearrange.

(iv) If P is in quadrant four (x > 0, y < 0), then θ ∈ (3π/2, 2π), so there is an acute angle

α = 2π − θ. Substitute in α = tan−1(−y/x) = − tan−1(y/x) and rearrange.

Now, tan−1(y/x) is undefined when x = 0, meaning θ = ±π/2 depending on the orientation.

Finally, the fact that r =
√

x2 + y2 is an easy application of Pythagoras’ Theorem.

Example 3.22 Suppose we wish to convert the Cartesian point (−1, 1) to polar coordinates.

Then, Lemma 3.21 tells us that r =
√
2 and that the angle θ = tan−1(−1) + π = 3π/4.

Exercise 11 Express the polar point (2, π) in Cartesian coordinates. Furthermore, express

the Cartesian point (0, 0) in polar coordinates. Is your answer unique?

Proposition 3.23 Let (x, y) be Cartesian coordinates. Then, the coordinate system (X,Y )

obtained by rotating the (x, y)-axes through angle α about the origin is described by

X = x cos(α) + y sin(α),

Y = −x sin(α) + y cos(α).

Proof : Let P be a point in the plane with Cartesian coordinates (x, y) and polar coordinates
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(r, θ). Suppose that (R,Θ) are the ‘new’ polar coordinates of P , that is where we take the polar

axis to be the X-axis. Then, R = r and Θ = θ − α. With this information, we can use some

compound-angle formulae with Lemma 3.19 to get the desired result:

X = R cos(Θ)

= r cos(θ − α)

= r(cos θ cosα+ sin θ sinα)

= x cos(α) + y sin(α)

and

Y = R sin(Θ)

= r sin(θ − α)

= r(sin θ cosα− cos θ sinα)

= y cos(α)− x sin(α).
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4 Conic Sections

Conic sections (or conics, for short) have been studied for thousands of years. There are second-

hand accounts pertaining to the study of these curves around the year 320BC. Sadly, neither the

work nor the names for the conics survived. One of the most natural ways to view a conic is to

take a cone and intersect it with a plane; the boundaries of the resulting sets will be what we

call conic sections. This will be illustrated but another, more algebraic definition is now given.

Definition 4.1 A non-degenerate conic section (or conic) is is the locus of a point in the

plane whose distance from a fixed point is some positive constant multiple of its distance

from a fixed line not containing the point.

� The fixed point is called the focus, F .

� The fixed line is called the directrix, L.

� The positive constant multiple is called the eccentricity, e.

Note: In other words, a point P lies on a conic if and only if dist(P, F ) = e dist(P,L).

Remark 4.2 As mentioned above, one beautiful interpretation of conics comes from considering

the intersection of a cone with various planes. Here, a cone is a subset of R3 so lives in three-

dimensional space and a plane is essentially just a copy of R2.

circle →

ellipse → ← parabola

← hyperbola

← hyperbola

Figure 20: The conics arising from the intersection of a cone with various planes.

Here is a quick explanation of the orientation of the planes relative to the cone drawn in Figure

20: the circle is contained on a horizontal plane; the ellipse is contained on an angled plane

through both sides of the cone; the parabola is contained on an angled plane through one side
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and the base of the cone; the hyperbola is contained on a vertical plane. We can see that the

hyperbola is the only conic with more than ‘one piece’.

The goal is to describe these conics using Cartesian coordinates. We will do this by considering

different values of the eccentricity and studying the resulting conics. The values are as follows:

0 < e < 1, e = 1, e > 1.

Conic I: The Parabola

Definition 4.3 A parabola is the conic obtained when the eccentricity e = 1.

The Cartesian coordinate system will give us a neat interpretation of a parabola. Indeed, suppose

the focus F lies on the x-axis, meaning it is of the form F = (a, 0). Then, the directrix L is

defined by x = −a. Using the previous note along with our formula for distance in Cartesian

coordinates, we can see that

dist(P, F ) = dist(P,L) ⇔
√
(x− a)2 + y2 = |x+ a|

⇔ x2 − 2ax+ a2 + y2 = (x+ a)2

⇔ y2 = 4ax.

Immediately, this gives us an equation that any point on a parabola must satisfy.

Corollary 4.4 The standard form of a parabola is y2 = 4ax for all a ̸= 0.

� Its vertex is the point (0, 0).

� Its focus is the point (a, 0).

� Its directrix is the line x = −a.
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x

y

x = −a

(0, 0) (a, 0)

Figure 21: The standard parabola y2 = 4ax with its directrix.

Proposition 4.5 (Parametric Equation of a Parabola) Let a ̸= 0. A point P = (x, y) lies on

the parabola y2 = 4ax if and only if there exists t ∈ R such that P = (at2, 2at).

Proof : (⇒) Given y2 = 4ax, take t = y/2a. Hence, y = 2at and x = y2/4a = 4a2t2/4a = at2.

(⇐) Given (x, y) = (at2, 2at) for some t ∈ R, we have y2 = 4a2t2 = 4a(at2) = 4ax, as needed.

Example 4.6 Suppose we wish to sketch the parabola described by y2 − 6y + 3x = 10. The goal

is to transform this into the standard form. In fact, we do something more general but this will

be discussed after this example. Indeed, we need to re-write this equation so that it has the form

Y 2 = 4aX, for relevant coordinates (X,Y ) in terms of (x, y). Essentially, the standard form has

squared y-terms on the left and a multiple of the x-terms on the right. If we do this for the given

equation, we obtain the following:

y2 − 6y = −3x+ 10 ⇔ (y − 3)2 = −3(x− 19/3),

where we complete the square and tidy things up. If we introduce the labels x− 19/3 = X and

y − 3 = Y , then this equation becomes

Y 2 = −3X ⇔ Y 2 = 4(−3/4)X,

so the standard form is such that a = −3/4. We know the features of a parabola (e.g. vertex,

focus, directrix) when it is in the standard form, so we need only use our ‘transformation’

X = x− 19/3 and Y = y − 3 to find out what these features are for this particular parabola.
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� Its vertex is (X,Y ) = (0, 0), which is to say (x, y) = (19/3, 3).

� Its focus is (X,Y ) = (a, 0), which is to say (x, y) = (67/12, 3).

� Its directrix is X = −a, which is to say x = 85/12.

Exercise 12 Actually sketch the parabola discussed in Example 4.6.

[Hint: Although we didn’t do so in the above example, you should also label on where the parabola

intercepts the y-axis, that is substitute in x = 0 and solve.]

Note: What we did by writing (X,Y ) in terms of (x, y) is a coordinate transformation.

Remark 4.7 In Example 4.6, in order to sketch our parabola, we need to write it in standard

form using a new coordinate system (X,Y ) which is somehow related to our usual Cartesian

coordinates (x, y). In fact, we wrote explicitly what the relation was: X = x − 19/3 and

Y = y − 3. In essence, what we have done here is shifted our coordinate system so that the

origin (0, 0) 7→ (19/3, 3), which allows us to easily obtain the standard form of the parabola. In

general, if we move the origin (0, 0) 7→ (c, d) to a new point, then the new coordinates (X,Y )

are related to the old coordinates (x, y) by the following formulae:

X = x+ c,

Y = y + d.

This is captured in Figure 22 below, which shows how the Cartesian coordinate axes move to

give us a new system of coordinates.

x

y

(0, 0)

X

Y

(c, d)

Figure 22: Transforming coordinates from (x, y) to (X,Y ).
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Conic II: The Ellipse

Definition 4.8 An ellipse is the conic obtained when the eccentricity 0 < e < 1.

Deriving the standard form of an ellipse is not as easy as for the parabola case. However, we

can introduce a bit of machinery which will provide us with an easier time; the next result will

tell us what happens to the focus, directrix and conic under a general change of variables from

(x, y) to (X,Y ).

Proposition 4.9 Consider a conic with eccentricity e ̸= 1. It is possible to make a change

of variables from (x, y)-coordinates to (X,Y )-coordinates such that the focus F becomes

the origin and the directrix L is parallel to the Y -axis, that is of the form X = −h for

some h ∈ R. Then, the conic itself satisfies(
X − he2

1− e2

)2

+
Y 2

1− e2
=

h2e2

(1− e2)2
.

Proof : Again, we use the earlier note which tells us a point P = (X,Y ) lies on a conic if and only

if it satisfies dist(P, F ) = e dist(P,L). All we need do is apply the relevant distance formulae

and tweak things with a bit of algebraic manipulation:

dist(P, F ) = e dist(P,L) ⇔
√

X2 + Y 2 = e|X + h|

⇔ X2 + Y 2 = e2(X2 + 2Xh+ h2)

⇔ X2(1− e2) + Y 2 − 2Xhe2 = h2e2

⇔ X2 +
Y 2

1− e2
− 2Xhe2

1− e2
=

h2e2

1− e2

⇔

(
X − he2

1− e2

)
− h2e4

(1− e2)2
+

Y 2

1− e2
=

h2e2

1− e2

⇔

(
X − he2

1− e2

)
+

Y 2

1− e2
=

h2e4

(1− e2)2
+

h2e2

1− e2

⇔

(
X − he2

1− e2

)
+

Y 2

1− e2
=

he2

(1− e2)2
.

Note: The only assumption in Proposition 4.9 is e ̸= 1, so it will apply also when e > 1.
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Corollary 4.10 The standard form of an ellipse is x2/a2 + y2/b2 = 1 for all a > b > 0.

� Its centre is (0, 0).

� Its eccentricity is e =
√
1− b2/a2.

