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Introduction

Hello and welcome to the module on Introduction to Algebra! What follows is a module intended

to support the reader in learning this fascinating topic. The Prison Mathematics Project (PMP)

realises that you may be practising mathematics in an environment that is highly restrictive, so

this text can both be used independently and does not require a calculator.

What is Algebra?

Abstract algebra is the study of algebraic structures (this includes groups, vector spaces, rings,

fields, modules, algebras, etc.). The major motivation in this area was solving systems of equa-

tions, formulae for roots of polynomials and integer solutions to polynomial equations.

Learning in this Module

The best way to learn mathematics is to do mathematics. Indeed, education isn’t something that

happens more than it is something we should all participate in. You will find various exercise

questions and worked examples in these notes so that you may try to solve problems and deepen

your understanding of this topic. Although the aim is for everything to only require the content

of this module, you are encouraged to use any other sources you have at your disposal.
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1 Preliminaries



4 Basic Group Theory

2 Basic Group Theory

Arguably the largest area in abstract algebra, group theory was pioneered by mathematicians

like Euler who studied algebraic operations, Lagrange and Cauchy (who studied permutations),

and Galois (who made a vital link from symmetry groups to the solving of polynomials, see

Chapter ??). We start of relatively basic but over time, we will advance our group theory a lot.

Definition 2.1 A group is a set G with a binary operation · : G×G→ G satisfying these:

� The operation is associative, that is for any g, h, k ∈ G, we have g · (h ·k) = (g ·h) ·k.
� The set is closed under the operation, that is for any g, h ∈ G, we have g · h ∈ G.
� There is an identity, that is there exists e ∈ G with e · g = g = g · e for all g ∈ G.
� The set is closed under inverses, that is for any g ∈ G, there exists h ∈ G such that

g · h = e = h · g. To emphasise that h is the inverse of g, we relabel it g−1.

Definition 2.2 The number of elements in a group G is the order of G, denoted |G|.

Note: To distinguish between the set G and the group, we may write the group (G, ·).

Example 2.3 We now look at some examples and non-examples of groups (some will be familiar).

(i) The integers under addition (Z,+) forms a group.

(ii) The non-zero real numbers under multiplication (R \ {0},×) forms a group.

(iii) The integers under subtraction (Z,−) does not form a group.

(iv) The rationals under multiplication (Q,×) does not form a group.

Lemma 2.4 (R,+) is a group whereas (R,×) is not a group.

Proof : (i) We need only demonstrate each of the group axioms in Definition 2.1:

� Addition of real numbers clearly satisfies x+ (y + z) = (x+ y) + z for any x, y, z ∈ R.

� The sum of two real numbers is a real number; this is closure under addition.

� The element 0 ∈ R is the identity since x+ 0 = x = 0 + x for any x ∈ R.

� For any x ∈ R, we have an inverse −x ∈ R because x+ (−x) = 0 = (−x) + x.

(ii) We can see that (R,×) is not a group because it isn’t closed under inverses. Indeed, the

identity here is 1 ∈ R (because multiplication by one doesn’t change anything) but there is no
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element x ∈ R such that 0× x = 1, that is 0 has no inverse.

Exercise 1 Prove that (Z,+) is a group.

For small groups, it can help to completely write out the operations between group elements.

Definition 2.5 A group table (or Cayley table) for a group (G, ·) with n elements is an n×n
grid containing all possible operations of the group.

Example 2.6 Consider the integers modulo four, that is Z4 = {0, 1, 2, 3}. We can turn this into

a group under addition modulo four +mod 4. Although not a group, we consider it also under

multiplication modulo four ×mod 4. We draw the Cayley tables for them in Table 1 below.

+mod 4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

a The group table for (Z4,+mod 4).

×mod 4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

b The ‘group’ table for (Z4,×mod 4).

Table 1: The Cayley tables for (Z4,+mod 4) and (Z4,×mod 4).

Note: In a group table, the identity is the element whose row is the same as the top row.

Exercise 2 Write out the group table for (Z5,+mod 5).

Definition 2.7 The dihedral group Dn is the group of symmetries of a regular n-gon.

Example 2.8 Consider the dihedral group D3 of symmetries of an equilateral triangle. These are

the symmetries of an equilateral triangle ABC centred at O:

(i) Do nothing (the identity).

(ii) Rotate about O by 2π/3.

(iii) Rotate about O by 4π/3.

(iv) Reflect in the line through OA.

(v) Reflect in the line through OB.

(vi) Reflect in the line through OC.

