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Introduction

Hello and welcome to the module on Introduction to Calculus! What follows is a module intended

to support the reader in learning this fascinating topic. The Prison Mathematics Project (PMP)

realises that you may be practising mathematics in an environment that is highly restrictive, so

this text can both be used independently and does not require a calculator.

What is Calculus?

Calculus is a hugely important area of mathematics and the natural sciences. It was originally

named “the calculus of infinitesimals”, which is why some people refer to it as the calculus even

today. There are two main subjects within this area: differential calculus and integral calculus.

The two main pioneers of the subject are Isaac Newton and Gottfried Wilhelm Leibniz; they

independently developed the subject throughout the 1600s. In particular, Newton was the first

to apply calculus to physics and Leibniz formalised the topic and developed much of the notation

we now use. Many more mathematicians have contributed to this rich topic.

Learning in this Module

The best way to learn mathematics is to do mathematics. Indeed, education isn’t something that

happens more than it is something we should all participate in. You will find various exercise

questions and worked examples in these notes so that you may try to solve problems and deepen

your understanding of this topic. Although the aim is for everything to only require the content

of this module, you are encouraged to use any other sources you have at your disposal.
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1 Preliminaries



4 Basic Differentiation

2 Basic Differentiation

We begin with an elementary introduction to differentiation, using the notion of a function,

introduced in Section ??, and develop some intuition on limits. We hold off to Chapter ?? before

introducing a rigorous definition of a limit of a function.

Limits and Continuity

Definition 2.1 Let D ⊆ R be some subset and f : D → R be a function (recall we call D

the domain of f). Suppose that f(x) is defined for all x ∈ D that is “arbitrarily close” to

some number a ∈ R; we do not require that f(a) is defined. If f is “arbitrarily close” to

some number L ∈ R whilst x is “sufficiently close” but not equal to a, then we call L the

limit of f as x approaches a. We denote this by limx→a f(x) = L.

Note: In Definition 2.1, we used the following phrases: “arbitrarily close” and “sufficiently

close”. These are not at all mathematically rigorous; this is what we rectify in Chapter

??.

Example 2.2 Consider the function f : [0, 2] → R defined by

f(x) =

3 if x = 1

−5 if x ̸= 1
.

It is clear that limx→1 f(x) = −5. Indeed, according to Definition 2.1, we consider x ∈ [0, 2]

close to the value 1 but not equal to it, that is x ̸= 1. But then f takes the value −5 for every

x ̸= 1, so this must be the limit.

Remark 2.3 The point of Example 2.2 is to show there is no expectation that limx→a f(x) = f(a)

in general. In fact, we shall soon define a continuous function to be precisely a function with the

special property that this equation is always true (Chapter ?? uses this as a definition; Chapter

?? will prove this from a more rigorous setup).

Definition 2.4 Let f : D → R be a function defined on a subset D ⊆ R.
(i) A right-hand limit is a limit where x → a from above, denoted limx→a+ f(x).

(ii) A left-hand limit is a limit where x → a from below, denoted limx→a− f(x).
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Proposition 2.5 For f : D → R a function defined on D ⊆ R, limx→a f(x) exists if and

only if the right-hand limit and left-hand limit exist where limx→a+ f(x) = limx→a− f(x).

Proof : Deferred.

Exercise 1 Determine if limx→5 f(x) exists by considering the right-hand and left-hand

limits of f(x), where the function in question f : R → R is defined by

f(x) =

−1 if x ≤ 5

2 if x > 5
.

Theorem 2.6 (Algebra of Limits) Suppose f and g are functions where limx→a f(x) = L

and limx→a g(x) = K exist. Then, the following are true:

(i) limx→a

(
f(x) + g(x)

)
= L+K.

(ii) limx→a

(
f(x)g(x)

)
= LK.

(iii) limx→a

(
f(x)/g(x)

)
= L/K if g(x) ̸= 0 for any x and K ̸= 0.

(iv) limx→a λf(x) = λL, for any λ ∈ R.
(v) limx→a f(x)

n = Ln for any n ∈ N.

Proof : Deferred.

Example 2.7 Let’s use the Algebra of Limits to compute the following:

lim
x→3

f(x), f(x) =
x2 − 9

x− 3

First, the numerator is the difference of two squares, so it can be factorised as (x − 3)(x + 3).

Thankfully, we see that f(x) = x + 3; if we didn’t realise this, on may begin to panic that the

denominator was approaching zero. Therefore, using the Algebra of Limits(i), with g(x) ≡ 3

being the constant function, we see that limx→3 f(x) = 3 + 3 = 6.
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Exercise 2 Compute the following by appealing to the Algebra of Limits:

(i) lim
x→2

x2 + 3x− 4

x3 − 7
.

(ii) lim
x→6

(x+ 2)4.

(iii) lim
x→ 3

4

(x− 3
4)
sin(x) + tanh

(
x2 + 3

)
cos(6)

x−8 + ex tan(x) − 2
.

Definition 2.8 Let D ⊆ R be some subset and f : D → R be a function. If f grows

“arbitrarily large” as x → a ∈ R, then we say one of the following two things:

(i) f diverges to positive infinity if it grows large in the positive direction.

(ii) f diverges to negative infinity if it grows large in the negative direction.

These are denoted limx→a f(x) = ∞ and limx→a f(x) = −∞, respectively. In either of

these cases, we call the line x = a a vertical asymptote of f .

Example 2.9 We will determine the vertical asymptotes of the function f : R → R given by

f(x) =
x− 4

x2 + 5x
.

Indeed, we see that f diverges to infinity as the denominator grows “arbitrarily small”, so the

vertical asymptotes occur when x2 + 5x = 0, that is at x = 0 and x = −5.

Definition 2.10 Let f : D → R be a function defined on a subset D ⊆ R. We say that f

is continuous at a ∈ D if limx→a f(x) = f(a). We then call f continuous if it is continuous

at every a ∈ D.

Example 2.11 Here are some examples of continuous functions.

(i) Every polynomial function is continuous.

(ii) Every rational function is continuous everywhere where the denominator is non-zero.

(iii) The function f : R \ {0} → R given by f(x) = 1/x is continuous.

Note: One of the most important features of continuous functions is the intermediate

value property; this essentially says that any continuous function defined on an interval

can be drawn without taking your pen off the page.
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Differentiable Functions

Definition 2.12 Let f : D → R be a function defined on a subset D ⊆ R. We say that f

is differentiable at a ∈ D if the following limit exists:

f ′(a) := lim
x→a

f(x)− f(a)

x− a
.

We then call f differentiable if the derivative exists at every a ∈ D.

Note: Equivalently, we can define the limit in Definition 2.12 to be

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

This is more practical to use when proving things in this particular section.

Example 2.13 We will prove that the function g : R → R given by g(x) = x is differentiable. To

that end, we will use the above note; let a ∈ R. Consequently,

lim
h→0

g(a+ h)− g(a)

h
= lim

h→0

a+ h− a

h

= lim
h→0

h

h

= lim
h→0

1

= 1.

We have proven that g′(a) = 1 for any a ∈ R.

Exercise 3 Prove (using the note) that h : R → R given by h(x) = x2 is differentiable.

[Hint: For any a ∈ R, we should see that h′(a) = 2a.]

Proposition 2.14 If a function f is differentiable at a, then is is continuous at a.

Proof : We prove this rigorously later. However, we can give a proof now using (the non-rigorous)

Definitions 2.10 and 2.12. By assumption, we know that the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a
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exists. But now, we can write f(x) somewhat perversely as

f(x) =
f(x)− f(a)

x− a
(x− a) + f(a),

for all x ̸= a. Taking the limit as x → a, we see that

lim
x→a

f(x) = lim
x→a

(
f(x)− f(a)

x− a
(x− a) + f(a)

)
= lim

x→a

f(x)− f(a)

x− a
lim
x→a

(x− a) + lim
x→a

f(a)

= f ′(a) · 0 + f(a)

= f(a),

by the Algebra of Limits. Hence, since limx→a f(x) = f(a), we see that f is continuous at a.

Note: The converse to Proposition 2.14 is not true; continuity does not imply differen-

tiability. For example, the function f(x) =
√
x2 is continuous (everywhere, specifically at

zero) but it is not differentiable at zero.

Exercise 4 Prove that f : R → R given by f(x) = k for some fixed k ∈ R is differentiable.

We will now state a useful result which tells us how to apply differentiation to numerous differen-

tiable functions that are collected together, either by addition or multiplication or composition.

Proposition 2.15 Let f and g be differentiable functions. Then, the following are true:

(i) (f + g)′(x) = f ′(x) + g′(x). (Sum Rule)

(ii) (fg)′(x) = f ′(x)g(x) + f(x)g′(x). (Product Rule)

(iii) (f/g)′(x) =
(
f ′(x)g(x)− f(x)g′(x)

)
/g(x)2 if g(x) ̸= 0. (Quotient Rule)

(iv) (f ◦ g)′(x) = f ′(g(x))g′(x). (Chain Rule)

Proof : Deferred.

Remark 2.16 We can prove the Quotient Rule using the Product Rule and Chain Rule. Indeed,

we can write f/g = f · 1/g, so the problem of differentiating the left-hand side is reduced to

differentiating the product of the functions f and 1/g. Finally, we can differentiate 1/g by

treating it as the composition of 1/x and g; this is where the Chain Rule applies.
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Exercise 5 Prove that f : R → R where f(x) = xn is differentiable. You may use this:

(a+ b)n =
n∑

k=0

n!

k!(n− k)!
akbn−k,

where n! := n(n− 1)(n− 2) · · · 1 is the product of positive integers from 1 to n.

[Hint: Proceed similarly to Exercise 3 and expand f(x+ h) using the above formula.]

Example 2.17 Here, we will use the rules of differentiation to compute some derivatives.

(i) Any polynomial is differentiable. Indeed, from Exercise 13, we know that powers of x are

differentiable. Thus, the Sum Rule implies that sums of powers of x are differentiable; this

is all a polynomial is. Explicitly, for a polynomial p(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0,

we know that its derivative is p′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

(ii) Consider f(x) = x sin(x). Using sin′(x) = cos(x) proven in Lemma 2.31 later, we can apply

the Product Rule to conclude that f ′(x) = 1 · sin(x) + x · cos(x) = sin(x) + x cos(x).

(iii) Consider g(x) = cos
(
x2
)
. Using cos′(x) = − sin(x) proven in Lemma 2.31 later, we can use

the Chain Rule and Exercise 3 to conclude that g′(x) = cos′(x2) · 2x = −2x sin
(
x2
)
.

Exercise 6 Find the derivative of h(x) = x2 cos
(
x3
)
using Proposition 2.15.

All derivatives discussed thus far are so-called first-order derivatives, that is where we differen-

tiate the function once. However, some classes of function (e.g. polynomials) are such that their

derivatives are again differentiable, so we can take the second, third, fourth, etc. derivative.

Definition 2.18 Let f be a function where taking higher derivatives makes sense.

(i) The second derivative of f is the function f ′′(x) = (f ′)′(x).

(ii) The third derivative of f is the function f ′′′(x) = (f ′′)′(x).

(iii) The kth derivative of f is the function f (k)(x) = (f (k−1))′(x).

Remark 2.19 Let D ⊆ R and f : D → R be differentiable (and continuous, by Proposition 2.14).