� Its focus is the point (ae, 0).

� Its directrix is the line x = a/e.

Proof : Let a = he/(1 − e2) in Proposition 4.9. Then, the equation of the conic becomes (X −
ae)2 + Y 2/(1− e2) = a2. Thus, dividing through by a2 and setting x = X − ae and y = Y and

b = a
√
1− e2, we get the intended form. From this final equation, we can immediately rearrange

to get the formula for the eccentricity as stated above. Finally, per what we just said,

(X − ae)2 + Y 2/(1− e2) = a2 ⇔ x2 + y2/(1− e2) = a2

⇔ x2(1− e2) + y2 = a2(1− e2)

⇔ x2 − e2x2 + y2 = a2 − a2e2

⇔ x2 − a2e2 + y2 = e2x2 + a2

⇔ x2 − 2aex− a2e2 + y2 = e2x2 − 2aex+ a2

⇔ (x− ae)2 + y2 = e2(x− a/e)2

⇔
√

(x− ae)2 + y2 = e
∣∣x− a/e

∣∣.
Therefore, we see that the distance between (x, y) and the point (ae, 0) is precisely e multiplied

the distance between (x, y) and the line x = a/e. By definition of a conic, this means that the

focus is (ae, 0) and the directrix is x = a/e.

Exercise 13 Carefully read through each line of algebra in the above proof and make sure

you can justify what is being done at each stage to get to the next line. If you find it easy,

it is good practice; if you find it difficult, it is even better practice.

Remark 4.11 Looking at Corollary 4.10, it is worth pointing out that we can give an alternate

description of the focus and directrix as follows: in the fifth line of algebra in the proof of said

corollary, we decided to subtract 2aex from both sides to give us a neat factorisation. However, we

could equally have decided to add 2aex, which again gives us a neat factorisation and ultimately

yields √
(x+ ae)2 + y2 = e

∣∣x+ a/e
∣∣.

Thus, the standard ellipse has another focus at (−ae, 0) and another directrix described by

x = −a/e. Hence, there are two foci and two directrices. This actually captures the fact that

the ellipse is symmetric about the y-axis.
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x

y

x = a/ex = −a/e

(ae, 0)(−ae, 0)

(0, 0)

Figure 23: The standard ellipse x2

a2
+ y2

b2
= 1 with directrices.

Definition 4.12 Consider the standard ellipse x2/a2 + y2/b2 = 1 for a > b > 0.

� The major axis is the line segment from (−a, 0) to (a, 0).

� The minor axis is the line segment from (0,−b) to (0, b).

� The semi-major axis is half the major axis, thus having length a.

� The semi-minor axis is half the minor axis, thus having length b.

Proposition 4.13 (Parametric Equation of an Ellipse) Let a > b > 0. A point P = (x, y)

lies on the ellipse x2/a2 + y2/b2 = 1 if and only if there exists t ∈ [0, 2π) such that

P = (a cos t, b sin t).

Proof : (⇒) Let P (x, y) lie on the ellipse and consider the new coordinates (X,Y ) = (x, ay/b).

Then, the equation for our ellipse in the (x, y)-plane becomes X2+Y 2 = a2 in the (X,Y )-plane;

we have transformed it to a circle with centre the origin and radius a. By Proposition 3.16, we

know that (X,Y ) = (a cos t, a sin t) where t ∈ [0, 2π). Reversing our coordinate transformation,

we see that this is equivalent to (x, y) = (a cos t, b sin t).

(⇐) Given (x, y) = (a cos t, b sin t) for some t ∈ [0, 2π), it is clear that

x2

a2
+

y2

b2
=

a2 cos2(t)

a2
+

b2 sin2(t)

b2
= cos2(t) + sin2(t) = 1.

Remark 4.14 We say that a coordinate transformation is a rigid transformation if it preserves

distances between points. These shall appear in a new context in Chapter ??. Note that the

transformation in the proof of the forward direction of Proposition 4.13 is not rigid because it

changed the shape from an ellipse to a circle, thus some distances will be altered. We claim, and

will later see, that the only rigid transformations in R2 are translations, rotations and reflections

(or combinations of the three).
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Note: A circle can be considered as a sort-of degenerate ellipse, in that if we allow a = b,

we would get the equation of a circle. In this case, the eccentricity e = 0. As such, there

is no description for a directrix, analogous to that in Corollary 4.10.

Example 4.15 Suppose we wish to sketch the ellipse described by 9x2−72x+16y2+32y+16 = 0.

The goal is to again get squared x-terms and squared y-terms on one side, from which it will be

clear what the values of a and b are. To achieve this, one can complete the square in both x and

y and then divide through to get fractions with squares on their denominators:

9
(
(x− 4)2 − 16

)
+ 16(y + 1)2 = 0 ⇔ (x− 4)2

42
+

(y + 1)2

32
= 1.

Therefore, defining (X,Y ) = (x− 4, y+1) will give us the standard equation of an ellipse in the

(X,Y )-plane. We proceed as in Example 4.6, transforming the foci, directrices, major axis and

minor axis to determine how to sketch them.

� Its eccentricity is e =
√

1− 32/42 =
√
7/4.

� Its centre is (X,Y ) = (0, 0), which is to say (x, y) = (4,−1).

� Its foci are (X,Y ) = (±
√
7, 0), which is to say (x, y) = (4±

√
7,−1).

� Its directrices are X = ±16/
√
7, which is to say x = 4± 16/

√
7.

Finally, note that the axes crossings are (4± 8
√
2/3, 0) and (0,−1).

Exercise 14 Actually sketch the ellipse discussed in Example 4.15.

[Hint: We approximate these in the (x, y)-plane: the foci are (6.65,−1) and (1.35,−1); the directrices

are x = 10.05 and x = −2.05; the x-axis crossings are (7.77, 0) and (0.23, 0).]

Conic III: The Hyperbola

Definition 4.16 A hyperbola is the conic obtained when the eccentricity e > 1.

Again, deriving the standard form of a hyperbola isn’t as simple as for the parabola. However,

Proposition 4.9 already does the heavy-lifting and we see that the standard form drops out almost

immediately from this result. Before proceeding, we will ‘define’ the following: an asymptote of

a curve in R2 is a line such that the distance between the line and the curve approaches zero as

either the x-coordinate or the y-coordinate tends to infinity. Essentially, this is a line which a

curve gets arbitrarily close to (but does not touch) at infinity.
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Corollary 4.17 The standard form of a hyperbola is x2/a2 − y2/b2 = 1 for all a, b > 0.

� Its centre is (0, 0).

� Its eccentricity is e =
√

1 + b2/a2.

� Its vertices are the points (±a, 0).

� Its foci are the points (±ae, 0).

� Its directrices are the lines x = ±a/e.

� Its asymptotes are the lines x/a± y/b = 0.

Proof : Let a = −he/(1 − e2) in Proposition 4.9. Then, the equation of the conic becomes

(X + ae)2 + Y 2/(1− e2) = a2. Thus, dividing through by a2 and setting x = X + ae and y = Y

and b = a
√
e2 − 1, we get the intended form. From this final equation, we can immediately

rearrange to get the formula for the eccentricity as stated above. The rest of the proof follows

identically to that of Corollary 4.10.

x

y

x = a
e

x = −a
e

x
a
+ y

b
= 0x

a
− y

b
= 0

(ae, 0)(−ae, 0)

Figure 24: The standard hyperbola x2

a2
− y2

b2
= 1 with directrices and asymptotes.

Remark 4.18 Let’s say something more on the asymptotic behaviour of the hyperbola. Indeed,

we can see that the standard form of a hyperbola is the difference of two squares. As such, it

can be factorised (this was something you may remember from high school):(
x

a
− y

b

)(
x

a
+

y

b

)
= 1.

In this factorised form, we can see the asymptote equations appearing. We can now justify why

the asymptotes are given by the formulae in Corollary 4.17 by considering two cases.

� If x, y are large with the same sign, x/a− y/b is small; we are ‘close to’ x/a− y/b = 0.

� If x, y are large with opposite signs, x/a+ y/b is small; we are ‘close to’ x/a+ y/b = 0.
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Proposition 4.19 (Parametric Equations of a Hyperbola) Let a, b > 0. A point P = (x, y)

lies on the hyperbola x2/a2 − y2/b2 = 1 if and only if one of the following is true:

(i) There exists t ∈ [−π, π] \ {π/2} such that P = (a sec t, b tan t).

(ii) There exists t ∈ R such that P = (a cosh t, b sinh t).

Proof : Omitted; we leave this as an exercise for later (once we have introduced the hyperbolic

functions cosh and sinh and the other trigonometric functions sec and cosec etc.).

Example 4.20 Suppose we wish to sketch the hyperbola described by 9x2+36x− 16y2+160y =

220. The goal is to again get squared x-terms and squared y-terms on one side, from which it will

be clear what the values of a and b are, precisely as is done when sketching an ellipse. Indeed,

we complete the square much the same as in Example 4.15:

9
(
(x+ 2)2 − 4

)
− 16

(
(y + 5)2 − 25

)
= 220 ⇔ (y − 5)2

32
− (x+ 2)2

42
= 1.

To ensure we get our standard form (which is x-squared terms minus y-squared terms), our new

coordinates are (X,Y ) = (y − 5, x+ 2). We proceed as in Example 4.15, transforming the foci,

directrices, etc. to determine how to sketch them.

� Its eccentricity is e =
√

1 + 32/42 = 5/3.