As in Chapter ??, rotations are taken anti-clockwise. Thus, a rotation about O by −2π/3 is

precisely the same as transformation (iii) above. Also, a rotation about O by 2π is precisely the
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same as transformation (i). Hence, (it at least seems plausible that) we have a complete list of

symmetries of our equilateral triangle. We use Figure 1 to assist with our thinking.

O

A

B C

Figure 1: The symmetries of an equilateral triangle ABC.

If we label transformations (i)–(vi) as I,R, S,A,B,C respectively, we can build the group table

from this. By virtue of laziness, this is left to you in Exercise 3. To get you started, we show how

you can compute members of the group table. Indeed, the operation is denoted ◦ and Figure 2

shows why R ◦A = C (which means ‘first A, then R’, like function composition).

O

A

C B

(a) First, we perform the reflection A.

O

B

A C

(b) After, we perform the rotation R.

Figure 2: Computing R ◦A in the dihedral group D3.

Exercise 3 Complete the below group table for the dihedral group D3.

◦ I R S A B C

I I R S A B C
R S C
S R
A I
B I
C I

Table 2: The group table for (D3, ◦).
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Note: The dihedral group Dn contains 2n elements, so some mathematicians prefer to

denote it by D2n. I am not a fan of this at all; our (my) preference is to label the dihedral

group after the n-gon it applies to, not the number of elements it has.

Definition 2.9 A group (G, ·) is Abelian if g · h = h · g for all g, h ∈ G.

Example 2.10 Here are some Abelian and non-Abelian groups.

(i) The groups (Z,+), (Q,+), (R,+), (C,+) are all Abelian.

(ii) The group D3 is non-Abelian (it is the smallest finite non-Abelian group).

(iii) All groups Dn for n ≥ 3 are non-Abelian.

Remark 2.11 If given a group table, you will be able to immediately spot that it is Abelian if it

is symmetric about the diagonal. Clearly then, Table 2 represents a non-Abelian group whereas

Table 1a represents an Abelian group.

Note: From here on out, we abuse notation and say that G is a group (we won’t write the

operation unless we need it). Also, we write gh in place of the operation notation g · h.

Proposition 2.12 The identity of a group G is unique.

Proof : Suppose G has two identities, namely e, f ∈ G. Then, ef = e because f is an identity,

but ef = f because e is an identity. Consequently, e = f , so they are the same.

Proposition 2.13 The inverse of an element in a group G is unique.

Proof : Suppose g ∈ G has two inverses, namely h, k ∈ G. By definition, this means that

gh = e = hg and gk = e = kg. But now, h = he = h(gk) = (hg)k = ek = k by associativity, so

the ‘two’ suggested inverses are actually the same.

Exercise 4 Fully understand the proofs of Propositions 2.12 and 2.13.

[Note: Knowing how to use each part of the definition of a group is vitally important.]
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Proposition 2.14 Let G be a group and g, h ∈ G.
(i) If gh = e, then g = h−1 and h = g−1.

(ii) The inverse (gh)−1 = h−1g−1.

(iii) The inverse (g−1)−1 = g.

Proof : (i) This is immediate from the definition of an inverse.

(ii) It suffices to show that (gh)(h−1g−1) = e and (h−1g−1)(gh) = e; this is the definition of an

inverse. Indeed, we see that

(gh)(h−1g−1) = g(hh−1)g−1 (h−1g−1)(gh) = h−1(g−1g)h

= geg−1 = h−1eh

= gg−1 = h−1h

= e, = e.

(iii) By definition of inverses, we know that g−1g = e and gg−1 = e. This tells us that the inverse

of g−1 is g. Written mathematically, this is precisely (g−1)−1 = g.

Lemma 2.15 (Cancellation Laws) Let G be a group and g, h, k ∈ G.
(i) We have gh = gk ⇒ h = k. (Left Cancellation)

(ii) We have hg = kg ⇒ h = k. (Right Cancellation)

Proof : We prove (i) and leave (ii) to you in Exercise 5. Indeed, assume that gh = gk. Then, we

can multiply by g−1 on the left to get g−1(gh) = g−1(gk)⇒ (g−1g)h = (g−1g)h⇒ h = k.

Exercise 5 Prove Lemma 2.15(ii), that is Right Cancellation.

Corollary 2.16 Group tables form a Latin square, that is an array where each element

occurs exactly once in each row and once in each column.

Proof : Consider the row of the group table of a finite group G which corresponds to the element

g ∈ G. By definition of a group table, all elements in this row are of the form gx where x ∈ G.
If two elements in this row coincide, that is gx = gy for x, y ∈ G, then the left cancellation law

implies that x = y. As such, an element cannot appear more than once in a row. Suppose the

element h ∈ G appears in the row corresponding to x ∈ G and the column corresponding to
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y ∈ G; this means that h = xy. Therefore, it is possible to write y = x−1h. As such, an element

appears at least once in each row. Combining these means it appears exactly once.