We call f continuously differentiable if its derivative f ′ : D → R is continuous. Moreover, if the

first k derivatives f ′, f ′′, ..., f (k) all exist and are continuous, we say that it is k-times continuously

differentiable. Alternatively, we call f of class Ck(D). If all derivatives exist, that is for every

k ∈ Z+, then we call it smooth, or of class C∞(D). We revisit this in Section ??.
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Note: The continuous functions on the domain D ⊆ R are said to be of class C0(D); this

is such that it agrees with the notation introduced in Remark 2.19 above.

Exercise 7 Give one example of each of the following:

(i) A smooth function.

(ii) A class C0 function which is not of class C1 (or higher).

(iii) A class C1 function which is not of class C2 (or higher).

Definition 2.20 Let D ⊆ R and f : D → R be differentiable. We call a a stationary point

if f ′(a) = 0. For a stationary point a ∈ D, we call it a local maximum if f ′′(a) < 0 and a

local minimum if f ′′(a) > 0.

Example 2.21 Suppose we have the function f(x) = 3x2 − 2x + 74. We can determine the

stationary points by appealing to Example 2.17(i). Indeed, f ′(x) = 6x − 2, from which we see

that f ′(x) = 0 if and only if x = 1/3. We have therefore found the only stationary point. To

classify it, notice that f ′′(x) = 6 > 0, in particular f ′′(1/3) > 0, meaning it is a local minimum.

Note: There is a subtlety; if a is a stationary point of the function f and we see that

f ′′(a) = 0, then we will have to do further work to determine what type of stationary

point it is. Indeed, if f ′′(a) = 0 but f ′′′(a) ̸= 0, then it is called an inflexion point.

We now state some theorems of differential calculus; we prove some using the non-rigorous

definitions developed thus far but the true proofs will be left until Sections ?? and ??.

Theorem 2.22 (Extreme Value Theorem) Let f : [a, b] → R be continuous. Then, there

exist c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Proof : Deferred.

Remark 2.23 In words, Theorem 2.22 says that any continuous function whose domain is an

interval, which we call [a, b], is bounded and will always attain its maximum and minimum

values. Indeed, we see it is bounded because the image f(x) lies between the numbers f(c) – the

lower bound – and f(d) – the upper bound. Moreover, it attains these bounds (the inequality

in the statement is not strict) because the maximum and minimum can be outputted from the

function by choosing suitable input, which we call d and c respectively.
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Theorem 2.24 (Rolle’s Theorem) Let f : [a, b] → R be continuous and differentiable on the

open interval (a, b) with f(a) = f(b). Then, there exists c ∈ (a, b) such that f ′(c) = 0.

Proof : Because f is continuous on a closed interval, the Extreme Value Theorem applies, that

is it attains its maximum and minimum values. There are now two cases to consider.

(i) If f attains its maximum and minimum values on the endpoints of [a, b], that is f(a) and

f(b), because we assume these are equal, it follows that f ′(x) = 0 for every x ∈ (a, b).

Thus, choosing any element of this open interval will give us the necessary c.

(ii) If f does not attain its maximum and minimum values on the endpoints of [a, b], then they

will each occur at some interior point, that is in the open interval (a, b). Thus, f will have

a so-called local maximum or local minimum at some c ∈ (a, b), wherein f ′(c) = 0.

Example 2.25 Consider the function f : [−r, r] → R given by f(x) =
√
r2 − x2, where r > 0.

The graph of this function is the upper semi-circle centred at the origin. This is continuous on

[−r, r] and differentiable on (−r, r); it is important this is open (excluding the endpoints) because

it turns out f is not differentiable at x = ±r. By Rolle’s Theorem, there is a point c ∈ (−r, r)

such that f ′(c) = 0. In fact, it turns out that c = 0.

Exercise 8 Explain if Rolle’s Theorem applies to f : [−2, 2] → R given by f(x) =
√
x2.

[Hint: Look at the note just above Theorem 2.22.]

Theorem 2.26 (Mean Value Theorem) Let f : [a, b] → R be continuous and differentiable

on the open interval (a, b). Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof : Define the function g : [a, b] → R by the formula

g(x) = f(x)− f(b)− f(a)

b− a
(x− a).

We see that g is also continuous on [a, b] and differentiable on (a, b). Moreover, g(a) = f(a) and

g(b) = f(a), so the values of g at the endpoints coincides. Thus, we can apply Rolle’s Theorem

to g, giving the existence of c ∈ (a, b) such that g′(c) = 0. However, we see that

g′(x) = f ′(x)− f(b)− f(a)

b− a
.
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Because g′(c) = 0, substituting x = c into the above will yield

0 = f ′(c)− f(b)− f(a)

b− a
,

which rearranges to give the result.

Remark 2.27 Consider the graph y = f(x) of a differentiable function f : R → R. For each pair

of numbers (a, b) where a < b, we can construct the chord (line segment) between the points

(a, f(a)) and (b, f(b)). The Mean Value Theorem asserts that at some point (c, f(c)) on the

graph between the previous two points, the tangent line to the graph is parallel to the chord.

This is made clear by Figure 1 below.

x

f(x)

a b
c

Figure 1: The geometric interpretation of the Mean Value Theorem.

Note: We used Rolle’s Theorem to prove the Mean Value Theorem. More surprisingly,

it turns out that Rolle’s Theorem is a special case of the Mean Value Theorem, since if

f(a) = f(b), the fraction in Theorem 2.26 is zero.

Exercise 9 Use the Mean Value Theorem to prove the following: if I ⊆ R is an interval

and f : I → R is differentiable with f ′(x) = 0 for all x ∈ [a, b], then f is constant.

[Hint: Assume that f is not constant, so there exist a, b ∈ I where a < b and f(a) ̸= f(b).]

Notation 2.28 Throughout, we used Lagrange’s notation, that is f ′, to denote a derivative. It is

also useful to use Leibniz’s notation, that is df
dx , which is the derivative of f with respect to x.

Trigonometric Functions

We will now look at some special functions, starting with trigonometric functions, and get to

grips with differentiating them. We recall that these functions were first introduced in Section
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??. In particular, the note before Theorem ?? gives the so-called compound-angle formulae and

Proposition ?? lists a number of properties of the functions sin(x) and cos(x).

Note: We do not introduce the trigonometric functions rigorously here; this requires power

series from Chapter ??. However, we don’t need to (for the non-rigorous setting here).

Recall from the aforementioned places that sin : R → [−1, 1] and cos : R → [−1, 1] satisfy these:

� sin2(x) + cos2(x) = 1.

� sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

� cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

Also, we define tan : R \ {π/2 + nπ} → R for all n ∈ Z by the formula tan(x) = sin(x)/ cos(x).

Definition 2.29 We define the reciprocal functions cosecant, secant and cotangent as

cosec(x) =
1

sin(x)
, sec(x) =

1

cos(x)
, cot(x) =

1

tan(x)
.

Exercise 10 Prove the identities 1 + cot2(x) = cosec2(x) and tan2(x) + 1 = sec2(x).

[Hint: Use the first identity sin2(x) + cos2(x) = 1 written above.]

Remark 2.30 We know also that sin and cos are 2π-periodic, meaning that sin(x+ 2π) = sin(x)

and cos(x+ 2π) = cos(x); this is Proposition ??(i) and (ii). Additionally, tan is π-periodic. It

turns out that by restricting the domains as follows, we can define inverse functions:

sin : [−π
2 ,

π
2 ] → [−1, 1],

cos : [0, π] → [−1, 1],

tan : [−π
2 ,

π
2 ] → [−1, 1].

The inverses are arcsine, arccosine and arctangent, denoted sin−1, cos−1, tan−1 respectively.

Note: Be very aware to not get the inverse functions mixed up with the reciprocal func-

tions.
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Lemma 2.31 The derivatives of the trigonometric functions are as follows:

(i) sin′(x) = cos(x).

(ii) cos′(x) = − sin(x).

(iii) tan′(x) = sec2(x).

Proof : (i) We will use the definition (the note) directly, with a compound-angle formula. Indeed,

sin′(x) = lim
h→0

sin(x+ h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

sin(x)(cosh− 1) + cos(x) sin(h)

h

= sin(x) · 0 + cos(x) · 1

= cos(x).

(ii) Similarly, we can prove the second claim directly. Indeed,

cos′(x) = lim
h→0

cos(x+ h)− cos(x)

h

= lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)

h

= lim
h→0

cos(x)(cosh− 1)− sin(x) sin(h)

h

= cos(x) · 0− sin(x) · 1

= − sin(x).

(iii) We can apply the Quotient Rule to the definition of the tangent function, that is

tan′(x) =

(
sin

cos

)′
(x) =

sin′(x) cos(x)− sin(x) cos′(x)

cos2(x)
=

sin2(x) + cos2(x)

cos2(x)
= sec2(x),

using (i) and (ii) just proved along with the identity sin2(x) + cos2(x) = 1.

Lemma 2.32 Let f : [−1, 1] → [−π
2 ,

π
2 ] be given by f(x) = sin−1(x). Then, f ′(x) = 1√

1−x2
.

Proof : Applying sin to both sides of f(x) = sin−1(x) gives us sin
(
f(x)

)
= x. Using Lemma

2.31(i) with the Chain Rule, differentiating both sides gives us f ′(x) cos
(
f(x)

)
= 1. Using the
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fact that sin2(θ) + cos2(θ) = 1 rearranges to cos(θ) =
√

1− sin2(θ). Using θ = f(x), we obtain

cos
(
f(x)

)
=

√
1− sin2(f(x)) =

√
1− x2.

Rearranging the equation we got after differentiating and combining everything together, we get

f ′(x) =
1√

1− x2
.

Exercise 11 Compute the derivatives of the following functions:

(i) f(x) = cos−1(x).

(ii) f(x) = tan−1(x).

[Hint: Again, proceed as in the proof of Lemma 2.32, but use tan2(θ)+1 = sec2(θ).]

Exponential Function and Natural Logarithm

We will now motivate the introduction of another very useful function called the exponential

function. Indeed, suppose we have a function f : R → R that satisfies f ′(x) = f(x) – this means

that it is its own derivative. If we impose the condition that f(0) = 1, there is a unique solution

to this differential equation; this unique solution is the exponential function exp(x).

Note: There are numerous ways to define the exponential function, and here are two more:

exp(x) =

∞∑
n=0

xn

n!
and exp(x) = lim

n→∞

(
1 +

x

n

)n

.

Remark 2.33 We now list some properties of the exponential function (without proof):

exp(x+ y) = exp(x) exp(y), lim
x→∞

exp(x) = ∞, lim
x→−∞

exp(x) = 0.

Moreover, we notice that exp : R → (0,∞), so its range isn’t the whole of the real numbers; it is

a strictly positive function. It is also strictly increasing, i.e. x > y implies that exp(x) > exp(y).

Definition 2.34 The natural logarithm is the function log : (0,∞) → R defined as the

inverse of the exponential, that is log(x) = exp−1(x).
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Lemma 2.35 The natural logarithm satisfies the following properties:

log(xy) = log(x) + log(y), lim
x→∞

log(x) = ∞, lim
x→0

log(x) = −∞.

Sketch of Proof : These follow from Remark 2.33, using the fact that log = exp−1.

Using Remark 2.33 inductively, we see that exp(x1 + x2 + · · ·+ xn) = exp(x1) exp(x2) · · · exp(xn).
Therefore, if we set each xi = log(x), then we conclude that

exp
(
n log(x)

)
= exp

(
log(x)

)n
= xn,

so we can use the fact that exp and log are inverses to define integer powers of real numbers.

Actually, this generalises to arbitrary powers of real numbers.

Definition 2.36 Let x > 0 and k ∈ R. The kth power of x is given by xk := exp
(
k log(x)

)
.