� Its centre is (X,Y ) = (0, 0), which is to say (x, y) = (−2, 5).

� Its vertices are (X,Y ) = (±3, 0), which is to say (x, y) = (−2, 5± 3).

� Its foci are (X,Y ) = (±5, 0), which is to say (x, y) = (−2, 5± 5).

� Its directrices are X = ±9/5, which is to say y = 5± 9/5.

� Its asymptotes are X/3± Y/4 = 0, which is to say 3x+ 4y− 14 = 0 and 3x− 4y+ 26 = 0.

Finally, note that the axes crossings are (0, 5±
√
45/2) and (10/3, 0) and (−22/3, 0).

Exercise 15 Actually sketch the hyperbola discussed in Example 4.20.

[Hint: You can approximate most things using that 1/3 ≈ 0.33 and 2/3 ≈ 0.67; the y-axis crossings are

approximately (0, 8.35) and (0, 1.65).]
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Note: There is a special case known as a rectangular hyperbola, that is where the values

a = b in the standard form of the hyperbola. It is so named because this guarantees that

the asymptotes are perpendicular (a fact we can see if we look at the equation of each

asymptote). Moreover, the eccentricity of a rectangular hyperbola e =
√
2.

Conic Summary

We now provide a helpful table which collects the key information about each conic. Following

this, we will look at how to classify conics in a relatively easy way. Note that in Examples 4.6,

4.15, 4.20, we were given a conic in a non-standard form but we were pre-told what conic it was.

In the ‘real-world’, we may not be so lucky. Thus, we want theory to tell us what conic section

we are working with. Before we get ahead of ourselves, here is the summary we promised.

Parabola Ellipse Hyperbola

Eccentricity Value e = 1 0 < e < 1 e > 1

Equation y2 = 4ax x2

a2
+ y2

b2
= 1 x2

a2
− y2

b2
= 1

Restrictions a ̸= 0 a > b > 0 a, b > 0

Centre — (0, 0) (0, 0)

Vertices (0, 0) (±a, 0) (±a, 0)

Foci (a, 0) (±ae, 0) (±ae, 0)

Directrices x = −a x = ±a
e x = ±a

e

Asymptotes — — x
a ± y

b = 0

Eccentricity Formula — e =
√
1− b2

a2
e =

√
1 + b2

a2

Table 1: A summary of the important properties of each conic.

Now, we move towards the classification of conics. To do this, we consider the so-called degree

of a curve in two variables, namely x and y. Of particular interest are degree two curves.

Example 4.21 A curve of degree one in two variables is a curve of the form ax+by+c = 0, where

a, b, c ∈ R such that a and b are not both zero. The degree can be thought of as the highest

power of either x or y present in the equation of the curve which does not have a coefficient of

zero (of course, ax+ by + c = 0 is the same as 0y5 + ax+ by + c = 0 but both have degree one).
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Note: In Remark 3.3, we noted a degenerate situation wherein we reduce to a degree zero

curve if a = 0 = b. This describes R2 when c = 0 and this describes ∅ when c ̸= 0.

We now prove a critical result which provides us with the classification theorem.

Proposition 4.22 Consider an arbitrary degree two curve in two variables of the form

ax2 + 2hxy + by2 + fx+ gy + c = 0.

If there is a rotation of the (x, y)-axes to the (X,Y )-axes such that the above becomes

AX2 + 2HXY +BY 2 + FX +GY + C = 0,

then the so-called discriminant remains unchanged, that is

AB −H2 = ab− h2.

Proof : Suppose we rotate the (x, y)-axes by angle α. Then, Proposition 3.23 implies that

X = x cos(α) + y sin(α),

Y = −x sin(α) + y cos(α)
⇔

x = X cos(α)− Y sin(α),

y = X sin(α) + Y cos(α).

Substituting these into the equation of the degree two curve in two variables gives us

a(X cosα− Y sinα)2 + 2h(X cosα− Y sinα)(X sinα+ Y cosα) + b(X sinα+ Y cosα)2

+f(X cosα− Y sinα) + g(X sinα+ Y cosα) + c = 0.

Despite how messy this is, we can ‘simplify’ so that it has the form

(a cos2 α+ 2h cosα sinα+ b sin2 α)X2 + 2
(
(b− a) cosα sinα+ h(cos2 α− sin2 α)

)
XY

+(a sin2 α− 2h cosα sinα+ b cos2 α)Y 2 + · · · = 0,

where we don’t even bother working out the extra terms (hence the + · · · ) because we already

have everything we need to compute the discriminant (note that the discriminant only regards

the stuff in front of x2, y2, xy and X2, Y 2, XY ). These are our new coefficients:

A = a cos2 α+ 2h cosα sinα+ b sin2 α,

B = a sin2 α− 2h cosα sinα+ b cos2 α,

H = (b− a) cosα sinα+ h(cos2 α− sin2 α).
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Consequently, we can see that

AB −H2 = (ab− h2)(sin4 α+ 2 sin2 α cos2 α+ cos4 α)

= (ab− h2)(sin2 α+ cos2 α)2

= ab− h2.

Exercise 16 Read through the above proof slowly and try to convince yourself of the final

calculation, namely the part where we show that AB −H2 = ab− h2.

Before pressing on to the classification, we need to note some of the degenerate conics, that is

where h = 0 in the degree two curve in two variables. Indeed, we have the following:

(i) x2 + y2 = 1.

(ii) x2 + y2 = 0.

(iii) x2 + y2 = −1.

(iv) x2 = 1.

(v) x2 = 0.

(vi) x2 = −1.

(vii) x2 − y2 = 0.

(Circle)

(Point)

(Empty Set)

(Two Parallel Lines)

(One Line)

(Empty Set)

(Two Perpendicular Lines)

If it isn’t clear, note that (i)–(iii) are ellipses, (iv)–(vi) are parabolas and (vii) is a hyperbola.

Proposition 4.23 Consider the curve ax2 + by2 + fx+ gy + c = 0 with a, b not both zero.

(i) If a, b have the same sign, then it is an ellipse.

(ii) If a, b have opposite signs, then it is a hyperbola.

(iii) If one of a, b is zero, then it is a parabola.

Proof : We first complete the square and get an alternate formulation of the curve as follows:

a(x+ p)2 + b(y + q)2 = r,

for p, q, r ∈ R. If we set X = x+ p and Y = y + q, the curve can be written as aX2 + bY 2 = r

in (X,Y )-coordinates , from which we can look at a number of cases.

(i) Let a, b have the same sign. If r < 0, this describes the empty set as in (iii) above. If r = 0,

this describes a single point as in (ii). If r > 0 and a = b, this describes a circle as in (i)
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above. In all other instances, it describes an ellipse.

(ii) Let a, b have opposite signs. If r = 0, this describes two perpendicular lines as in (vii)

above. In all other instances, it describes a hyperbola.

(iii) Let a = 0 and b ̸= 0. Here, we can complete the square in y and divide through by b.

Changing variables will give us Y 2 = pX + q for some p, q ∈ R. If p = 0, this describes the

empty set (for q < 0) as in (vi) above, one line (for q = 0) as in (v) above or two parallel

lines (for q > 0) as in (iv) above. In all other instances, it describes a parabola.

(iv) Let a ̸= 0 and b = 0. This is near-identical to the previous case.

Lemma 4.24 Consider the curve ax2 +2hxy+ by2 + fx+ gy+ c = 0 with a ̸= b and let α

be the angle defined as follows:

tan(2α) =
2h

a− b
.

Rotating the (x, y)-axes about the origin by angle α means the curve can be re-written as

AX2 +BY 2 + FX +GY + C = 0.

Proof : Proceeding similarly as the start of the proof of Proposition 4.22, we see that the second-

order terms (i.e. those involving x2, y2, xy) are given by

AX2 + 2
(
(b− a) cosα sinα+ h(cos2 α− sin2 α)

)
XY +BY 2,

where the precise formulae for A,B ∈ R isn’t important and the (X,Y )-axes are obtained by

rotating the (x, y)-axes about the origin by angle α. Now, the XY -term is eliminated when

2(b− a) cosα sinα+ 2h(cos2 α− sin2 α) = 0 ⇔ (b− a) sin(2α) + 2h cos(2α) = 0

⇔ (a− b) sin(2α) = 2h cos(2α)

⇔ sin(2α)/ cos(2α) = 2h/(a− b)

⇔ tan(2α) = 2h/(a− b),

by Proposition 2.42. Note that if cos(2α) = 0, then sin(2α) ̸= 0 but because we assumed that

a ̸= b, there are no solutions for cos(2α) = 0, that is we can assume that cos(2α) ̸= 0, allowing

us to divide through above.

Note: Should a = b, it is still possible to eliminate the mixed term by choosing α = π/4.
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Theorem 4.25 (Conic Classification Theorem) All curves ax2+2hxy+by2+fx+gy+c = 0

describe a (possibly degenerate) conic. Moreover, the discriminant classifies the conic:

(i) If ab− h2 > 0, the conic is an ellipse.

(ii) If ab− h2 = 0, the conic is a parabola.

(iii) If ab− h2 < 0, the conic is a hyperbola.

Proof : By Lemma 4.24, we can choose a rotation of the (x, y)-axes to eliminate the mixed term,

transforming the equation of the curve to AX2+BY 2+FX+GY +C = 0. If A = 0 = B, there

are no terms of degree two, so this cannot happen. As such, at least one of A,B is non-zero. By

Proposition 4.22, the discriminant is preserved, that is ab − h2 = AB. The result then follows

from Proposition 4.23.