The proof is near-identical for the columns situation.

Example 2.17 The contrapositive of Corollary 2.16 implies that (Z4,×mod 4) is not a group.

Indeed, looking at the row corresponding to 2 in Table 1b, it is clear the elements 1 and 3 do

not appear in this row, so the Latin square property fails.

Note: From now, we use the shorthand notation gn to mean the repeated operation

gg · · · g︸ ︷︷ ︸
n of them

.

We use g−n to represent the product of n copies of g−1. Also, we write the identity e = 1.

Lemma 2.18 In any group G, for an element g ∈ G and integers m,n ∈ Z, we have

gmgn = gm+n and (gm)n = gmn.

Proof : We proceed inductively. For the base case, suppose that n = 0. Then, we can see that

the expressions in the statement are true, since g0 = 1 = e. As for the inductive hypothesis,

suppose it is true for n = k, where k ∈ Z. Then, we see that

gmgk+1 = gmgkg = gm+kg = gm+k+1 and (gm)k+1 = (gm)kgm = gmkgm = gm(k+1).

Thus, by the principal of mathematical induction, the result holds true.

Definition 2.19 For an integer n > 1, we define the group of integers coprime with n as

Z∗
n = {x ∈ Z+ : x is coprime with n},

where the group operation is multiplication modulo n, that is ×mod n.

Remark 2.20 Be careful with the notation; if somebody writes Zn, then it is natural to think of

the additive group of integers modulo n, so named because the group operation is addition. Here,

we write Z∗
n to mean the multiplicative group of integers modulo n, so named for the obvious

reason. Although the notation ∗ means different things depending on the area of mathematics we

are in, at least in group theory, it often means a multiplicative group. For example, Q∗,R∗,C∗

refer to the groups whose underlying sets miss out 0 and whose operations are multiplication.
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Example 2.21 We list a few examples of the groups described in Definition 2.19.

(i) Z∗
2 = {1}.

(ii) Z∗
3 = {1, 2}.

(iii) Z∗
4 = {1, 3}.

(iv) Z∗
5 = {1, 2, 3, 4}.

In general, if p is prime, then the multiplicative group is given by Z∗
p = {1, 2, ..., p− 1}.

Exercise 6 Construct the group table of Z∗
10.

[Hint: To determine Z∗
10, recall that coprime is introduced in Definition ??.]

Definition 2.22 A frieze pattern is a strip in the plane R2 with translational symmetry.

Note: It is common for a frieze to have more symmetries; see Example 2.23, for instance.

Example 2.23 Consider the following pattern consisting of an infinite string of the letter A:

· · ·AAAAA · · ·

We will assume that each A is centred at the point (2n, 0) ∈ R2. Let Tn be the translation by a

shift of 2n in the x-direction, that is Tn(x, y) = (x + 2n, y), and let Rn be the reflection in the

line x = n, that is Rn(x, y) = (−x + 2n, y). Then, the set G of isometries of R2 that preserve

the frieze pattern is given by

G = {Tn : n ∈ Z} ∪ {Rn : n ∈ Z}.

In other words, applying any of Tn and Rn will always send the frieze to the frieze. Hence, G

is a group under composition. In fact, we can draw the group table below (although there are

infinite elements, it suffices to note how the Tn and Rn interact with themselves and each other).

We will demonstrate how to get one of the compositions (the rest are left to do in Exercise 7):

(Tm ◦ Tn)(x, y) = Tm(x+ 2n, y) = (x+ 2n+ 2m, y) = Tm+n(x, y).

This allows us to conclude that Tm ◦ Tn = Tm+n. The rest are presented in Table 3 below.
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◦ Tn Rn

Tm Tm+n Rm+n

Rm Rm−n Tm−n

Table 3: The group table of the isometries preserving the frieze · · ·AAAAA · · · .

Exercise 7 Verify that the other compositions presented in Table 3 are correct.

Definition 2.24 Let G be a group and g ∈ G some element. The order of g is

ord(g) = min{n ∈ Z+ : gn = e},

the least positive integer where applying the operation that many times to g yields e.

Example 2.25 Consider Table 1a. We can see that ord(0) = 1 because we do not have to apply

the operation to itself to get to the identity because 0 already is the identity! However, we see

that ord(1) = 4, because 1+1+1+1 ≡ 0 (mod 4) is the smallest number of times we successively

apply the operation to 1 to get the identity.

Note: We say that ord(g) :=∞ when no such minimum n exists in Definition 2.24.