Exercise 12 Using Definition 2.36, justify why log
(
ab
)
= b log(a) for all a > 0 and b ∈ R.

Corollary 2.37 Let x, y > 0. The natural logarithm satisfies log
(
x/y

)
= log(x)− log(y).

Proof : Write x/y = xy−1 and use the first property in Lemma 2.35 along with Exercise 12.

Definition 2.38 The number e ∈ R is defined as e := exp(1).

Proposition 2.39 We have that log(e) = 1. Moreover, it follows that exp(x) = ex .

Proof : By definition, we know that log(e) = log
(
exp(1)

)
= 1, since log and exp are inverses of

each other. Hence, using the formula in Definition 2.36, we have ex = exp
(
x log(e)

)
= exp(x).

Proposition 2.40 We have the following derivatives: exp′(x) = exp(x) and log′(x) = 1/x.

Proof : (i) The fact that exp′(x) = exp(x) is a consequence of our definition of the exponential

function; it was defined by it satisfying f ′(x) = f(x).
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(ii) Let f(x) = log(x), which means that exp
(
f(x)

)
= x. Differentiating both sides using the

Chain Rule gives f ′(x) exp′(f(x)) = 1. As we established in (i), exp′(f(x)) = exp
(
f(x)

)
= x, so

the expression rearranges to f ′(x) = 1/x.

Exercise 13 Reprove that the function f(x) = xn is differentiable with f ′(x) = nxn−1 by

using Definition 2.36 to write f(x) = exp
(
n log(x)

)
and applying the Chain Rule.

Hyperbolic Functions

Another group of functions behave similarly to the trigonometric functions; they are defined in

terms of the exponential function. They are so named because one way to define them is in terms

of a hyperbola (as opposed to a circle, which is how we can describe sin, cos, tan, and so forth).

Definition 2.41 The hyperbolic functions are defined as follows:

sinh : R → R, sinh(x) =
ex − e−x

2
,

cosh : R → [1,∞), cosh(x) =
ex + e−x

2
,

tanh : R → (−1, 1), tanh(x) =
e2x − 1

e2x + 1
.

Note: These are pronounced shine, cosh and than (but some prefer sin-sh and tan-sh).

Lemma 2.42 For all x ∈ R, we have tanh(x) = sinh(x)/ cosh(x).

Proof : See Exercise 14.

Exercise 14 Prove Lemma 2.42.

[Hint: Use Definition 2.41 to re-write the right-hand side of the equation.]

In analogy to the trigonometric functions, there are a number of identities that the hyperbolic

functions satisfy. Specifically, the three we next list are very similar to those for sin and cos

written just before Definition 2.29.
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Proposition 2.43 The functions sinh and cosh satisfy the following for all x ∈ R:
(i) cosh2(x)− sinh2(x) = 1.

(ii) sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y).

(iii) cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).

Sketch of Proof : One way to prove this is to again use Definition 2.41 directly.

Definition 2.44 The reciprocal hyperbolic functions are defined as follows:

cosech : R \ {0} → R \ {0}, cosech(x) =
1

sinh(x)
,

sech : R → (0, 1], sech(x) =
1

cosh(x)
,

coth : R \ {0} → R \ [−1, 1], coth(x) =
1

tanh(x)
.

Exercise 15 Prove the identities 1− tanh2(x) = sech2(x) and coth2(x)− 1 = cosech2(x).

[Hint: Use the first identity cosh2(x)− sinh2(x) = 1 in Proposition 2.43.]

Remark 2.45 This is in clear analogy to Definition 2.29. Moreover, we again need to be careful

not to mix up inverse functions and reciprocal functions. In the spirit of Remark 2.30, we can

take inverses; we first restrict cosh : [0,∞) → [1,∞). The inverses are sinh−1, cosh−1 and tanh−1.

Lemma 2.46 The inverse hyperbolic functions are given by the following:

sinh−1 : R → R, sinh−1(x) = log
(
x+

√
x2 − 1

)
,

cosh−1 : [0,∞) → [1,∞), cosh−1(x) = log
(
x+

√
x2 + 1

)
,

tanh−1 : (−1, 1) → R, tanh−1(x) =
1

2
log

(
1 + x

1− x

)
.

Proof : (cosh−1) Suppose f(x) = cosh−1(x), which means x = cosh
(
f(x)

)
. By definition then,

x =
ef(x) + e−f(x)

2
.

We can rearrange this to get e2f(x) − 2xef(x) +1 = 0. This is just a quadratic in ef(x) (by which

we mean if we replace all instances of ef(x) with another letter, y say, then we get y2−2xy+1 = 0
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which is clearly quadratic). Therefore, we can use the quadratic formula to solve this:

ef(x) = x±
√
x2 − 1 ⇔ f(x) = log

(
x±

√
x2 − 1

)
.

We can use Exercise 12 along with the fact that x−
√
x2 − 1 = (x+

√
x2 − 1)−1 to conclude that

log
(
x−

√
x2 − 1

)
= − log

(
x+

√
x2 − 1

)
. Since the domain of cosh is non-negative, it follows

that the range of f(x) = cosh−1(x) is non-negative, so we need only take the positive sign.

Hence,

cosh−1(x) = log
(
x+

√
x2 − 1

)
.

(sinh−1) Proceed similarly to cosh−1.

(tanh−1) Proceed similarly to cosh−1 and sinh−1.

Exercise 16 Prove the formula for sinh−1 given in Lemma 2.46.

We will now talk about the derivatives of the hyperbolic functions. Fortunately, a lot of the

heavy-lifting was done when we discussed the exponential function and natural logarithm. We

essentially get the next result for free (if we use the Product, Quotient and Chain Rules).

Theorem 2.47 The hyperbolic functions are differentiable with these derivatives:

(i) sinh′(x) = cosh′(x).

(ii) cosh′(x) = sinh(x).

(iii) tanh′(x) = sech2(x).

(iv) cosech′(x) = − cosech(x) coth(x).

(v) sech′(x) = − sech(x) tanh(x).

(vi) coth′(x) = − cosech2(x).

Sketch of Proof : Use the rules in Proposition 2.15 with Definitions 2.41 and 2.44.

Proposition 2.48 The inverse hyperbolic functions are differentiable with these derivatives:

(i) (sinh−1)′(x) = 1√
x2+1

.

(ii) (cosh−1)′(x) = 1√
x2−1

.

(iii) (tanh−1)′(x) = 1
1−x2 .

Proof : (cosh−1) Let f(x) = cosh−1(x), meaning that x = cosh
(
f(x)

)
. Using Proposition 2.43(i),

sinh
(
f(x)

)
=

√
cosh2(f(x))− 1 =

√
x2 − 1.
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The Chain Rule alongside Theorem 2.47 implies the result, namely

1 = f ′(x) sinh
(
f(x)

)
⇒ f ′(x) =

1

sinh
(
f(x)

) =
1√

x2 − 1
.

(sinh−1) Proceed similarly to cosh−1; see Exercise 17.

(tanh−1) Proceed similarly to cosh−1 and sinh−1, using 1− tanh2(x) = sech2(x).

Exercise 17 Prove the formula for (sinh−1)′ given in Proposition 2.48.

It may be that a function isn’t given explicitly in terms of a single variable. For example, the

equation x2 + y2 = 1 describes the unit circle. We can think of this as the equation f(x, y) = 0,

where f(x, y) = x2 + y2 − 1 is a function of two variables.

Definition 2.49 An implicit equation is an equation of the form f(x1, ..., xn) = 0, where f

is a function of many variables (in this case, there are n variables).

Note: It is sometimes possible to rearrange an implicit equation to give it explicitly. For

example, the equation x − y + 3 = 0 can be rearranged to y = x + 3; we can then think

of y = y(x), that is as a function of x, and proceed with differentiating (here, y′(x) = 1).

However, this is not guaranteed to happen for an implicit equation in general.

Example 2.50 Consider the implicit equation x2 − xy + y3 = 7. We will think of y = y(x) as a

function of x; in this way, we will be able to get an expression for y′(x) by applying the Product

and Chain Rules. Indeed, differentiating this equation gives us

2x− y − xy′ + 3y2y′ = 0.

Since we think of y as a function of x, we need to remember to differentiate it too. This becomes

(3y2 − x)y′ = y − 2x ⇒ y′ =
y − 2x

3y2 − x
.

Method – Implicit Differentiation: Consider an implicit equation in x and y = y(x).

(i) Differentiate the equation as usual, but each time you differentiate y, put y′ after it.

(ii) Rearrange for y′.
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Exercise 18 Compute the implicit derivative of the equation sin(y) + x2y3 − cos(x) = 2y.

Remark 2.51 In fact, implicit differentiation can be made rigorous by the much more general

Implicit Function Theorem (see Chapters ?? and ??). However, the situation here includes only

two variables (which we label x and y), so we can state this special case of the theorem once we

have introduced partial derivatives in Section 4.

Let f : R → R be a function, and suppose we wish to approximate the value of f at a point

near a ∈ R. A first crude estimate would be p0(x) := f(a). However, if we know that f is

differentiable at a, then we can make the so-called straight line estimate, that is

p1(x) := f(a) + f ′(a)(x− a).

We can continue this process, defining pn(x) for every n ∈ Z+; this motivates the next definition.

Definition 2.52 Let f : R → R be smooth and a ∈ R. The Taylor series of f about a is

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

The nth Taylor approximant of f at a is what we get by stopping the sum at k = n, i.e.

pn(x) :=

n∑
k=0

f (k)(a)

k!
(x− a)k.

The moral of the story is this: given a one-time differentiable function f : I → R defined on an

open interval I ⊆ R and some number a ∈ I, then we can apply the Mean Value Theorem to

find some c ∈ I between a and any x ∈ I \ {a} to conclude the following:

f(x) = f(a) + f ′(c)(x− a) = p0(x) + [error term in f ′].

There is a generalisation: any n-times differentiable function defined on an open interval can be

approximated by a polynomial of degree n−1 plus an error in terms of the nth derivative. Thus,

f(x) = pn−1(x) + [error term in f (n)].

Note: This result is Taylor’s Theorem, stated and proved a bit later.
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Example 2.53 We construct the Taylor series of f(x) = x3 about a = 2. By definition, this is

f(x) = f(2) + f ′(2)(x− 2) +
1

2!
f ′′(2)(x− 2)2 +

1

3!
f ′′′(2)(x− 2)3 + 0 + 0 + · · ·

= 23 + 3(22)(x− 2) +
1

2
6(2)(x− 2)2 +

1

6
6(x− 2)3

= 8 + 12(x− 2) + 6(x− 2)3 + (x− 2)3.

Note that f (4)(x) = 0, so the fourth and all higher derivatives are zero

Exercise 19 Construct the second Taylor approximant of f(x) =
√
x at a = 4.

Definition 2.54 The Maclaurin series of f is the Taylor series of f about a = 0.

Remark 2.55 It is debatable whether or not that Taylor series about 0 deserve their own name

and definition. However, Taylor series in general (about zero or otherwise) are very important.

We will see this time and again in Chapters ?? and ??.

Proposition 2.56 We have the following Maclaurin series:

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1,

cos(x) =

∞∑
k=0

(−1)k

(2k)!
x2k,

exp(x) =

∞∑
k=0

1

k!
xk,

log(1 + x) =

∞∑
k=1

(−1)k+1

k!
xk.
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3 Basic Integration

We now look at the other side of a coin: is it possible to determine f(x) if we only know f ′(x)?

The answer is a sort-of yes. As usual, we discuss functions of one variable throughout.