Example 4.26 We classify the conic described by 13x2 + 6
√
3xy + 7y2 − 16 = 0. Indeed, we can

see that the discriminant of this conic is 13(7)− (3
√
3)2 = 64 > 0, so this is an ellipse.

Exercise 17 Following from Example 4.26, apply the rotation in Lemma 4.24 to transform

the ellipse to its standard form and use this to determine its eccentricity.

We finish the discussion on conics by stating, but not proving, a neat formula in terms of polar

coordinates. Although we haven’t used polar coordinates to describe too many curves, we will

see more examples in Chapter ??.

Proposition 4.27 Consider a conic with eccentricity e, defined by a directrix L and focus

F at a distance h away from L. Then, in terms of polar coordinates with the pole at F

and the polar axis perpendicular to L, the equation of the conic is r(1− e cos θ) = eh.
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5 Three-Dimensional Geometry

We are now ready to make the jump up another dimension. This section concerns the discussion

of lines and planes in three-dimensional space. We will also study vectors for the first time,

which will allow us to get more abstract in Chapter ?? and more practical in Chapter ??.

Note: For shorthand, we write R3 := R × R × R to mean the three-dimensional space.

This notation is consistent with the notation used for the two-dimensional plane.

Definition 5.1 The line through (x1, y1, z1) in the direction (u, v, w) is the subset

L = {(x, y, z) : (x, y, z) = (x1, y1, z1) + t(u, v, w) for t ∈ R}.

Remark 5.2 In Definition 5.1, the point (x1, y1, z1) is a fixed point and we think of (u, v, w) as

a vector, that is specifying a direction through which the line passes through the chosen fixed

point. Finally, we have the parameter t ∈ R, so this is really a parametrisation similar to what

we saw for the conics. Moreover, we may make the notation more compact in the following way:

X = (x, y, z), X1 = (x1, y1, z1), U = (u, v, w), so the line is X = X1 + tU.

Exercise 18 Write the equation y = mx+ c in a similar way to Definition 5.1.

[Hint: The line y = mx+ c describes the set of points (x, y) = (t,mt+ c) for t ∈ R.]

Lemma 5.3 Let X1 = (x1, y1, z1) and X2 = (x2, y2, z2) be distinct points in R3. Then, the

line through X1 and X2 is given by X = X1 + t(X2 −X1).

Proof : We know from Definition 5.1 that the line is given by X = X1 + sU for some parameter

s ∈ R and direction U . Since X2 lies on the line, there exists p ∈ R such that X2 = X1 + pU ,

which is to say that U = 1
p(X2 − X1). Consequently, if we reparametrise t = s/p, then the

equation of the line becomes precisely what is needed: X = X1 + t(X2 −X1).

Exercise 19 Find the equation of the line through (1, 1, 1) and (1,−1,−1). If possible,

reparametrise so that the direction part of the equation is as ‘simple’ as possible.
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Definition 5.4 A plane is a subset of the form

Π = {(x, y, z) : ax+ by + cz = d for a, b, c, d ∈ R with a, b, c not all zero}.

Note: There is no set notation for a plane, since P is often used for points. Some people

use π, but we tweak this notation and use Π to distinguish it from other objects later.

Example 5.5 Consider the points (0, 1, 1), (2, 0,−1), (1,−1, 1). How can we determine the equa-

tion of the plane containing these points? Essentially, it amounts to substituting these points

into the equation ax + by + cz = d and solving to find the values of a, b, c, d. If we substitute

these points in, we get the following equations:

b+ c = d,

2a− c = d,

a− b+ c = d.

Solving these simultaneously (if you can’t do this yet, it will be treated in detail in Chapter

??), we see that a = 4d/5, b = 2d/5, c = 3d/5. We can now choose any value for d and we

automatically get values for a, b, c. Of course, a sensible choice is d = 5. In this case, the

equation we get is

4x+ 2y + 3z = 5.

Exercise 20 Find the equation of the plane containing (1, 2, 3), (0, 1, 1), (2, 2, 0).

Of course, as in R2, we have a natural notion of distance in R3. Namely, the distance between

two points is the length of the line segment between them. However, we want to determine a

neat formula which gives us that distance in terms of the coordinates of each point.

Theorem 5.6 Let X1 = (x1, y1, z1) and X2 = (x2, y2, z2) be points in R3. Then,

dist(X1, X2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Note: We denote dist(X1, X2) = |X2 −X1| and we call dist(O,X1) = |X1| the magnitude.

Proof : Consider the case X1 = (0, 0, 0). Then, we must show that dist(O,X2) =
√

x22 + y22 + z22 .

We consider two additional points: X3 = (x2, y2, 0) and X4 = (0, y2, 0) as in Figure 25.
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Figure 25: The construction to compute dist(O,X2) in R3.

Since OX3X4 is a right-angled triangle, Pythagoras’ Theorem implies that |X3|2 = x22 + y22.

Since OX2X3 is a right-angled triangle, Pythagoras’ Theorem implies that |X2| = |X3|2 + z22 .

Substituting in the previous formula tells us that |X2| = x21 + y21 + z21 , as required. The general

case follows by translating X1 to the origin and back again.

Definition 5.7 Let X1 = (x1, y1, z1) and X2 = (x2, y2, z2). The dot product is

X1 ·X2 = x1x2 + y1y2 + z1z2.

Remark 5.8 The dot product is also known as the scalar product; this is because it produces a

so-called scalar, that is a number in this context. Hence, this is an example of a function which

takes two vectors and from them produces a number. To emphasise this fact, it may be called a

scalar-valued function.

Example 5.9 The dot product (1, 3,−4) · (−2, 0, 2) = 1(−2) + 3(0)− 4(2) = −2− 8 = −10.

Exercise 21 Compute the dot product (2,−5, 9) · (−1,−2, 3).

Lemma 5.10 Let X1, X2, X3 ∈ R3. We have the following properties of the dot product.

(i) X1 ·X1 = |X1|2.
(ii) (−X1) ·X2 = −(X1 ·X2) = X1 · (−X2).

(iii) X1 ·X2 = X2 ·X1.

(iv) (X1 +X2) ·X3 = (X1 ·X3) + (X2 ·X3).
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Sketch of Proof : (i) This is trivial; recall that the magnitude |X1| =
√
x21 + y21 + z21 by Theorem

5.6, so squaring it gives us precisely x21 + y21 + z21 , which is Definition 5.7 with X2 = X1.

(ii) Just apply the definition with X1 = (x1, y1, z1) and X2 = (x2, y2, z2).

(iii) This follows from the fact that multiplication of two real numbers is commutative, that is

for all a, b ∈ R, we have ab = ba.

(iv) Just apply the definition with X1 = (x1, y1, z1), X2 = (x2, y2, z2) and X3 = (x3, y3, z3).

Theorem 5.11 Let X1, X2 ∈ R3 be distinct from the origin and θ ∈ [0, π] be the angle

between the line segments OX1 and OX2. Then, the dot product satisfies

X1 ·X2 = |X1||X2| cos(θ).

Proof : If you are unfamiliar with vectors, skip this proof and return to it after Chapter ??. Let

a be the vector OX1 and b be the vector OX2. Then, the vector X1X2 is defined as c = b− a.

If a and b are parallel, meaning a = kb for some k ∈ R, then the result is immediate since θ = 0.

Otherwise, we turn to the set-up pictured in Figure 26.

O X1

X2

a

b c

θ

Figure 26: The vectors OX1 and OX2 in R3.

If we apply the Cosine Rule (Theorem 2.43) to triangle OX1X2, we see that

|a|2 + |b|2 − 2|a||b| cos(θ) = |c|2

= |b− a|2

= (b− a) · (b− a)

= b · (b− a)− a · (b− a)

= (b · b)− (b · a)− (a · b) + (a · a)

= |a|2 − 2(a · b) + |b|2,
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where we use the properties in Lemma 5.10. Consequently, we can rearrange this to get

a · b = |a||b| cos(θ).

All that remains is to note that we can alternatively denote a = X1 and b = X2.

Exercise 22 For each line of the Cosine Rule argument in the above proof, state which of

the properties (i) to (iv) in Lemma 5.10 is used to get each equality.

[Hint: The first equality is the Cosine Rule, the second equality is the fact c = b− a, and so forth.]

Note: The angle between vectors X1 and X2 is defined herein as the angle between OX1

and OX2, where we regard X1 and X2 as points at the end of the line segments.

Definition 5.12 Two vectors X1 and X2 are orthogonal if X1 ·X2 = 0.

Example 5.13 Suppose we wish to determine the vectors that are orthogonal to (0, 2,−1); this

amounts to solving (0, 2,−1) · (x, y, z) = 0, which is to say that 2y − z = 0. Hence, the set of

vectors orthogonal to the given one is (x, y, 2y) for all x, y ∈ R.

Definition 5.14 The angle between two lines, namely X = X1 + tU1 and X = X2 + tU2, in

R3 is defined as the angle between their directions U1 and U2.

Example 5.15 Consider the lines defined parametrically as follows:

(x, y, z) = (1 + 2t, 1− 2t, 1 + 4t) and (x, y, z) = (2− 2t, 3 + 3t, 7 + 7t).