Proposition 2.26 Let g ∈ G be an element of a group.

(i) If ord(g) =∞, the gk are distinct for all k ∈ Z. Hence, gk = 1 if and only if k = 0.

(ii) If ord(g) = n, the gk repeat in cycles of length n. Hence, gk = 1 if and only if n | k.

Proof : (i) Assume to the contrary that gj = gk where j < k. Then, we can invert to get that

gk−j = 1, which means that ord(g) ≤ k − j, a contradiction to it having infinite order.

(ii) The first n powers g0, g1, ..., gn−1 are distinct, for if they are not, an argument similar to the

contradiction in (i) will take place: if gj = gk where 0 ≤ j < k ≤ n − 1, then inverting gives

gk−j = 1 but k − j < n, contradicting it having order n. By the Division Lemma (Lemma ??),

we can divide any k ∈ Z by the integer n to get a quotient q and remainder r, that is we can

write k = qn+ r, for 0 ≤ r < n. Then, we see that xk = xqn+r = (xn)qxr = xr, where xn = 1 by

definition of order. Consequently, this is the identity if and only if r = 0, that is n | k.
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Exercise 8 Consider the frieze pattern drawn in Figure 3 below.

· · · · · ·

Figure 3: A frieze pattern of triangles.

Suppose one of the triangles has vertices (0, 0), (0, 1), (1, 0). The isometries of the plane

that preserve the frieze are translations Tn which shift the diagram n periods to the right

and rotations Sn about the point (n, 0) by the angle π.

(i) Write down formulae for Tn(x, y) and Sn(x, y).

(ii) Construct the group table for the frieze group.

(iii) State the orders of the elements in the frieze group.

Definition 2.27 Let (G, ·) be a group. Then, a subset H ⊆ G is called a subgroup if it

becomes a group under the same operation · as G. This is then denoted H ≤ G.

Example 2.28 Here are some examples and non-examples of subgroups.

(i) We have a chain of additive subgroups Z ≤ Q ≤ R ≤ C.

(ii) We have a chain of multiplicative subgroups Q∗ ≤ R∗ ≤ C∗.

(iii) The set {0, 1} is not a subgroup of Z4 because it isn’t closed.

(iv) We always have the subgroups {e} ≤ G and G ≤ G, where e ∈ G is the identity.

Lemma 2.29 Let H ≤ G be a subgroup. Then, the following are true:

(i) The identity of H is the identity of G.

(ii) The inverses of elements in H are the same as they are as elements in G.

Proof : (i) Suppose that H and G have identities 1H and 1G, respectively. Then, we see that

1G1H = 1H and 1H1H = 1H . Applying Right Cancellation to 1G1H = 1H1H gives 1G = 1H .

(ii) Let h ∈ H have inverse y ∈ H, meaning that hy = 1H = yh. But because 1H = 1G by part

(i) and because H ⊆ G implies that h, y ∈ G, we have also that hy = 1G = yh, so y is still the

inverse of h when thought of as elements of G.
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Theorem 2.30 (Subgroup Criterion) Let G be a group. A subset H ⊆ G is a subgroup if

and only if it satisfies the following properties:

(i) H contains the identity.

(ii) H is closed under the operation.

(iii) H is closed under inverses.

Proof : (⇐) Suppose first that (i), (ii), (iii) are satisfied. It is clear that H is a group, because it

inherits associativity from G. Thus, it satisfies Definition 2.27 and so we conclude H ≤ G.

(⇒) Suppose now that H ≤ G is a subgroup. Because it is closed under the operation, (ii) holds.

Finally, the additional conditions (i) and (iii) follow directly from Lemma 2.29.

Example 2.31 We will exploit the Subgroup Criterion to prove that R>0 := {x ∈ R : x > 0} ≤ R∗

is a subgroup. Indeed, it is clear that the identity 1 > 0, so we have 1 ∈ R>0, satisfying (i) of the

Subgroup Criterion. Next, we know the product of two positive numbers is positive, so xy ∈ R>0

for any x, y ∈ R>0, satisfying (ii) of the Subgroup Criterion. Finally, the reciprocal of a positive

number is positive, so x−1 ∈ R>0 for all x ∈ R>0, satisfying (iii) of the Subgroup Criterion.

Note: The following are not subgroups of R∗: R≥0, R<0, R>1, R≥1 (think about why).

Exercise 9 Use the Subgroup Criterion to prove that {2n : n ∈ Z} ≤ Q∗ is a subgroup.

Definition 2.32 Let G be a group and g ∈ G. The subgroup generated by g is the group

⟨g⟩ = {gn : n ∈ Z}.