Integrals and Anti-Derivatives

Definition 3.1 Let f : [a, b] → R be continuous. The integral of f over the interval [a, b] is

the limit of the area of rectangles that split the interval [a, b] and fit just under/over the

graph of the function f . We denote this area by the following expression:∫ b

a
f(x) dx ∈ R.

Remark 3.2 Consider a one-dimensional metal bar which is of length L. Hence, a position on the

bar is just a point x ∈ [0, L]. Suppose that ρ(x) is the density of the bar at x; this may change

depending where on the bar we are. If we split the bar into n pieces of lengths δx1, ..., δxn, where

each piece has a mass of m1, ...,mn, then we see for each k = 1, ..., n that

ρmin
k δxk ≤ mk ≤ ρmax

k δxk,

were ρmax
k and ρmin

k are the maximum and minimum densities of the kth piece, respectively (recall

that density = mass∇ · volume but we are only in one-dimension so volume is just length).

Therefore, if the bar has mass M in total, we conclude that

n∑
k=1

ρmin
k δxk ≤ M ≤

n∑
k=1

ρmax
k δxk.

As we split the bar into more and more pieces, and we shrink the sizes of each of those pieces

(meaning n → ∞ and δxk → 0 for each k), then it follows that

lim ρmin
k = ρ = lim ρmax

k .

Thus, we get an expression of the mass (which we define as the integral):

M = lim
δxk→0

 n∑
k=1

ρmax
k δxk

 =:

∫ L

0
ρ(x) dx.

Example 3.3 We can run through the construction in Remark 3.2 in the specific case of ρ(x) = x.

Indeed, if the metal bar is of length L and it is split into n equal pieces, then we know that the
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length of the kth piece is L/n (no matter what k is). In this case,

ρmin
k =

(k − 1)L

n
and ρmax

k =
kL

n
.

As such, the so-called lower and upper sums are as follows:

n∑
k=1

(k − 1)L

n

L

n
=

L2

n2

n2 − n

2
and

n∑
k=1

kL

n

L

n
=

L2

n2

n2 + n

2
.

Above, we used the well-known formula for the sum of the first n positive integers (Exercise ??).

As n → ∞, it is easy to see that both the lower and upper sums tend to L2/2. Thus, we have∫ L

0
ρ(x) dx =

∫ L

0
x dx =

L2

2
.

Exercise 20 Repeat Example 3.3 except with ρ(x) = x2.

[Hint: When dealing with the lower and upper sums, use the formula in Example ??.]

Note: For an integral
∫ b
a f(x) dx, we call f the integrand and dx the differential of x. We

would then call f integrable on [a, b]. Moreover, a and b are the limits of integration.

We now state some useful integration properties. Again, the closest we have to motivating the

notion of an integral is Remark 3.2, which is not rigorous. Thus, we do not give proper details

of the proofs of these results until Section ??.

Definition 3.4 Let f be integrable on [a, b]. Then, we define the following relation:∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

Proposition 3.5 Let f and g be integrable over some intervals. The following are true:

(i)
∫ b
a αf(x) + βg(x) dx = α

∫ b
a f(x) dx+ β

∫ b
a g(x) dx for any α, β ∈ R.

(ii)
∫ c
a f(x) dx =

∫ b
a f(x) dx+

∫ c
b f(x) dx.

Remark 3.6 The space of integrable functions on the interval [a, b], denoted L([a, b]), is actually

an R-vector space in the sense of Definition ??. This is clear from Proposition 3.5(i). The

assignment f 7→
∫ b
a f(x) dx is a linear map L([a, b]) → R from this space to its ground field.
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Definition 3.7 Let f : [a, b] → R be continuous. A primitive (or anti-derivative) of f is a

function F : [a, b] → R such that F ′(x) = f(x) for all x ∈ (a, b).

Lemma 3.8 Let f : [a, b] → R be continuous and F1, F2 be primitives of f . Then, F2 − F1

is constant.

Proof : Simply apply the derivative to the difference F2(x)− F1(x). Indeed, we get

(F2 − F1)
′(x) = F ′

2(x)− F ′
1(x) = f(x)− f(x) = 0,

by the definition of a primitive. But a zero derivative implies it is constant, by Exercise 9.

Lemma 3.9 Let f : [a, b] → R be continuous. Then, there exists a primitive F of f .

Sketch of Proof : Define I : [a, b] → R by I(t) =
∫ t
a f(x) dx; notice I(t+ h)− I(t) =

∫ t+h
t f(x) dx

by using Proposition 3.5(ii). For ‘small’ values of h, we have I(t+ h)− I(t) ≈ f(t)h. Thus, the

definition of the derivative implies

I ′(t) = lim
h→0

I(t+ h)− I(t)

h
= lim

h→0

f(t)h

h
= f(t).

Hence, I is a primitive of f .

Theorem 3.10 (Fundamental Theorem of Calculus) Let f : [a, b] → R be continuous and

F be a primitive of f . Then, the integral of f is the difference of the primitive at the

endpoints, namely ∫ b

a
f(x) dx = F (b)− F (a).

Sketch of Proof : Let F : [a, b] → R be any primitive of f . Using I from Lemma 3.9, we know

that I − F is constant via Lemma 3.8. In particular, it is true that I(a) − F (a) = I(b) − F (b).

Rearranging this gives the result.

Note: This is really the Fundamental Theorem of Calculus Version 2 (see Theorem ??).

The existence of I is the Fundamental Theorem of Calculus Version 1 (see Theorem ??).

Exercise 21 Compute
∫ 3
−1 x

2 dx by using the Fundamental Theorem of Calculus.
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Thus far, the integrals we have discussed have been so-called definite integrals; this is where

we integrate over an interval and the result is a number. However, we will develop further the

notion of an indefinite integral and formulate a means to compute an anti-derivative of a given

function (but, of course, there is no ‘one-size-fits-all’ method).

Note: We denote ‘the’ indefinite integral of f as
∫
f(x) dx. It is unique up to an additive

constant, meaning we have
∫
f(x) dx = F (x) + c for any primitive F of f and any c ∈ R.

Example 3.11 Let f(x) = xk+1 for some k ∈ R \ {−1}. Recall its derivative from Exercises 5

and 13, namely f ′(x) = (k + 1)xk. By the Fundamental Theorem of Calculus, this tells us

xk+1 =

∫
(k + 1)xk dx ⇒

∫
xk dx =

1

k + 1
xk+1.

Exercise 22 Find the indefinite integral of the function f(x) = x−1.

[Hint: Use Proposition 2.40 and consider separately the cases x > 0 and x < 0.]

Lemma 3.12 We have the following indefinite integrals:

(i)
∫
sin(x) dx = − cos(x).

(ii)
∫
cos(x) dx = sin(x).

(iii)
∫
exp(x) dx = exp(x).

Integration by Substitution

We will now discuss the method of finding an indefinite integral by substitution. There are really

two methods which feed into this, one being an explicit substitution and the other being a more

relaxed inspection approach.

Method – Integration by Inspection: Let f be a continuous function with primitive F

and g be any function with continuous derivative (i.e. class C1). The Chain Rule implies

F ′(g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x),

by definition of F being a primitive of f . The Fundamental Theorem of Calculus implies

F (g(x)) =

∫
F ′(g(x)) dx =

∫
f(g(x))g′(x) dx.

Example 3.13 Here are some examples of performing integration by inspection:
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(i)
∫
cos(kx) dx = 1

k sin(kx) for any k ∈ R.

(ii)
∫
exp(kx) dx = 1

k exp(kx) for any k ∈ R.

(iii)
∫

1
ax+b = 1

a log
(
|ax+ b|

)
, per Exercise 22.

Note: Let’s give a commentary of Example 3.13(i) to get a better idea of what we are

doing: the point is to notice that cos will integrate to sin. We then understand that the

‘inside’ will remain unchanged, so we expect the integral to include sin(kx). However, if

we differentiate this using the Chain Rule, we actually get k cos(kx). Obviously, this is

close to cos(kx) so we need only divide through by the factor we have at the start.

Exercise 23 Calculate the indefinite integral
∫
sin(−ωx) where ω ∈ R.

Method – Integration by Explicit Substitution: Let f(x) be a continuous function with

primitive F . The idea is to express the variable x as a function of a new variable u, that

is x = x(u), such that the function x(u) is either strictly increasing or strictly decreasing.

If x ∈ [a, b] is the original domain, then this corresponds to the new domain u ∈ [α, β].

Now, the inverse of x(u) is u(x), that is u as a function of x. The Chain Rule implies

F ′(x(u)) = F ′(x(u))x′(u) = f(x(u))x′(u),

by definition of F being a primitive of f . The Fundamental Theorem of Calculus implies∫ β

α
F ′(x(u)) du =

∫ β

α
f(x(u))x′(u) du = F (x(β))−F (x(α)) = F (b)−F (a) =

∫ b

a
f(x) dx.

The idea is that it is easy to compute the integral on the far left, rather than the far right.

Lemma 3.14 We have the following substitutions for the integrand:

(i) If it includes
√

c2 − (ax+ b)2, use the substitution ax+ b = c sin(u).

(ii) If it includes
√
(ax+ b)2 + c2, use the substitution ax+ b = c sinh(u).

(iii) If it includes
√
(ax+ b)2 − c2, use the substitution ax+ b = c cosh(u).

Example 3.15 We will use Method ?? to compute the following indefinite integral:∫
x√

4x2 + 12x+ 13
dx.

The denominator can be re-written
√
4x2 + 12x+ 13 =

√
(2x+ 3)2 + 22, so Lemma 3.14 suggests
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we use the substitution 2x+ 3 = 2 sinh(u), which is to say that x = x(u) = sinh(u)− 3/2. From

this, we can see that its derivative x′(u) = cosh(u) by using Theorem 2.47. We can now replace

x in the integrand with its expression in terms of u, but we must then multiply everything by

x′(u); this is what the second integral says in Method ??. Doing this gives us∫
sinh(u)− 3/2

2 cosh(u)
cosh(u) du =

∫
1

2
sinh(u)− 3

4
du =

1

2
cosh(u)− 3

4
u.

All that remains is to translate everything back in terms of x. Well, per the substitution we

made, we see that u = u(x) = sinh−1(x+ 3/2). Substituting this tells us that∫
x√

4x2 + 12x+ 13
dx =

1

2
cosh

(
sinh−1(x+ 3/2)

)
− 3

4
sinh−1(x+ 3/2).

Remark 3.16 The solution obtained in Example 3.15 isn’t the prettiest, but we can be slightly

cleverer to make the first term neater. Indeed, if we substitute x = sinh(u) − 3/2 into the

denominator of the integrand, we see that

√
(2x+ 3)2 + 22 =

√
4 sinh2(u) + 22 = 2

√
sinh2(u) + 1 = 2 cosh(u),

using the formula from Proposition 2.43(i). Consequently, we get the much more appealing

1

2
cosh(u) =

1

4

√
(2x+ 3)2 + 22.

Note: Since cosh2(y)− sinh2(y) = 1 for any y, this is true in particular for y = sinh−1(x).

Hence, we can conclude that cosh2(sinh−1 x)− x2 = 1 and a simple rearrangement gives

cosh
(
sinh−1 x

)
=
√

1 + x2.

Exercise 24 Compute the following definite integral:∫ 5

1

x2 − x√
x− 1

dx.

[Hint: Use the substitution u =
√
x− 1 and remember to change the limits of integration.]