The first job is to notice that their directions are (2,−2, 4) = (1,−1, 2), because we can divide

out any common multiples, and (−2, 3, 7), respectively. Applying Theorem 5.11 tells us that

(1,−1, 2) · (−2, 3, 7) =
∣∣(1,−1, 2)

∣∣∣∣(−2, 3, 7)
∣∣ cos(θ) ⇔ 9 =

√
372 cos(θ),

which we can rearrange to see that θ = cos−1(9/
√
372) ≈ 1.09 (in radians, as per usual).

Definition 5.16 Let A = (a1, a2, a3) and B = (b1, b2, b3). The cross product is

A×B = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Remark 5.17 The dot product is also known as the vector product; this is because it produces a
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vector. Hence, this is an example of a function which takes two vectors and from them produces

another vector. To emphasise this fact, it may be called a vector-valued function.

Note: We can ‘build’ R3 from the three vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in that any point

(x, y, z) ∈ R3 can be written as x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1). This is an example of a

set of so-called basis vectors, something we will see much more of later. This particular

set is called the standard basis of R3, and we denote these vectors by i, j,k. Using these,

we can re-write the cross product in terms of a matrix, specifically a determinant:∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣ .
If you haven’t seen matrices, don’t worry; just use the (nasty) formula in Definition 5.16.

Exercise 23 Compute the cross product of the vectors A = (0, 1, 1) and B = (2, 0,−1).

Lemma 5.18 Let A,B ∈ R3. We have the following properties of the dot product.

(i) A · (A×B) = 0.

(ii) B · (A×B) = 0.

(iii) A×B = −B ×A.

(iv) |A×B|2 = |A|2|B|2 − (A ·B)2.

Remark 5.19 Properties (i) and (ii) shows that the vector A×B is actually orthogonal to both

of A and B; this is the purpose of the cross product. Moreover, property (iii) is an example of

anti-commutativity and it implies that A × A = 0. In particular, we have A × kA = 0 for any

k ∈ R. Thus, the cross product of parallel vectors is zero.

Note: Orthogonal vectors are unique up to multiplication by a non-zero scalar. Indeed, if

A and B are non-parallel vectors and N is a non-zero vector orthogonal to both of them,

it follows that N = k(A×B) for some k ∈ R.

The purpose of this discussion is to now simplify our description of a plane and providing an

alternate (and easier) way to compute the equation of a plane.

Definition 5.20 Let Π be a plane. A normal vector to the plane is a non-zero vector N

such that N · (P1 − P2) = 0 for any two points P1, P2 ∈ Π.
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Lemma 5.21 The vector (a, b, c) is normal to the plane Π given by ax+ by + cz = d.

Proof : Let N = (a, b, c), which means the equation of the plane can be written N ·P = d where

P = (x, y, z) is a general point. If we have P1, P2 ∈ Π, this means that N ·P1 = d and N ·P2 = d.

Hence, subtracting the second from the first and using Lemma 5.10 gives N · (P1 − P2) = 0.

Theorem 5.22 Let P1, P2, P3 ∈ Π be distinct non-collinear points in a plane. Then, any

normal vector N to the plane is a non-zero multiple of (P1 − P2)× (P1 × P3).

Proof : Since the three points are distinct, we know that P1 − P2 and P1 − P3 are non-zero.

Since the points are non-collinear, the angle between these vectors is not 0 or π. Thus, we have

N · (P1 − P2) = 0 = N · (P1 − P3) per the proof of Lemma 5.21. Then, the fact that any normal

is a non-zero multiple of this is a consequence of the previous note.

As a corollary, we see that (a, b, c) is a non-zero multiple of (P1 − P2) × (P1 × P3). Because

multiplying the equation of a plane by a non-zero number does not change the plane it describes,

the equation of the plane can be written in the form

αx+ βy + γz = δ, where (P1 − P2)× (P1 × P3) = (α, β, γ).

Example 5.23 Consider the three points (1,−3, 4), (0, 5,−2), (1, 7, 2) ∈ Π in some plane Π and

a line L parametrised as (x, y, z) = (3, 1, 7) + t(1,−8, 5) for t ∈ R. We can find the equation of

the plane by the method described above. Moreover, we can deduce the angle between the plane

and the line.

(a) First, we find a normal vector N to the plane by computing the following cross product:

(
(1,−3, 4)− (0, 5,−2)

)
×
(
(1,−3, 4)− (1, 7, 2)

)
= (1,−8, 6)× (0,−10, 2) = (44,−2,−10).

Therefore, the equation of the plane is 44x− 2y − 10z = δ, where we can find the relevant δ by

substituting in a point we know is on the plane, e.g. (1,−3, 4). Indeed, we see that δ = 10. We

can divide through by two to get a slightly simpler final equation: 22x− y − 5z = 5.

(b) As for the angle between Π and L, this is obtained by finding the angle between the normal

to the plane and the line and subtracting this from π/2 (as explained in the next note). The

angle α ∈ (0, π/2) between N and L is

α = cos−1

(
(1,−8, 5) · (22,−1,−5)∣∣(1,−8, 5)

∣∣∣∣(22,−1,−5)
∣∣
)

= cos−1

(
5√

90
√
510

)
≈ 1.547.
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Hence, the angle between the plane and line is θ = π/2− α ≈ 0.02.

Note: If we think of a plane Π with normal N and a line L through the plane, we can find

the angle α ∈ (0, π/2) between the line and normal, but since the normal forms a right

angle with the plane, subtracting this from π/2 will give the angle θ ∈ (0, π/2) between

the line and plane. This is pictured in Figure 27 below.

N L

α
θ

Figure 27: Finding the angle between a line L and a plane Π.

Remark 5.24 One can define a plane parametrically. Indeed, if X1 is a point on the plane, then

the equation can be written X = X1 + tU + sV where U and V are non-parallel vectors and

s, t ∈ R are the parameters. The normal to this plane is the vector U × V .

Exercise 24 Consider A = (1, 1, 1), B = (1,−1,−1), C = (−1, 1,−1), D = (−1,−1, 1).

(i) State the equation of the line L through A and B.

[Note: This is your solution to Exercise 19.]

(ii) Find the equation of the plane Π containing B,C,D.

(iii) Determine the angle between Π and L.
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6 Polyhedra

We end the discussion on elementary geometry with an introduction to three-dimensional shapes

called polyhedra. First, we need to discuss what a polygon is (the two-dimensional analogue of

a polyhedron). In fact, Exercise 24 contained a hidden polyhedron called a regular tetrahedron

in that this is the shape with vertices ABCD.

Definition 6.1 A polygon is one closed path in the plane consisting of line segments (edges)

intersecting only at endpoints (vertices) with no successive line segments parallel.

Example 6.2 We can see polygons in Figure 28(a) and non-polygons in Figure 28(b).

(a) Examples of polygons. (b) Non-examples of polygons.

Figure 28: Two examples and two non-examples of polygons.

Exercise 25 Explain why each of the shapes in Figure 28(b) is not a polygon.

We have already met a number of polygons in our mathematical careers:

� A polygon with three sides is called a triangle.

� A polygon with four sides is called a quadrilateral.

� A polygon with five sides is called a pentagon.

� A polygon with six sides is called a hexagon.

Note: A polygon with n sides is henceforth simply referred to as an n-gon.

Definition 6.3 A polygon is called convex if the line segment between any two points on

the polygon’s edge lies in the interior of the polygon.

Example 6.4 Looking at Figure 28(a), the first polygon (a triangle) is convex, whereas the second

polygon (a hendecagon, or 11-gon) is non-convex. Note that there exists a convex 11-gon; we

are not saying that all 11-gons are non-convex, only the one pictured in the figure. Note that we

only show one line segment for the triangle but the point is it is true for any pair of points on

the edge.
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Figure 29: Convexity and non-convexity in Figure 28(a).

Remark 6.5 The idea of convexity can be extended to sets in general, as is discussed much later

in Chapter ??. The concept is the same, in that a set is called convex if a ‘line segment’ can be

drawn between elements of the set and the entire segment lies in the interior of the set. This

is actually an abstract idea but the picture to have in mind is that of the polygon situation in

Definition 6.3.

Theorem 6.6 The interior angles of a convex n-gon sum to (n− 2)π.

Proof : Choose a point X in the interior of the n-gon and draw line segments from X to each of

the n vertices of the polygon; this divides the shape into n triangles. Now, the sum of the angles

in the n triangles is therefore equal to the sum of the interior angles plus the sum of the angles

around X. We know from Theorem 2.26 that the sum of the angles in these triangles is nπ. We

also know that the sum of the angles around a point is 2π. Thus, if S is the sum of the interior

angles in the n-gon, we have

nπ = S + 2π ⇔ S = (n− 2)π.

Note: We can drop the ‘convex’ hypothesis in Theorem 6.6; it is true for any n-gon.

Definition 6.7 A polygon is called regular if all side lengths are equal and all interior angles

are equal.

Example 6.8 Both parts of Definition 6.7 are actually necessary.

(i) A polygon with equal side lengths but unequal interior angles: rhombus.

(ii) A polygon with equal interior angles but unequal side lengths: rectangle

Neither of these is a regular polygon (specifically a regular quadrilateral). The only such regular

quadrilateral is the intersection of both, that is the square.

Corollary 6.9 (of Theorem 6.6) One interior angle of a regular n-gon is (n− 2)π/n.
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Proof : By Theorem 6.6, the interior angles sum to (n − 2)π. Now, since the n-gon is regular,

each interior angle is equal and there are n of them. As such, the result is obvious.

Exercise 26 The exterior angle of a polygon is the angle between any edge and the line

extended from the next edge, as demonstrated for a regular hexagon in Figure 30 below.

Figure 30: One of the six exterior angles of a hexagon.

Determine the value of one exterior angle of a regular n-gon.

We are now ready to re-enter the three-dimensional world. We will be first bombarded with a

long definition covering the analogue of those made for polygons.

Definition 6.10 A polyhedron is a closed figure whose boundary consists of a finite number

of non-parallel polygonal faces which intersect only at edges or vertices.

� It is convex if the line segment between any two points on the polyhedron’s boundary

lies in the interior of the polyhedron.

� It is regular if all faces are congruent polygons and the same number of faces meet

at each vertex.

Definition 6.11 A polyhedron is a Platonic solid if it is both convex and regular.
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Theorem 6.12 There are exactly five Platonic solids, described in Table 2 with these:

� v is the total number of vertices.

� e is the total number of edges.

� f is the total number of faces.

� p is the number of edges on each face.

� q is the number of faces meeting each vertex.

v e f p q

Tetrahedron 4 6 4 3 3

Cube 8 12 6 4 3

Octahedron 6 12 8 3 4

Dodecahedron 20 30 12 5 3

Icosahedron 12 30 20 3 5

Table 2: A summary of the important properties of the Platonic solids.

Proof : Consider an arbitrary Platonic solid and suppose the faces are p-gons, that is there are p

edges on each face, where q of them meet at a given vertex. Since the Platonic solids are convex

(by definition), the angles at that vertex must sum to less than 2π. Well, there are q angles

around each vertex and each of them is (p− 2)π/p by Corollary 6.9. Therefore,(
p− 2

p
π

)
q < 2π

⇔ (p− 2)q < 2p

⇔ pq − 2q − 2p < 0

⇔ pq − 2q − 2p+ 4 < 4

⇔ (p− 2)(q − 2) < 4.

Therefore, we need only go through all the cases where this inequality is satisfied by p and q.

Because p, q ≥ 3 are positive integers, the only option is to have (p− 2)(q − 2) ∈ {1, 2, 3}.

(i) Suppose (p− 2)(q − 2) = 1. This occurs if and only if p = 3 and q = 3. Building a convex

polyhedron with three triangles meeting at a vertex will always result in a tetrahedron.

(ii) Suppose (p− 2)(q − 2) = 2. If p = 4 and q = 3, we will build a cube whereas if p = 3 and

q = 4, we can only construct an octahedron.
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(iii) Suppose (p − 2)(q − 2) = 3. If p = 5 and q = 3, we will build a dodecahedron whereas if

p = 3 and q = 5, this will result in an icosahedron.

Theorem 6.13 (Euler’s Formula) Consider a polyhedron which can be ‘deformed’ into a

sphere, such that it has v vertices, e edges and f faces. Then, v − e+ f = 2.

Proof : Deferred; see Chapter ?? for a more general result.

Note: Euler was one of the most influential mathematicians to exist. Along with a few

other greats, you will see his name come up time and time again. As such, we may as well

set the record straight on the pronunciation of his name. The uninitiated will claim it to

be yu-ler (so it rhymes with ‘ruler’) but in fact it is oi-ler (so it rhymes with ‘boiler’).

Example 6.14 We will now demonstrate how one can use Euler’s Formula to deduce that a given

shape can not be ‘deformed’ (whatever that means) into a sphere. Indeed, consider the toroid

in Figure 31 below.

Figure 31: The toroid.

Here, (v, e, f) = (16, 32, 16) and so v − e+ f = 0 ̸= 2; we cannot deform it into a sphere.

Remark 6.15 Really, Example 6.14 is our first look at a topological invariant. To set up Chapter

?? already, we mention now that there is a fundamental problem with deforming things that

have ‘holes’ (whatever they are). Just on a basic, intuitive, common-sense level, we can see that

the toroid in Figure 31 has a hole in the middle. When you think of a sphere, we know there is

no hole, so this suggests that these two spaces are indeed different. This is what Euler’s Formula

captures, and this is something that can be extended to arbitrary dimensions (i.e. we talk about

the Euler characteristic later, which is a generalisation of Euler’s Formula and can be thought

of as detecting ‘n-dimensional holes’, whatever they are).
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Exercise 27 A geodesic sphere is a polyhedron constructed from triangles, with varying

numbers meeting at each vertex and all vertices lying on the surface of a sphere. Consider

a geodesic sphere which contains 100 triangles.

(i) How many edges does it have?

(ii) How many vertices does it have?

And here ends our journey into elementary geometry. As I’m sure can be inferred from the

references in this chapter, the story continues. If you are interested in deforming shapes and

finding invariants, then Chapter ?? is the place to go. For a more rigorous understanding of the

geometry of curves and surfaces, we turn to Chapter ?? (but really we need Chapter ?? first, in

order to hit the ground running when looking at the more advanced study of geometry).
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7 Exercise Solutions

We provide detailed solutions to the exercises interwoven within each section of the module.

Hopefully you have given these questions a try whilst on your learning journey with the module.

But mathematics is difficult, so don’t feel disheartened if you had to look up an answer before

you knew where to begin (we have all done it)!

Solutions to Exercises in Section 2

Exercise 1 We discuss three points in Definition 2.6, but what can we say about the

(simpler) situation of only two points: are two points always collinear? Are they always

non-collinear? Give a one-sentence proof of the correct statement by using Axiom 2.3.

Solution : Two points are always collinear by the E1 axiom.

Exercise 2 Prove that triangle congruence is an equivalence relation.

Solution : A triangle ABC ≃ ABC via the bijection where A 7→ A, B 7→ B, C 7→ C, meaning

that triangle congruence is reflexive. Next, if ABC ≃ DEF , then there is a bijection f from

the vertices A,B,C to the vertices D,E, F where corresponding edges/angles are equal. Since

it is a bijection, it has an inverse f−1 (which is also a bijection) from the vertices D,E, F to the

vertices A,B,C where corresponding edges/angles are equal. Hence, DEF ≃ ABC, meaning

that triangle congruence is symmetric. Finally, if ABC ≃ DEF and DEF ≃ GHI, there are

bijections f from A,B,C toD,E, F and g fromD,E, F to G,H, I. But now, Corollary ?? implies

that g◦f from A,B,C to G,H, I is a bijection. Since each of these maps preserves corresponding

edges/angles, the composition does so. Hence, ABC ≃ GHI, meaning that triangle congruence

is transitive. Thus, it is an equivalence relation.

Exercise 3 We have seen that the conditions SSS, SAS and ASA guarantee congruence.

Can we conclude the same about ‘AAA’, that is does having all three angles in common

imply that two triangles are congruent? If so, prove it. If not, give a counterexample.

Solution : There are triangles which share the same angles but are not congruent, meaning that

AAA isn’t a valid congruence condition (at least in Euclidean geometry; we can discuss the

meaning of this later). Indeed, we can see an example of this in Figure 32 below.
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Figure 32: Non-congruent triangles with identical angles.

Exercise 4 State and prove the converse to Proposition 2.25.

[Hint: Consider the angles α1, δ1, δ2 and combine Proposition 2.21 with Corollary 2.24.]

Solution : The converse is this: “let L1 and L2 be distinct lines and K a transversal. If the

corresponding angles are equal, then L1 and L2 are parallel”. We will now prove this. By

assumption, we know that δ1 = δ2. But because angles on a straight line sum to π, we also

have that α1 + δ1 = π. As such, we know that α1 + δ2 = π. By Proposition 2.21, vertically-

opposite angles are equal, so γ1 = α1. Again using that angles on a line sum to π, we know that

α2 + δ2 = π, so this means that γ1 = α1 = α2. Hence, we have a pair of alternate angles (α2, γ1)

being equal. Corollary 2.24 therefore implies that L1 and L2 are parallel.

Exercise 5 State and prove the triangle version of Proposition 2.34.

[Hint: Use Proposition 2.34; draw a picture and tweak it to make it look like Figure 11.]

Solution : Let ABC and ABD be two triangles sharing the base AB, as in Figure 33.

A B

CDE F

Figure 33: The triangles ABC and ABD.

We can construct a picture resembling Figure 11 by drawling the line (segment) AE that is

parallel to BD and BF that is parallel to AC. In this way, we get two parallelograms ABDE
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and ABFC that share the same base and have the same height. By Proposition 2.34, they have

the same area. Because AD is a diagonal of the parallelogram ABDE, it bisects it (Corollary

2.33). The same holds for the diagonal BC in parallelogram ABFC; the bisected regions are

precisely the triangles ABC and ABD.

Exercise 6 A trapezium is a four-sided shape with one pair of parallel edges, one such

example is the shape DEFG in Figure 14, with parallel sides DE and FG. The area of

a trapezium is computed as follows:

(i) Add the lengths of the two parallel sides.

(ii) Multiply this by the (perpendicular) height.

(iii) Divide the result by two.

Now you are equipped with this, give an alternate proof of Pythagoras’ Theorem (the

forward direction) by computing the area of Figure 14, as we did for Figure 13 above.

c

c

D E

FG

H

a

a

b

b

Figure 7.14: The trapezium for an alternate proof of Pythagoras’ Theorem.

Solution : Following what the question says, the area of DEFG is computed directly as

1

2
(a+ b)(a+ b).

On the other hand, we can compute the areas of the constituent shapes, that is of triangles

DEH, FGH and EFG. We then equate to the above area and rearrange. Indeed, this method

yields the following expression for the area:

1

2
ab+

1

2
ab+

1

2
c2.
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As such, equating and multiplying everything by two gives us

(a+ b)(a+ b) = 2ab+ c2 ⇔ a2 + 2ab+ b2 = 2ab+ c2 ⇔ a2 + b2 = c2.