Integration by Parts

Where integration by substitution is closely related to the Chain Rule, the next method is akin to

the Product Rule. Indeed, this tells us how to integrate the product of two integrable functions.
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Method – Integration by Parts: Let f and g be functions with continuous derivatives (i.e.

class C1). Recall that the Product Rule (Proposition 2.15(ii)) tells us the following:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

The Fundamental Theorem of Calculus implies

f(x)g(x) =

∫
f ′(x)g(x) + f(x)g′(x) dx.

If we split the integral into two parts, then the above rearranges to the useful formula∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

The idea, when presented with an integral of the product of two functions, is to see if we already

know the integral of one of them and the derivative of the other. This is the first step to being

able to apply the integration by parts formula.

Example 3.17 We will use integration by parts to compute
∫
tan−1(x) dx. The trick is to think

of tan−1(x) = tan−1(x) · 1 and use the formula in Method ?? where

f(x) = tan−1(x) ⇒ f ′(x) =
1

1 + x2
,

g′(x) = 1 ⇒ g(x) = x.

Recall that we know the derivative of f from Exercise 11(ii), and we know how to integrate

constant functions. Consequently, the integration by parts formula gives precisely what we need:∫
tan−1(x) dx = x tan−1(x)−

∫
x

1 + x2
dx = x tan−1(x)− 1

2
log
(
1 + x2

)
.

Note: We made use of the following useful formula, which generalises Example 3.13(iii):∫
f ′(x)

f(x)
dx = log

(∣∣f(x)∣∣).
Exercise 25 Compute the indefinite integral

∫
log(x) dx.

[Hint: Use the same trick as in Example 3.17 and consider log(x) = log(x) · 1.]

It may be that in the process of doing integration by parts, we end up having to do an integral
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very similar to the one we are concerned with. We will explore an example of this shortly.

Definition 3.18 An integral recurrence relation is a relation relating an integral In that

depends on n ∈ N to a lower-order integral Ik where k < n. We call I0 the initial value of

the recurrence relation.

Example 3.19 Suppose we wish to get an integral recurrence relation for In :=
∫
xn sin(x) dx.

Using integration by parts, we can get a relation rather swiftly:

In = −xn cos(x) +

∫
nxn−1 cos(x) dx

= −xn cos(x) + nxn−1 sin(x)−
∫

n(n− 1)xn−2 sin(x) dx

= −xn cos(x) + nxn−1 sin(x)− n(n− 1)

∫
xn−2 sin(x) dx

= −xn cos(x) + nxn−1 sin(x)− n(n− 1)In−2,

where the integral on the far right is precisely what we set out to solve (with n− 2 instead of n).

Exercise 26 Find an explicit expression for I3 =
∫
x3 sin(x) dx.

[Hint: Use Example 3.19 to write I3 in terms of I1, and compute I1 directly.]

Example 3.20 We will use Example 3.19 to compute I6 =
∫
x6 sin(x) dx. Indeed,

I6 = −x6 cos(x) + 6x5 sin(x)− 30I4

= −x6 cos(x) + 6x5 sin(x)− 30
(
−x4 cos(x) + 4x3 sin(x)− 4(3)I2

)
= −x6 cos(x) + 6x5 sin(x) + 30x4 cos(x)− 120x3 sin(x) + 360I2

= −x6 cos(x) + 6x5 sin(x) + 30x4 cos(x)− 120x3 sin(x) + 360
(
−x2 cos(x) + 2x sin(x)− 2I0

)
= −x6 cos(x) + 6x5 sin(x) + 30x4 cos(x)− 120x3 sin(x)− 360x2 cos(x) + 720x sin(x)− 720I0,

but we can easily see the initial value is I0 =
∫
x0 sin(x) dx−

∫
sin(x) dx = − cos(x). Therefore,

I6 = (−x6 + 30x4 − 360x2 + 720) cos(x) + (6x5 − 120x3 + 720x) sin(x).
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Note: We can get integral recurrence relations not only from integration by parts. Indeed,∫
tann(x) dx =

1

n− 1
tann−1(x)−

∫
tann−2(x) dx

is obtained by performing integration by explicit substitution with u = tan(x).

Integration using Partial Fractions

We will conclude this section by discussing the integrals of some rational functions of one variable.

Indeed, we say that the integrand is an element of R(x), that is the set of quotients p/q where

p, q ∈ R[x] are polynomials in one variable with coefficients in R.

Definition 3.21 Let f ∈ R(x) be a rational function of one variable. The partial fraction

expression for f has the following general form:

f(x) = p(x) +
∑
j

aj(x)

bj(x)
,

where p is a polynomial and, for each j, the denominator bj is a power of a polynomial

which we can’t factorise into polynomials of positive degree and the numerator aj is a

polynomial with lower degree than that of bj .

Method – Partial Fractions: Let f = p/q be a rational function of one variable.

(i) Fully factorise the denominator into a polynomial product: q(x) = hk11 (x) · · ·hknn (x).

(ii) Compare both sides of the following equation to solve for each numerator Aij ∈ R[x],
where the degree is one less than the denominator, i.e. deg(Aij) = deg(hji )− 1:

p(x)

q(x)
=

(
A11

h1(x)
+

A12

h21(x)
+ · · ·+ A1k1

hk11 (x)

)
+ · · ·+

(
An1

hn(x)
+

An2

h2n(x)
+ · · ·+ Ankn

hknn (x)

)
.

Remark 3.22 What is stated in Method ?? works for the most general situations. That said, we

will not really need all this detail (and the algebra looks rather scary when written out as it is

there), so consider the next example to see what we do.

Example 3.23 Suppose we wish to express the following rational function using partial fractions:

x2 + 5

x3 − 3x+ 2
.

According to Method ??, the first job is to factorise the denominator as much as possible. Indeed,
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we can see that x3−3x+2 = (x−1)2(x+2). Now, the second part of the aforementioned method

tells us that we need to consider sums of fractions where the denominators are each of the powers

of the things that appear in what we just factorised. Hence, we need to look at

x2 + 5

x3 − 3x+ 2
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
.

Note: We don’t have many fractions; we use the simpler notation A,B,C over

A11, A12, A21.

In order to determine what A,B,C are, we can combine the right-hand side by finding a common

denominator (of course, the common denominator will be (x− 1)2(x+ 2) in this case). Hence,

x2 + 5

x3 − 3x+ 2
=

A(x− 1)(x+ 2)

x3 − 3x+ 2
+

B(x+ 2)

x3 − 3x+ 2
+

C(x− 1)2

x3 − 3x+ 2
.

We can now choose specific values for x to determine what happens with the numerator. Well,

x = 1 ⇒ 12 + 5 = 0 +B(1 + 2) + 0 ⇒ B = 2,

x = −2 ⇒ (−2)2 + 5 = 0 + 0 + C(−2− 1)2 ⇒ C = 1.

It remains to compute the value of A. If we expand and simplify the numerators, we see that

x2 + 5

x3 − 3x+ 2
=

(A+ C)x2 + (A+B − 2C)x+ (−2A+ 2B + C)

x3 − 3x+ 2
.

Comparing the x2-coefficients, say, tells us 1 = A+ C. Hence, A = 0. We know therefore that

x2 + 5

x3 − 3x+ 2
=

2

(x− 1)2
+

1

x+ 2
.

Exercise 27 Express the following rational function using partial fractions:

3x+ 7

x2 + 5x+ 6
.

Example 3.24 We will apply partial fraction decomposition to compute the following integral:∫
x2 − 14x− 5

(x− 4)(x2 + 4x+ 13)
dx.

First, notice that the denominator is fully factorised (since the quadratic factor cannot be further
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reduced using coefficients in R). Hence, we expect the integrand to have the form

x2 − 14x− 5

(x− 4)(x2 + 4x+ 13)
=

A

x− 4
+

Bx+ C

x2 + 4x+ 13
,

where the numerator for the second fraction is one degree less than that of the denominator (the

bottom is a quadratic so the top must be linear, per what Method ??(ii) says). Proceeding as

in Example 3.23 and Exercise 27, we see that A = −1, B = 2, C = −2. Thus, the integral is∫
x2 − 14x− 5

(x− 4)(x2 + 4x+ 13)
dx =

∫
−1

x− 4
+

2x− 2

x2 + 4x+ 13
dx

=

∫
−1

x− 4
+

2x+ 4

x2 + 4x+ 13
− 6

(x+ 2)2 + 32
dx

= − log
(
|x− 4|

)
+ log

(
|x2 + 4x+ 13|

)
+ 2 tan−1

(
x+ 2

3

)
.

Here, we made use of the formula in the note just after Example 3.17 to deal with the first two

integrands and we made the substitution x+ 2 = 3 tan(u) to deal with the third integrand (this

is reminiscent of Lemma 3.14).
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4 Multivariable Calculus

The next step on the journey through calculus is to look at functions of more than one variable.

To this end, we can consider so-called partial derivatives and partial integrals; this is where we

almost ignore all-but-one variable. However, there is a much more complicated theory beyond

this; we will touch upon it but more is explained in Chapter ??.

Partial Differentiation

Definition 4.1 A (real) multivariable function is a map of the form f : Rn → R.

Example 4.2 Here are some examples of multivariable functions:

(i) Any map f : R → R is a ‘multi’variable function (with n = 1).

(ii) The map g : R2 → R given by g(x, y) = x7 + cos(x+ y) is a multivariable function.

(iii) The map h : R3 → R given by h(x1, x2, x3) = x21 +4x22 + x23 − 9 is a multivariable function.

Note: A two-variable function f : R2 → R can be interpreted as defining a two-dimensional

surface in R3. Such a surface will have so-called local coordinates (x, y, f(x, y)), that is

where the final coordinate is precisely the output from the two-variable function of the

previous coordinates. This is an extension of the notion of a graph (where we interpret

f : R → R as defining a one-dimensional surface in R2 with local coordinates (x, f(x))).

Definition 4.3 Let f : Rn → R be a multivariable function in the variables x1, ..., xn.

Then, we define partial derivative of f with respect to xk for some k = 1, ..., n as follows:

∂f

∂xk
:= lim

h→0

f(x1, ..., xk−1, xk + h, xk+1, ..., xn)− f(x1, ..., xn)

h
.

Remark 4.4 The partial derivative of a multivariable function is simply the usual derivative as

in Definition 2.12 except where we treat all variables as constant bar the one we are taking the

derivative with respect to. In the formula above, we treat the variable xk as a variable and all

others x1, ..., xk−1, xk+1, ..., xn simply as constants.

Note: We shall write both ∂xk
f and fxk

for the partial derivative with respect to xk.

Example 4.5 We will compute the partial derivatives of f(x, y, z) = x2 + yz.
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(i) The partial derivative ∂f
∂x = 2x, since yz is being treated as constant, and we know that

the derivative of a constant is zero.

(ii) The partial derivative ∂f
∂y = z, since x2 is being treated as a constant, and z is constant so

we know that the derivative of a constant times a variable is just that constant.

(iii) The partial derivative ∂f
∂z = y for a near-identical reason.

Lemma 4.6 Let f : Rn → R. Then, f is constant if and only if fxk
= 0 for all k = 1, ..., n.

Proof : (⇒) This is trivial.

(⇐) Suppose that fx1 = · · · = fxn = 0 and define the single-variable functions gk : R → R by

gk(t) = f(x1, ..., xk−1, t, xk+1, ..., xn), that is we replace xk by the variable t. Because these are

now functions of one variable, we can talk about their (usual) derivative. Indeed, we see that

g′i(t) = lim
h→0

f(x1, ..., xk−1, t+ h, xk+1, ..., xn)− f(x1, ..., xk−1, t, xk+1, ..., xn)

h
.

Consequently, letting t = xk, we conclude that g′k(xk) = fxk
(x) = 0, by assumption that every

partial derivative of f is zero. Therefore, we know that gk is actually constant (by Exercise 9).