Exercise 7 Determine what happens in the degenerate case α = π/2.

[Hint: You can work out the value of cos
(
π/2

)
from the identity cos(π − θ) = − cos(θ).]

Solution : Per the hint, we know that cos
(
π − π/2

)
= − cos

(
π/2

)
, where we take θ = π/2. This

is equivalent to cos
(
π/2

)
= − cos

(
π/2

)
, which can mean only that cos

(
π/2

)
= 0. Therefore,

when α = π/2, the Cosine Rule reduces to Pythagoras’ Theorem.

Exercise 8 Demonstrate that the equation ax + by + c = 0 can describe both our usual

line y = mx + p and our vertical line x = k. In other words, choose values for a, b, c so

that the equation rearranges to get y = mx+p (and again so that it rearranges to x = k).

Solution : Suppose we have a line of the form y = mx+p. Then, we can take (a, b, c) = (m,−1, p)

in the general equation of the line. This will give us mx − y + p = 0, which is clearly a

rearrangement of the initial equation of the line.

As for a vertical line x = k, it is quite clear that (a, b, c) = (1, 0,−k) will do the trick; this gives

us x+ 0y − k = 0 which is, again, an obvious rearrangement of the initial line.

Exercise 9 Prove the distance between two points (x1, y1) and (x2, y2) in R2 is given by√
(x1 − x2)2 + (y1 − y2)2.

[Hint: This is an application of Pythagoras’ Theorem; draw a picture.]

Solution : We first draw a picture of two arbitrary points in R2, as in Figure 3.
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x

y

y1 − y2

x1 − x2

O

(x1, y1)

(x2, y2)

Figure 3: The distance between (x1, y1) and (x2, y2).

The distance between the points is the (solid) line segment in the above picture, which we can

complete to a right-angled triangle. Then, Pythagoras’ Theorem implies that the length of the

hypotenuse, that is the distance we want, is precisely
√

(x1 − x2)2 + (y1 − y2)2.

Exercise 10 Prove (or justify some of) Proposition 3.12.

[Hint: (iii) and (iv) follow from the old definitions; (v) and (vi) follow from Figure 17; (vii) is Pythagoras’

Theorem; (viii) is simply a compound-angle formula.]

Solution : Firstly, (i) and (ii) are clear from the circle interpretation; if we traverse an angle and

then add 2π, that is just doing one full rotation on top of it, so we reach the same point. This

is called the periodicity of sine and cosine.

As for (iii) and (iv), the hint tells us that these are a result of the old definitions. Another way to

see it is more geometric and uses Figure 17. Indeed, take the point (cos θ, sin θ). We first invert

θ to get −θ (i.e. we reflect across the x-axis) and then we add π to get π − θ (i.e. move around

by one half rotation). If we do that, we end up at a point with the same y-coordinate as we

started, meaning sin(π − θ) = sin(θ). However, the new point will have the same x-coordinate

except with a minus sign, which means cos(π − θ) = cos(θ).

We have already justified (v) and (vi) in the geometric interpretation of (iii) and (iv).

If we complete the point in Figure 17 to a right-angled triangle, we see that it has side lengths

1 (hypotenuse), cos θ (horizontal) and sin θ (vertical). Thus, Pythagoras’ Theorem implies the

result immediately: sin2(θ) + cos2(θ) = 1.

Finally, (viii) is a result of the compound-angle formula sin(x+ y) = sin(x) cos(y)+cos(x) sin(y)

from the note just before Theorem 3.6; we need only substitute x = θ, y = π/2 and use that

cos
(
π/2

)
= 0 (proved in Exercise 7) and sin

(
π/2

)
= 1.



64 Exercise Solutions

Exercise 11 Express the polar point (2, π) in Cartesian coordinates. Furthermore, express

the Cartesian point (0, 0) in polar coordinates. Is your answer unique?

Solution : The polar point (2, π) will have Cartesian coordinates x = 2 cos(π) and y = 2 sin(π),

that is (−2, 0). As for converting the Cartesian point (0, 0) into polar coordinates, note that

Lemma 3.21 does not provide us with the answer. However, we can think of the origin and the

pole as being the same point, so we know that it will have polar coordinates (0, θ) for any θ.

Consequently, it isn’t (even remotely) unique.

Note: Because (r, θ) measures how far we ‘stick out’ from the pole and how far around we

have rotated, we write the origin in polar coordinates as (0, θ) because we aren’t ‘sticking

out’ at all, and thus it doesn’t matter how much we rotate because we are already restricted

to being at the pole by r = 0.

Exercise 12 Actually sketch the parabola discussed in Example 4.6.

[Hint: Although we didn’t do so in the above example, you should also label on where the parabola

intercepts the y-axis, that is substitute in x = 0 and solve.]

Solution : We first determine the axes intercepts. Indeed, the x-intercept occurs when y = 0.

Substituting this into the original equation of the parabola gives us

02 − 6(0) + 3x = 10 ⇔ x =
10

3
.

As for the y-intercept, this occurs when x = 0. Substituting this gives us

y2 − 6y + 3(0) = 10 ⇔ y2 − 6y − 10 = 0 ⇔ y = 3±
√
19.

We have everything needed to draw a sufficient sketch of the parabola, done in Figure 4.
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x

y

x = −85/12

(10/3, 0)

(0, 3 +
√
19)

(0, 3−
√
19)

(19/3, 3)(67/12, 3)

Figure 4: The parabola given by y2 − 6y + 3x = 10.

Exercise 13 Carefully read through each line of algebra in the above proof and make sure

you can justify what is being done at each stage to get to the next line. If you find it easy,

it is good practice; if you find it difficult, it is even better practice.

Solution : Here is how we pass between the implications in the proof of Corollary 4.10:

(i) Line 1 to Line 2: Multiply by 1− e2.

(ii) Line 2 to Line 3: Expand the brackets.

(iii) Line 3 to Line 4: Add e2x2 and subtract a2e2 on both sides.

(iv) Line 4 to Line 5: Subtract 2aex from both sides.

(v) Line 5 to Line 6: Factorise both sides in the x-variable.

(vi) Line 6 to Line 7: Take the square root of both sides.

Note: Sometimes in a proof, something non-obvious will occur such as (iv) above: it

seems almost random to subtract 2aex from both sides, but this is needed to make the

factorisation in (v) work. This is the only reason such a random operation is carried out.
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Exercise 14 Actually sketch the ellipse discussed in Example 4.15.

[Hint: We approximate these in the (x, y)-plane: the foci are (6.65,−1) and (1.35,−1); the directrices

are x = 10.05 and x = −2.05; the x-axis crossings are (7.77, 0) and (0.23, 0).]

Solution : Again, we need to compute the intercepts of the ellipse with each axis. As in the

solution to Exercise 12, we substitute x = 0 to determine the y-axis intercepts:

16y2 + 32y + 16 = 0 ⇔ y2 + 2y + 1 = 0 ⇔ y = −1.

Similarly, we substitute y = 0 to determine the x-axis intercepts:

9x2 − 72x+ 16 = 0 ⇔ x = 4± 8
√
2

3
.

We have everything needed to draw a sufficient sketch of the ellipse, done in Figure 5.

x

y

x = 4 + 16/
√
7x = 4− 16/

√
7

(4 +
√
7,−1)(4−

√
7,−1)

(4,−1)
(0,−1)

(4− 8
√
2/3, 0) (4 + 8

√
2/3, 0)

Figure 5: The ellipse given by 9x2 − 72x+ 16y2 + 32y + 16 = 0.

Exercise 15 Actually sketch the hyperbola discussed in Example 4.20.

[Hint: You can approximate most things using that 1/3 ≈ 0.33 and 2/3 ≈ 0.67; the y-axis crossings are

approximately (0, 8.35) and (0, 1.65).]

Solution : Firstly, because we chose coordinates where X is in terms of y and Y is in terms of

X, this amounts to a sort-of swapping of x and y in the picture of the standard hyperbola, that

is Figure 24. Thus, where in the usual case our curves are vertical, this example will be of a

hyperbola with horizontal curves. This is clear in Figure 6 below.
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As usual, we will now determine the y-intercepts by substituting in x = 0:

−16y2 + 160y = 220 ⇔ 4y2 − 40y + 55 = 0 ⇔ y = 5± 3
√
5

2
.

As for the x-intercepts, we substitute in y = 0:

9x2 + 36x = 220 ⇔ (3x− 10)(3x+ 22) = 0 ⇔ x =
10

3
and x = −22

3
.

We have everything needed to draw a sufficient sketch of the hyperbola, done in Figure 6.

x

y

3x+ 4y − 14 = 03x− 4y + 26 = 0

(−2, 8)

(−2, 2)

(10/3, 0)(−22/3, 0)
(0, 5− 3

√
5/2)

(0, 5 + 3
√
5/2)

Figure 6: The hyperbola given by 9x2 + 36x− 16y2 + 160y = 220.

Exercise 16 Read through the above proof slowly and try to convince yourself of the final

calculation, namely the part where we show that AB −H2 = ab− h2.

Solution : Simply substitute these formulae for A,B,H, given in the proof of Proposition 4.22:

A = a cos2 α+ 2h cosα sinα+ b sin2 α,

B = a sin2 α− 2h cosα sinα+ b cos2 α,

H = (b− a) cosα sinα+ h(cos2 α− sin2 α).