Doing this for all k = 1, ..., n will mean that f is constant with respect to each variable and is

therefore constant.

Proposition 4.7 Let f : Rn → R and g : Rn → R. Then, the following are true:

(i) (f(x) + g(x))xk
= fxk

(x) + gxk
(x). (Sum Rule)

(ii) (f(x)g(x))xk
= fxk

(x)g(x) + f(x)gxk
(x). (Product Rule)

(iii) (f(x)/g(x))xk
= (fxk

(x)g(x)− f(x)gxk
(x))/g(x)2 if g(x) ̸= 0. (Quotient Rule)

Proof : Omitted; this is similar to Proposition 2.15 (that of the usual derivative).

We see that the story is almost identical to that of the usual derivative. However, we are missing

a key ingredient: the Chain Rule. There is a (rather complicated) generalisation to multivariable

functions but we begin with a simple case with one multivariable and one one-variable function.

Lemma 4.8 (Weak Chain Rule) Let f : R → R be a function and g : Rn → R. Then,

∂

∂xk
(f ◦ g)(x) = f ′(g(x))

∂

∂xk
g(x).

Proof : Omitted; we will prove a stronger result later.
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Example 4.9 Suppose we wish to compute the partial derivatives of ϕ(x, y) = sin(xy). Well,

ϕx(x, y) = y cos(xy) and ϕy(x, y) = x cos(xy),

since sin is a single-variable function (playing the role of f in the Weak Chain Rule) and xy is a

two-variable function (playing the role of g in the Weak Chain Rule).

Exercise 28 Compute the partial derivatives fx, fy, fz of the following three-variable func-

tion and support your answer with justifications of each step you make:

f(x, y, z) = xz + eyz + sin(xy).

We can adapt implicit differentiation to the partial derivative situation: for a multivariable

function f(x1, ..., xn), we can pick one variable to consider as a function of the rest.

Method – Implicit Partial Differentiation: Let f(x1, ..., xn) be a multivariable function

and consider the variable xi = xi(x1, ..., xi−1, xi+1, ...xn) as a function of the other variables

and suppose we wish to find an expression for the partial derivative ∂xi
∂xk

.

(i) Partial-differentiate the equation, but when you differentiate xi, put
∂xi
∂xk

after it.

(ii) Rearrange for ∂xi
∂xk

.

Example 4.10 Consider the equation x3z2 − 5xy5z = x2 + y3 and treat z = z(x, y) as a function

of two variables. If we wish to determine an expression for zx, say, then we appeal straight to

Method ??. Indeed, taking the partial derivative of the equation with respect to x yields

3x2z2 + 2x3z
∂z

∂x
− 5y5z − 5xy5

∂z

∂x
= 2x.

Therefore, rearranging this gives us what we are after:

zx =
∂z

∂x
=

2x− 3x2z2 + 5y5z

2x3z − 5xy5
.

Note: This is, again, related to the Implicit Function Theorem (proven in Chapter ??).

Exercise 29 Let x2y2 + y2z2 + z2x2 = 7 and find ∂x
∂y using implicit partial differentiation.
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Definition 4.11 A higher-order partial derivative of the multivariable function f : Rn → R is

one where we do successive partial differentiation. There are two main types to consider.

� There are pure higher-order partial derivatives of the form

∂mf

∂xmk
.

� There are mixed higher-order partial derivatives of the form

∂mf

∂xp1k1∂x
p2
k2
· · · ∂xptkt

, where p1 + p2 + · · ·+ pt = m.

Notation 4.12 As with usual partial derivatives, we can denote higher-order partial derivatives

using subscript notation (i.e. analogous to how we write fx to mean ∂f
∂x ). Indeed, we just write a

list of subscripts representing the order in which to take the partial derivatives (e.g. ∂2f
∂y∂x means

∂
∂x first and ∂

∂y second, so this is represented by fxy).

Note: We were careful with the order of the mixed partial derivatives in Notation 4.12.

Thankfully, there are some relatively-mild conditions where which we can disregard order.

Theorem 4.13 (Mixed Derivatives Theorem) Let D ⊆ Rn and f : D → R be a multivariable

function with this property: p ∈ Rn is a point and a neighbourhood of p is contained in D

and f has continuous second-order partial derivatives at p. Then, for all i, j = 1, ..., n,

∂2f

∂xi∂xj
(p) =

∂2f

∂xj∂xi
(p).

Proof : We give an elementary proof for when n = 2. Indeed, let D ⊆ R2 be an open rectangle

containing p = (a, b), that is D = (a− δ, a+ δ)× (b− ε, b+ ε) for some numbers δ, ε > 0. Next,

define the following multivariable functions for 0 < |h1|, |h2| < ε:

u(h1, h2) = f(a+ h1, b+ h2)− f(a+ h1, b),

v(h1, h2) = f(a+ h1, b+ h2)− f(a, b+ h2),

w(h1, h2) = f(a+ h1, b+ h2)− f(a+ h1, b)− f(a, b+ h2) + f(a, b).

We apply the Mean Value Theorem to find γ1, γ2, δ1, δ2 ∈ (0, 1) where the following are true:

w(h1, h2) = u(h1, h2)− u(h1, 0)

= h1ux(γ1h1, h2)



38 Multivariable Calculus

= h1
(
fx(a+ γ1h1, b+ h2)− fx(a+ γ1h1, b)

)
= h1h2fxy(a+ γ1h1, b+ γ2h2)

and

w(h1, h2) = v(h1, h2)− v(h1, 0)

= h2vy(h1, δ2h2)

= h2
(
fy(a+ h1, b+ δ2h2)− fy(a, b+ δ2h2)

)
= h2h1fyx(a+ δ1h1, b+ δ2h2).

Hence, we can equate the final line of each of the above groups of equations (since both are

expression for the same function w). Since h1, h2 ̸= 0, we can divide out the h1h2 that appears

in both, giving us the following equality:

fxy(a+ γ1h1, b+ γ2h2) = fyx(a+ δ1h1, b+ δ2h2).

If we take the limit as h1 → 0 and h2 → 0, then we obtain precisely the result we want, namely

∂2f

∂x∂y
(p) = fyx(a, b) = fxy(a, b) =

∂2f

∂y∂x
(p).

Note: Theorem 4.13 also goes by the names Schwarz’s Theorem and Clairaut’s Theorem.

Exercise 30 Verify the Mixed Derivatives Theorem for f(x, y) = xy3 + x sin(xy).

Definition 4.14 Let f : Rn → R be a multivariable function on the variables x1, ..., xn.

The partial integral with respect to one of the variables is the usual integral where we treat

all other variables as constant. This is denoted similarly to the integral of single-variable

functions, i.e. ∫ b

a
f(x) dxk,

where the limits on the integral mean xk = a and xk = b.

Example 4.15 The partial integral of the function f(x, y) = yx2 with respect to x is∫
f(x, y) dx =

1

3
yx3 + φ(y),

where φ is any function of y. Indeed, as with usual integration, when we take an anti-derivative,
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they are the same up to constant. Here, if we partial-differentiate the right-hand side above

with respect to x, we do indeed recover f . This is because we treat any y-variables as constant.

Hence, our ‘constant’ here is a function in terms of the other variables.

Exercise 31 Compute the partial integral
∫ 4
1 yx2 dx.

[Hint: There will be no ‘constant’ φ(y) here, like with usual integration over an interval.]

Geometry and Directional Derivatives

We will now begin to think more geometrically about partial derivatives. In doing so, using

what we know about the usual one-variable case, we can build up some intuition on what these

derivatives (and other differential operators) are telling us.

Example 4.16 Let D ⊆ R and f : D → R be differentiable at a ∈ D. Recall in Theorem

??(i) that a non-vertical line passing through the point (x1, y1) with gradient m can be given

by y − y1 = m(x − x1). We can interpret the number f ′(a) as the gradient of the straight line

tangent to the graph
(
x, f(x)

)
at the point

(
a, f(a)

)
. Substituting this point and gradient into

the formula we just recalled gives us

f(x)− f(a) = f ′(a)(x− a) ⇔ f(x) = f(a) + f ′(a)(x− a).

Note: The expression f(a) + f ′(a)(x − a) at the end of Example 4.16 is well-defined for

all values of x ∈ D, not just for x = a. However, when x ̸= a, this formula is not equal to

f(x) in general. Hence, we call it the linear approximation of f at a and denote this by

f(x) ≈ f(a) + f ′(a)(x− a), x ∈ D.

We can generalise this concept to functions of many variables; we start with two variables.

Proposition 4.17 Let Ω ⊆ R2 and f : Ω → R be partially-differentiable at (a, b) ∈ Ω. The

linear approximation of f at (a, b) is f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Proof : Omitted; we prove a stronger result later.

Remark 4.18 If we have a function f(x) of one-variable, its graph is a subset of R2: we plot

points
(
x, f(x)

)
so it lives in a space of dimension one more than the number of variables (1+1).

Therefore, if we have now a function f(x, y) of two variables, its graph is a subset of R3: we plot

points
(
x, y, f(x, y)

)
. Hence, we call the graph of a one-variable function a curve and the graph
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of a two-variable function a surface. This gets much deeper in Chapter ??. We provide a picture

to bolster this intuition in Figure 2 below.

x

z

y

Figure 2: The graph of a two-variable function f : Ω → R.

Exercise 32 Determine the linear approximation of f(x, y) = x2 + y2 at (1, 2).

Using Remark 4.18, we can interpret Proposition 4.17 geometrically: when we take the partial

derivative with respect to x, say, we are keeping y constant. In other words, we are looking

at a ‘slice’ of our surface (the intersection of our surface with a plane in the y-axis, which is a

curve). A similar story holds if we instead take the partial derivative with respect to y and keep

x constant. Thus, we conclude the following important ideas:

� fx(a, b) can be treated as the tangent to the surface at the point (a, b) in the x-direction.

� fy(a, b) can be treated as the tangent to the surface at the point (a, b) in the y-direction.

Hence, this means the graph of the right-hand side f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) can

be thought of as the tangent plane to the surface defined by
(
x, y, f(x, y)

)
.

Note: We have a slight problem; we can describe via partial derivatives the rates of change

(tangents) in the x-direction and y-direction. But what about any old direction? This is

what we concern ourselves with now.

Definition 4.19 Let Ω ⊆ R2 and f : Ω → R have well-defined partial derivatives in each

variable at (a, b) ∈ Ω. The gradient of f at (a, b) is a function ∇f : R2 → R2 given by

∇f(a, b) =
(
fx(a, b), fy(a, b)

)
.

Remark 4.20 Suppose we have a function f : X → Y . Then, the set of all functions of this

form (with domain X and co-domain Y ) we denote as F(X,Y ). Using this, an equivalent way
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to describe the gradient of f at (a, b) is as a function ∇ : F(Ω,R) × R2 → R2, that is we input

into ∇ a function Ω → R and a point and we get from it another point.

Exercise 33 Find the gradient of f(x, y) = x sin(y) + x7 at the point (2, π/2).

Suppose we are given a line in R2, that is in the xy-plane. From Definition ??, if it passes

through the point a = (a, b) in the direction v = (v, w), then it has the form γ(t) = a+ tv. Note

that this is a function γ : R → R2, because it takes one input, t, and outputs a vector with two

components. Because f : Ω → R is a two-variable function (or, in other words, it takes as an

input one vector with two components), we can substitute into it what we get out of γ:

F (t) := f(γ(t)) = f(a+ tv) = f(a+ tv, b+ tw).

Definition 4.21 Let Ω ⊆ R2 and f : Ω → R have well-defined partial derivatives in each

variable at (a, b) ∈ Ω. The directional derivative of f at (a, b) along (v, w) is the derivative

of the above function at t = 0, that is

F ′(0) = lim
h→0

F (0 + h)− F (0)

h
= lim

h→0

f(a+ hv, b+ hw)− f(a, b)

h
.

Example 4.22 Suppose we wish to find the directional derivative of f(x, y) = x2ey at the point

(4, 0) along (1, 1). First of all, we see that the line defined by this point and direction is γ(t) =

(4 + t, t). Hence, we can construct the one-variable function

F (t) = f(γ(t)) = (4 + t)2et.

According to Definition 4.21, we need to compute the derivative of this guy at t = 0. We can

either do this (i) using the limit definition or (ii) using what we know about differentiating

functions of one variable. We will do the second one, leaving the first for you to double-check.

Indeed, we see from the Product and Chain Rules that

F ′(t) = 2(4 + t)et + (4 + t)2et ⇒ F ′(0) = 8 + 16 = 24.

Lemma 4.23 Let Ω ⊆ R2 and f : Ω → R have well-defined partial derivatives in each

variable at (a, b) ∈ Ω. The directional derivative of f at (a, b) along (v, w) is

∇f(a, b) · (v, w).
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Proof : We will use the linear approximation formula that we found in Proposition 4.17, namely

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). However, this means precisely that

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +O(x2 + y2),

where O(x2+ y2) are “error terms” in xα and yβ for α, β ≥ 2. Fortunately, we do not need them

for this construction. In Definition 4.21, we concern ourselves with the second limit. As such, we

need an expression for f(a+hv, b+hw). This is achieved by substituting (x, y) = (a+hv, b+hw)

into the above equation:

f(a+ hu, b+ hv) = f(a, b) + fx(a, b)hv + fy(a, b)hw +O(u2 + v2).

Consequently, we conclude that the directional derivative is

F ′(0) = lim
h→0

f(a+ hv, b+ hw)− f(a, b)

h

= lim
h→0

fx(a, b)hv + fy(a, b)hw +O(h2)

h

= lim
h→0

(
fx(a, b)v + fy(a, b)w +O(h)

)
= fx(a, b)v + fy(a, b)w

= ∇f(a, b) · (v, w).

Note: We used the notation O(·) in the above proof; this is big-O notation from analytic

number theory and complexity theory. O stands for the German word ordnung (meaning

“order”). The idea behind saying f(x) = O(g(x)) is that, as x → ∞, the behaviours of

the functions f and g are similar in this sense: there exists M > 0 and k ∈ R such that

∣∣f(x)∣∣ ≤ M
∣∣g(x)∣∣, when x ≥ k.

Exercise 34 Find the directional derivative of f(x, y) = x sin(y) + x7 at (2, π/2) along

(3,
√
5) by using Lemma 4.23. Check your answer by using Definition 4.21.

Remark 4.24 There is a very easy way to extend the definition of the directional derivative to

not only functions defined with domains in R2, but whose domains live in a space Rn or arbitrary

dimension. Indeed, let v ∈ Rn, Ω ⊆ Rn and f : Ω → R be a function with well-defined partial
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derivatives in each variable at a ∈ Ω. The directional derivative of f at a along v is

∇f(a) · v = fx1(a)v1 + fx2(a)v2 + · · ·+ fxn(a)vn.

Exercise 35 Find the directional derivative of f(x, y, z) = x2 + xy + z at (1, 1, 1) along

(1, 2, 2).

Definition 4.25 Let v ∈ Rn, Ω ⊆ Rn and f : Ω → R be a function with well-defined partial

derivatives at a ∈ Ω. The directional derivative of f at a in the direction u is

∇f(a) · v

∥v∥
,

where ∥v∥ :=
√

v21 + · · ·+ v2n is the magnitude of the vector as introduced in Chapter ??.

Remark 4.26 The difference between Definition 4.25 and the definition in Remark 4.24 is subtle.

In the former, we divide by the magnitude of the vector to get only the ‘direction’ that vector

is pointing in. In the latter, we don’t do this, and instead use the direction and length of the

given vector. This is denoted by the use of terminology: along means we don’t divide and in the

direction means we do divide.

Exercise 36 Find the directional derivative of f(x, y, z) = z3 + 3x2y2 + sin(z) at (1, 4, 0)

in the direction (−2, 6, 3).

Proposition 4.27 For Ω ⊆ Rn, suppose f : Ω → R is a function with well-defined partial

derivatives at a ∈ Ω. If ∇f(a) ̸= 0, then the gradient points in the direction that f changes

most rapidly and its magnitude gives the maximal rate of change.

Proof : Let θ ∈ [0, π] be the angle between ∇f(a) and suppose we take the directional derivative

in the direction of a unit vector u ∈ Rn (that is ∥u∥ = 1). By (the generalisation of) Theorem

??, we know that ∇f(a) · u = ∥∇f(a)∥ cos(θ). Since −1 ≤ cos(θ) ≤ 1, this is maximal precisely

when cos(θ) = 1, that is θ = 0 and so ∇f(a) and u point in the same direction.

Example 4.108 (Revisited) Recall we computed the directional derivative of f(x, y) = x2ey at

(4, 0) along (1, 1). We can now use Proposition 4.27 to determine the maximal rate of change of

this function in this direction. Indeed, it is

∥∇f(4, 0)∥ = ∥(8, 16)∥ = 8
√
5 ≈ 17.888.
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Definition 4.114 Let Ω ⊆ Rn, f : Ω → R, a ∈ Ω and c := f(a). The level set of f at a is

Lc(f) = {x ∈ Rn : f(x) = c}.

Note: If n = 2, this is the contour of f at a = (a, b). A real-world application of this are

the UK’s Ordnance Survey maps; they show heights of terrain as inscribed smooth curves.

Remark 4.115 When n = 2, we know that the function f : Ω → R defines a surface (which we

pictured in Figure 2). Although what we are about to say has an analogue in higher dimensions,

it is easiest visualised and discussed when n = 2 (so the graph lives in three-dimensions). The

level set of a two-variable function is the intersection of the surface in the xyz-space with the

plane z = c = f(a). This is pictured in Figure 3 below.

x

z

y

(a) The graph of f : Ω → R.

x

y

(b) The level set of f : Ω → R.

Figure 3: A level set of a two-variable function f : Ω → R.

Note: A level set is a special case of a fibre: for a map f : X → Y between sets and y ∈ Y ,

we say the fibre of y is the set f−1(y) := {x ∈ X : f(x) = y} of elements that map to y.

From the proof of Proposition 4.27, we know that ∇f(a) ·u = ∥∇f(a)∥ cos(θ) for any unit vector

u ∈ Rn. The gradient is orthogonal to the unit vector precisely when this formula is zero, i.e.

when cos(θ) = 0. So, f is (locally) constant in the direction u which implies the next result.

Lemma 4.116 For Ω ⊆ Rn, suppose f : Ω → R is a function with well-defined partial

derivatives at a ∈ Ω. If ∇f(a) ̸= 0, the gradient is orthogonal to the level set of f at a.

Proof : If y ∈ Lc(f) is a point in the level set of f at c = f(a), choose a curve γ : (−ε, ε) → Rn
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such that γ is contained in the level set Lc(f) and γ(0) = y. Then, F (t) = f(γ(t)) = c, which

implies that F ′(0) = ∇f(y) · γ′(0)0. This tells us that the vectors γ′(0) are orthogonal to the

gradient of f at y; they form the tangent plane to Lc(f) at y.

Example 4.117 We will use a method based on Lemma 4.116 to find a unit vector perpendicular

to the surface defined by z = x2 + y2 at the point (1, 2, 5). Indeed, the defining equation can be

re-written as x2 + y2 − z = 0. Therefore, this surface is actually the level set of the following

function at zero:

f(x, y, z) := x2 + y2 − z.

We quickly compute the gradient ∇f = (2x, 2y,−1), which is perpendicular to the surface.

Hence, at (1, 2, 5), the vector is (2, 4,−1). It remains to divide through by its magnitude to get

a vector of unit length, giving us the final answer

(2, 4,−1)√
21

.

Exercise 37 Consider the function f : R2 → R defined by f(x, y) = x2 + 3xy − x2y + y3.

(i) Find the gradient vector ∇f .

(ii) Determine the rate of change of f at (1, 1) in the direction (3,−4).

(iii) At (1, 1), find the maximum rate of increase of f and construct a unit vector pointing

in the direction of this maximum rate of increase.

We conclude this subsection by making good on our promise in the proof, or lack thereof, of the

Weak Chain Rule (Lemma 4.8).

Proposition 4.118 (Chain Rule for One Independent Variable) Let f : Rn → R be a function

in the variables x1, ..., xn and treat each xi : R → R as differentiable functions of one

independent variable t, say. Then, the derivative of g(t) := f(x1(t), ..., xn(t)) is given by

g′(t) =
∂f

∂x1
x′1(t) + · · ·+ ∂f

∂xn
x′n(t).

Proof : We give an elementary proof for when n = 2 (the variables are x, y instead of x1, x2).

Using the linear approximation of f at a point (a, b), we know that

f(a+ α, b+ β) = f(a, b) + fx(a, b)α+ fy(a, b)β +O(α2 + β2).
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Using the Taylor series expressions after Definition 2.52, we now write write

x(t+ h) = x(t) + x′(t)h+O(h2) and y(t+ h) = y(t) + y′(t)h+O(h2).

For a = x(t), α = x′(t)h, b = y(t), β = y′(t)h, we use limit definition of differentiation to see that

g′(t) = lim
h→0

g(t+ h)− g(t)

h

= lim
h→0

f(x(t+ h), y(t+ h))− f(x(t), y(t))

h

= lim
h→0

fx(x(t), y(t))x
′(t)h+ fy(x(t), y(t))y

′(t)h+O(h2)

h

= fx(x(t), y(t))x
′(t) + fy(x(t), y(t))y

′(t).

Example 4.119 Consider the function f : R3 → R given by f(x, y, z) = log(2x− 3y + 4z). We

will apply Proposition 4.118 where we treat the variables as the following differentiable functions:

x = exp(t), y = log(t), z = cosh(t).

We must first compute the partial derivatives of f with respect to each of the variables:

∂f

∂x
=

2

2x− 3y + 4z
,

∂f

∂y
=

−3

2x− 3y + 4z
,

∂f

∂z
=

4

2x− 3y + 4z
.

It remains to compute the (usual) derivatives of the functions of t written at the top:

x′(t) = exp(t), y′(t) =
1

t
, z′(t) = sinh(t).

Substituting all this into the punchline of the previous proposition yields what we want, namely

f ′(t) =
2 exp(t)− 31

t + 4 sinh(t)

2x− 3y + 4z
=

2 exp(t)− 3/t+ 4 sinh(t)

2 exp(t)− 3 log(t) + 4 cosh(t)
.

Exercise 38 Apply the Chain Rule for One Independent Variable to f : R2 → R given by

f(x, y) = x2 + y2, where we treat the variables as the following differentiable functions:

x(t) = sin(t) and y(t) = t3.

We have dealt with the situation where all our variables depend on one independent variable

(parameter) t. Ultimately, we want to see what happens if all our variables depend on a collec-

tion of parameters t1, ..., tk. Before we make that jump, let’s consider the situation where the
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dependence is on two independent variables s and t.