Although it is messy algebra, we can see that

AB = (a cos2 α+ 2h cosα sinα+ b sin2 α)(a sin2 α− 2h cosα sinα+ b cos2 α)



68 Exercise Solutions

= a2 cos2 α sin2 α− 2ah cos3 α sinα+ ab cos4 α

+ 2ah cosα sin3 α− 4h2 cos2 α sin2 α+ 2bh cos3 α sinα

+ ab sin4 α− 2bh cosα sin3 α+ b2 cos2 α sin2 α

and that

H2 =
(
(b− a) cosα sinα+ h(cos2 α− sin2 α)

)2
= b2 cos2 α sin2 α− 2ab cos2 α sin2 α+ a2 cos2 α sin2 α

+ 2bh cos3 α sinα− 2ah cos3 α sinα− 2bh cosα sin3 α+ 2ah cosα sin3 α

+ h2 cos4 α− 2h2 cos2 α sin2 α+ h2 sin4 α.

Therefore,

AB −H2 = ab cos4 α− h2 cos4 α+ ab sin4 α− h2 sin4 α− 2h2 cos2 α sin2 α+ 2ab cos2 α sin2 α

= (ab− h2)(sin4 α+ 2 sin2 α cos2 α+ cos4 α),

as was written in the proof of Proposition 4.22. Then, factorising and using sin2 α+ cos2 α = 1

completes the calculation (they were the final two lines in the aforementioned proof).

Exercise 17 Following from Example 4.26, apply the rotation in Lemma 4.24 to transform

the ellipse to its standard form and use this to determine its eccentricity.

Solution : Recall that Example 4.26 gives us the conic described by 13x2+6
√
3xy+7y2−16 = 0.

Now, Lemma 4.24 states that a rotation by the angle α defined by tan(2α) = 2h/(a− b), where

a, b, h are coefficients of the conic equation, will transform the curve by removing the term with

mixed variables. Indeed then, our curve is such that

a = 13, b = 7, h = 3
√
3.

Thus, we rotate by the angle α satisfying tan(2α) =
√
3, that is α = π/6. Looking at the

second line of the proof of Proposition 4.22, a direct consequence of Proposition 3.23 is that

x = X cos(α)−Y sin(α) and y = X sin(α)+Y cos(α), where (X,Y )-coordinates are obtained by

rotating the (x, y)-coordinates by α. In particular, our situation is this:

x =

√
3

2
X − 1

2
Y, y =

1

2
X +

√
3

2
Y.
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Consequently, our equation becomes the following:

13

(√
3

2
X − 1

2
Y

)2

+ 6
√
3

(√
3

2
X − 1

2
Y

)(
1

2
X +

√
3

2
Y

)
+ 7

(
1

2
X +

√
3

2
Y

)2

− 16 = 0.

If we expand out the brackets and simplify, we will get this form for the conic:

X2

12
+

Y 2

22
= 1,

which we recognise as an ellipse (although it isn’t in standard form because a = 1 and b = 2 but

a ̸> b). Nevertheless, if we want to be totally proper, we can make a simple second change of

coordinates (X ,Y) = (Y,X) which essentially just ‘swaps’ the two letters around:

X 2

22
+

Y2

12
= 1.

Hence, the eccentricity is

e =

√
1− 12

22
=

√
3

2
.

Exercise 18 Write the equation y = mx+ c in a similar way to Definition 5.1.

[Hint: The line y = mx+ c describes the set of points (x, y) = (t,mt+ c) for t ∈ R.]

Solution : Per the hint, we need only separate (t,mt + c) into a sum of two pairs where one of

them involves t and the other does not. Indeed, we can do this and it gives us

L = {(x, y) : (x, y) = t(1,m) + (0, c) for t ∈ R}.

Exercise 19 Find the equation of the line through (1, 1, 1) and (1,−1,−1). If possible,

reparametrise so that the direction part of the equation is as ‘simple’ as possible.

Solution : By Lemma 5.3, the line through these points is (x, y, z) = (1, 1, 1)+t(0,−2,−2). Thus,

we can reparametrise by choosing s = −2t to get the ‘simpler’ equation as follows:

(x, y, z) = (1, 1, 1) + s(0, 1, 1), s ∈ R.

Exercise 20 Find the equation of the plane containing (1, 2, 3), (0, 1, 1), (2, 2, 0).
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Solution : We proceed as in Example 5.5. Indeed, we have to solve these simultaneously:

a+ 2b+ 3c = d,

b+ c = d,

2a+ 2b = d.

We see that b = d − c by the second equation. Hence, substituting this into the third equation

gives 2a−2c = −d, which means that 2a = 2c−d. If we double the first equation and substitute

this in, we then know that

2a+ 4b+ 6c = 2d ⇔ (2c− d) + 4(d− c) + 6c = 2d ⇔ 2c− d+ 4d− 4c+ 6c = 2d.

This gives us c = −d/4. Consequently, we know that b = 5d/4 by the second equation and

a = −3d/4 by the third equation. Thus, a sensible choice is d = −4 which means the equation

of the plane will be 3x− 5y + z = −4.

Exercise 21 Compute the dot product (2,−5, 9) · (−1,−2, 3).

Solution : Well, (2,−5, 9) · (−1,−2, 3) = 2(−1)− 5(−2) + 9(3) = −2 + 10 + 27 = 35.

Exercise 22 For each line of the Cosine Rule argument in the above proof, state which of

the properties (i) to (iv) in Lemma 5.10 is used to get each equality.

[Hint: The first equality is the Cosine Rule, the second equality is the fact c = b− a, and so forth.]

Solution : Following the hint, these are how we get the equalities in the proof of Theorem 5.11:

� The third equality is property (i) from Lemma 5.10.

� The fourth equality is property (iv) from Lemma 5.10.

� The fifth equality is properties (ii) and (iv) from Lemma 5.10.

� The sixth equality is properties (i) and (ii) from Lemma 5.10.

Exercise 23 Compute the cross product of the vectors A = (0, 1, 1) and B = (2, 0,−1).

Solution : Per Definition 5.16, the cross product is

A×B =
(
1(−1)− 1(0), 1(2)− 0(−1), 0(0)− 1(2)

)
= (−1, 2, 2).
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Note: Per the note after Definition 5.16 in the notes, we can compute the cross product

as the following determinant (where i, j,k are the standard basis vectors of R3):∣∣∣∣∣∣∣∣
i j k

0 1 1

2 0 −1

∣∣∣∣∣∣∣∣ = i
(
1(−1)− 1(0)

)
− j
(
0(−1)− 1(2)

)
+ k

(
0(0)− 1(2)

)
,

which is just (−1, 0, 0) + (0, 2, 0) + (0, 0, 2) = (−1, 2, 2), agreeing with the above method.

As previously said, if matrices are new/you don’t like them yet, ignore this note for now!

Exercise 24 Consider A = (1, 1, 1), B = (1,−1,−1), C = (−1, 1,−1), D = (−1,−1, 1).

(i) State the equation of the line L through A and B.

[Note: This is your solution to Exercise 19.]

(ii) Find the equation of the plane Π containing B,C,D.

(iii) Determine the angle between Π and L.

Solution : (i) The equation of the line L is this: (x, y, z) = (1, 1, 1) + s(0, 1, 1), for s ∈ R.

(ii) First, we will find a normal vector N to the plane Π by computing the cross product of the

vectors B −C = (2,−2, 0) and B −D = (2, 0,−2). Indeed, we can use the definition to see that

(B − C)× (B −D) = (4, 4, 4).

Therefore, the vector N = (1, 1, 1) will suffice as our normal to the plane. As such, the equation

of the plane is x+ y + z = d, where we can find d by substituting in one of our points B,C,D.

Indeed, we easily see that Π is defined by x+ y + z = 3.

(iii) Similar to Example 5.23, the angle between Π and L is given by subtracting π/2 from the

following angle, which is the angle α ∈ (0, π/2) between N and L:

α = cos−1

(
(0, 1, 1) · (1, 1, 1)∣∣(0, 1, 1)∣∣∣∣(1, 1, 1)∣∣

)
= cos−1

(
2√
2
√
3

)
≈ 0.6155.

Therefore, the angle between the plane and line is θ = π/2− α ≈ 0.9553.

Exercise 25 Explain why each of the shapes in Figure 28(b) is not a polygon.

Solution : The left shape in Figure 28(b) is two closed paths, not one. The right shape in Figure

28(b) contains an intersection not at an endpoint.
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Exercise 26 The exterior angle of a polygon is the angle between any edge and the line

extended from the next edge, as demonstrated for a regular hexagon in Figure 30 below.

Figure 7.30: One of the six exterior angles of a hexagon.

Determine the value of one exterior angle of a regular n-gon.

Solution : The sum of one interior and one exterior angle is π, since angles on a line sum to π.

Therefore, given that a regular n-gon has interior angles each of size (n − 2)π/n by Corollary

6.9, it follows that the value of one exterior angle of said polygon is

π − n− 2

n
π =

2π

n
.

Exercise 27 A geodesic sphere is a polyhedron constructed from triangles, with varying

numbers meeting at each vertex and all vertices lying on the surface of a sphere. Consider

a geodesic sphere which contains 100 triangles.

(i) How many edges does it have?

(ii) How many vertices does it have?

Solution : The number of edges is half the total number of sides, meaning there are 150 edges.

Furthermore, we know there are 100 faces, by definition, so Euler’s Formula implies that there

are 2 + E − F = 52 vertices.
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