Proposition 4.120 (Chain Rule for Two Independent Variables) Let f : Rn → R be a function

in the variables x1, ..., xn and treat each xi : R2 → R as functions of two independent

variables s and t, say, whose partial derivatives in each variable exist. Then, the partial

derivatives of g(s, t) := f(x1(s, t), ..., xn(s, t)) are given by

∂g

∂s
=

∂f

∂x1

∂x1
∂s

+ · · ·+ ∂f

∂xn

∂xn
∂s

and
∂g

∂t
=

∂f

∂x1

∂x1
∂t

+ · · ·+ ∂f

∂xn

∂xn
∂t

.

Proof : Omitted.

Note: A more general Chain Rule where xi : Rk → R is given by the following formulae:

∂g

∂tj
=

n∑
i=1

∂f

∂xi

∂xi
∂tj

, where j = 1, ..., k.

Remark 4.121 The note above provides us with the Chain Rule for k Independent Variables.

However, there is a very slick way we can re-write the right-hand side of the expression here:

∂g

∂tj
= ∇f · ∂x

∂tj
,

where x = (x1, ..., xn) and the notation ∂x/∂tj means that each entry of the vector x is partially-

differentiated with respect to the same variable tj . Similar notation appears in Section 5.

Exercise 39 Prove that for any function f : R2 → R of two variables x and y where we

treat the variables as x(s, t) = exp(s) cos(t) and y(s, t) = exp(s) sin(t), it satisfies

sin(t)
∂f

∂s
+ cos(t)

∂f

∂t
= exp(s)

∂f

∂y
.

[Hint: Use Proposition 4.120 to find ∂f/∂s and ∂f/∂t; substitute into the left-hand side.]

Example 4.122 Let f : R2 → R be any function of the variables z/x and x/y. We prove that

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= 0.

The trick is to re-label the variables as u := z/x and v := x/y. In reality, our function f is

a function of three independent variables because u and v depend on x, y, z. Hence, we can
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apply the more general version of the Chain Rule discussed in the previous note to compute the

derivatives we desire. We first determine all partial derivatives of u = u(x, y, z) and v = v(x, y, z):

∂u

∂x
= − z

x2
,

∂u

∂y
= 0,

∂u

∂z
=

1

x
,

∂v

∂x
=

1

y
,

∂v

∂y
= − x

y2
,

∂v

∂z
= 0.

From the Chain Rule, we conclude the following:

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
= −∂f

∂u

z

x2
+

∂f

∂v

1

y
,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y
= 0− ∂f

∂v

x

y2
,

∂f

∂z
=

∂f

∂u

∂u

∂z
+

∂f

∂v

∂v

∂z
=

∂f

∂u

1

x
+ 0.

Substituting all this into the expression at the start of the example will imply the result:

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
=

∂f

∂v

x

y
− ∂f

∂u

z

x
− ∂f

∂v

x

y
+

∂f

∂u

z

x
= 0.
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5 Matrix Calculus

Thus far, all our maps have had a co-domain of R. Even as general as we were being at the

end of the previous section (just above), we were still not hitting maximal generality. Truly, the

most general situation one can apply the Chain Rule to (or calculus as a whole) is where we have

f : Rn → Rm and g : Rk → Rn and we wish to differentiate the composition f ◦ g.

The Jacobian Matrix

Definition 5.1 Let f : Rn → Rm be a function in the variables x1, ..., xn, who themselves

are functions of the variables t1, ..., tm such that all relevant partial derivatives exist. The

Jacobian matrix of the transformation f(x) = t is the following m× n matrix:

J(x1, ..., xn) =
∂(t1, ..., tm)

∂(x1, ..., xn)
=



∂t1
∂x1

∂t1
∂x2

· · · ∂t1
∂xn

∂t2
∂x1

∂t2
∂x2

· · · ∂t2
∂xn

...
...

. . .
...

∂tm
∂x1

∂tm
∂x2

· · · ∂tm
∂xn


.

Notation 5.2 We abuse notation and instead write the Jacobian matrix as consisting of the partial

derivatives ∂fi/∂xj , where we think of the output of the function f(x) = (f1(x), ..., fm(x)).

Note: The Jacobian determinant (or simply the Jacobian) is the determinant det(J) of this

matrix. However, recall that from Chapter ?? that the determinant is only well-defined if

the matrix is square (that is m = n). This will be important in Chapters ?? and ??.

We can use the Jacobian matrix to capture the linear approximation information we have dis-

cussed earlier. Indeed, at least for a function of two variables f : R2 → R, recall that the linear

approximation of f at (a, b) is given in Proposition 4.17 by

f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Motivating the definition coming up next, we can re-write the above in vector notation as

f(a, b) +∇f(a, b)

x− a

y − b

 .



50 Matrix Calculus

Definition 5.3 Let f : Rn → Rm and a ∈ Rn. The linear approximation of f at a is

f(x) ≈ f(a) + J(a)(x− a).

Exercise 40 Determine the linear approximation of the following function at a = (2, 3):

f : R2 → R3, f(x, y) = (x2, 3y, x+ y3).

[Hint: Your final answer should be a (column) vector with three components.]

Changes of Variable

We can use the Jacobian matrix to determine or make changes of variables. In fact, we will see

how the Jacobian (determinant) can help us with the task of changing from (x, y) to (s, t), say.

Example 5.4 Suppose we have two variables x, y given in terms of the variables s, t as follows:

x = s2t and y = t2s−1.

Of course, we are assuming that s ̸= 0 (otherwise s−1 is undefined). The task is to write s, t

in terms of the variables x, y. To this end, we look for a combination of x and y that has no

t-dependence, say; this will give us a way to write s = s(x, y). Indeed, notice that

x = s2t ⇒ t =
x

s2
⇒ y =

(x/s2)2

s
=

x2

s5
⇒ s =

x2/5

y1/5
.

We must work under the assumption that y ̸= 0 (and therefore t ̸= 0 and x ̸= 0). Substituting

this into the first equation will give us the rest of what we are after, namely

x = s2t ⇒ x =
x4/5

y2/5
t ⇒ t = x1/5y2/5.

Note: We can’t always swap between pairs of variables via elementary means like above.
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Theorem 5.5 Let f : R2 → R2 be given in the variables x and y, which are functions

x, y : R2 → R of s and t. Suppose all partial derivatives exist and are continuous.

(i) If the Jacobian det
(
J(a, b)

)
̸= 0 for some (a, b) ∈ R2, then we can write s and t as

functions of x and y with continuous partial derivatives, for all (s, t) “sufficiently

close” to (a, b).

(ii) Let S be an open subset (i.e. no boundary) of the st-plane, where s and t are given

in terms of x and y inside the set S and where det
(
J(a, b)

)
̸= 0 for all (a, b) ∈ S.

Then, the corresponding subset X in the xy-plane is also open. Moreover, if s and t

are injective (functions of x and y) on S, then the inverse parametrisation from X

to S (functions x and y of s and t) has continuous partial derivatives.

Proof : Deferred; this is a special case of the Inverse Function Theorem.

The point of Theorem 5.5 is this: if we wish to make a change of variables, we should start by

restricting ourselves to points where the Jacobian is non-zero since, otherwise, it is hopeless.

Example 5.6 Consider the polar coordinates which we expressed in Lemma ??:

x = r cos(θ) and y = r sin(θ),

where r ≥ 0 is a non-negative real number and θ ∈ (−π, π]. We again strive to write r and θ in

terms of x and y. We know that this can be done (up to certain conditions) because we proved

it back in Lemma ??. However, the best we can do is to get θ : R2 \ {(x, 0) : x ≤ 0} → (−π, π).

This is a function which doesn’t allow us to put in a half-line in the xy-plane and which misses

π from its output. If we try to fix this, we will break the continuity of this function.

Exercise 41 Compute the Jacobian of the transformation in Example 5.6.

Note: In Example 5.6, we can compute x2 + y2 to eliminate θ and get an expression for

r, but we must have that r ̸= 0 (otherwise when we eliminate to get an expression for θ,

we will have an undefined quantity). This is captured in the answer to Exercise 41.

From our discussions in Section 4, we can write the Chain Rule (for Two Independent Variables)

as follows (compare this to the note after Proposition 4.120):fs

ft

 =

xs ys

xt yt

fx

fy

 .
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The matrix above is simply the transpose of the Jacobian matrix. This equation therefore tells

us that we can write fx and fy in terms of fs and ft if we can invert the (transpose of the)

Jacobian matrix. This is why its determinant is so important!

Remark 5.7 In general, we can capture the Chain Rule from the previous section as follows:

∂f

∂t
= J(t)T

∂f

∂x
.

Proposition 5.8 Let x1, ..., xn : Rn → R be functions in the variables t1, ..., tn where the

partial derivatives with respect to each variable exists. If the corresponding Jacobian matrix

J(x) is invertible, the the inverse is given by

J(x)−1 =

(
∂(t1, ..., tn)

∂(x1, ..., xn)

)−1

=
∂(x1, ..., xn)

∂(t1, ..., tn)
= J(t).

Proof : Consider a map f : Rn → Rn in the variables x1, ..., xn (which we already assume are

parametrised in terms of t1, ..., tn). Looking at the Chain Rule expression in Remark 5.7, we

apply it to the following n cases: f(t) = ti for all i = 1, ..., n. In each case, we get something like

the following, where the 1 is in the ith entry in the left-hand vector:

0
...

1
...

0


= J(t)T


∂ti/∂x1

...

∂ti/∂xn

 .

Combining all of these into a single equation (and using a property in Lemma ??) tells us that

1n = J(t)TJ(x)T = J(x)J(t).

Thus, the Jacobian matrices on the right-hand side are inverses to each other, by definition.
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Method – Change of Variables: Let x1, ..., xn be each given in terms of t1, ..., tn.

(i) Construct the Jacobian matrix J(x1, ..., xn).

(ii) Find the Jacobian det(J) using the methods of Section ??.

� If it is non-zero, move to Step (iii).

� If it is zero, we are done and we cannot change variables.

(iii) Compute the inverse matrix to determine t1, ..., tn each in terms of x1, ..., xn.

Example 5.9 We will apply Method ?? to x = s2 + t2 and y = st in order to write s and t in

terms of the variables x and y. The first task is to construct the Jacobian matrix, and it is

J(x, y) =


∂x

∂s

∂x

∂t

∂y

∂s

∂y

∂t

 =

2s 2t

t s

 .

Note that the Jacobian is 2s2−2t2, which is non-zero if and only if s ̸= ±t. Now, the pairs (−s,−t)

and (t, s) each give the same x and y values as the pair (s, t). Therefore, the transformation is

not injective, and it has no inverse. That being said, we can restrict to a domain on which the

transformation is injective, e.g. we will assume that s > ±t. Now, we see that

x+ 2y = (s+ t)2 and x− 2y = (s− t)2.

As such, we can take square-roots and solve the system simultaneously for s and t:

s =
1

2

(√
x+ 2y +

√
x− 2y

)
and t =

1

2

(√
x+ 2y −

√
x− 2y

)
.

Exercise 42 Verify Proposition 5.8 in the situation where x = s2 + t2 and y = st.

[Hint: Use Example 5.9 to get ∂s
∂x ,

∂s
∂y ,

∂t
∂x ,

∂t
∂y and form J(s, t); compare it to J(x, y)−1.]
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6 Optimisation Problems
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7 Exercise Solutions

We provide detailed solutions to the exercises interwoven within each section of the module.

Hopefully you have given these questions a try whilst on your learning journey with the module.

But mathematics is difficult, so don’t feel disheartened if you had to look up an answer before

you knew where to begin (we have all done it)!

Solutions to Exercises in Section 2
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