Lemma 2.33 The order of ⟨g⟩ is precisely the order of g, that is
∣∣⟨g⟩∣∣ = ord(g).

Proof : This is immediate from Definition 2.24 and Proposition 2.26.

Exercise 10 We call G cyclic if it is generated by an element, i.e. G = ⟨g⟩ for some g ∈ G.
Prove that a group of order n is cyclic if and only if it contains an element of order n.

Example 2.34 Here are some examples and non-examples of cyclic groups.

(i) The group Zn is cyclic for all n ≥ 1, as it is generated by 1.

(ii) The group Z is cyclic, also generated by 1.
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(iii) The group Z∗
5 = {1, 2, 3, 4} is cyclic, generated by either 2 or 3.

(iv) The group R is not cyclic, since there is no x ∈ R such that {nx : n ∈ Z} = R.

(v) The group R>0 is not cyclic. Indeed, assume to the contrary that there exists x > 0 such

that {xn : n ∈ Z} = R>0. Then, x ̸= 1, so either x > 1 or x < 1. Without loss of generality

(we can swap to x ∈ if needed), we can assume x > 1. Then, no element of the interval

(1, x) can be written as a so-called integer power of x, so {xn : n ∈ Z} ≠ R>0.

Lemma 2.35 Every cyclic group is Abelian.

Proof : In the group ⟨g⟩, we have (gn)(gm) = gn+m = gm+n = (gm)(gn), so it is Abelian.

Proposition 2.36 Every subgroup of Z is of the form ⟨k⟩ = kZ.

Proof : Let H ≤ Z be a subgroup. If H = {0}, then H = 0Z, so we can now assume that H

contains a non-zero element. In particular, let k ∈ H with k > 0 be minimal. Then, kZ ⊆ H.

Assume to the contrary that there exists h ∈ H but h /∈ kZ (meaning that H ̸⊆ kZ). Then, by

the Division Algorithm, we can write h = qk + r for q, r ∈ Z and 0 < r < k. By assumption, we

have that r /∈ H, but we can write r = h− qk ∈ H by closure, a contradiction.

Theorem 2.37 Every subgroup of a cyclic group is cyclic.

Proof : Let G = ⟨g⟩ be cyclic and H ≤ G be a subgroup. Then, we define K = {k ∈ Z : gk ∈ H}.
This is a subgroup of Z (see Exercise 11). Thus, by Proposition 2.36, we know that K = nZ
for some n ∈ Z. Consequently, H = {gk : k ∈ K} = {gna : a ∈ Z} = {(gn)a : a ∈ Z} = ⟨gn⟩,
meaning that H is cyclic.

Exercise 11 Prove that K = {k ∈ Z : gk ∈ H} is a subgroup of Z.

[Hint: Remember that Z is an additive group, which means so too is K.]

Recall in Chapter ?? we introduced the notion of the Cartesian product of two sets. We can,

instead of considering sets, consider the Cartesian product of two groups and endow upon it a

group operation. These are the next types of group to be discussed.
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Definition 2.38 Let G and H be groups with their respective operations. Their direct

product is the group whose underlying set is G×H and whose operation is given pointwise,

that is for all g1, g2 ∈ G and h1, h2 ∈ H,

(g1, h1)(g2, h2) = (g1g2, h1h2).

Note: In Definition 2.38, g1g2 occurs within G (the G-group operation) and h1h2 occurs

within H (the H-group operation). To be more careful, let (G, ·G) and (H, ·H) be groups.

Then, the operation in their direct product is (g1, h1)(g2, h2) = (g1 ·G g2, h1 ·H h2).

Example 2.39 The direct product of G = {I,R, S} (with elements the same as in Example 2.8)

and H = Z∗
4 is the group with the following underlying set:

G×H = {(I, 1), (I, 3), (R, 1), (R, 3), (S, 1), (S, 3)}.

To get to grips with the group operation, note (R, 3)(S, 3) = (R ◦S, 3×mod 4 3) = (I, 1). Indeed,

as explained in the above note, we look at the operation in G, which is composition, applied to

R and S to get the first entry; we look at the operation in H, which is multiplication modulo 4,

applied to 3 and 3 to get the second entry.

Note: The cardinality of the direct product is simply |G×H| = |G||H|.

Lemma 2.40 Let G and H be groups. Then, the order of (g, h) ∈ G ×H is precisely the

lowest common multiple of ord(g) and ord(h), or ∞ if either ord(g) =∞ or ord(h) =∞.

Proof : Suppose that ord(g) = n and ord(h) = m. By Definition 2.24, the order of (g, h) is the

smallest k ∈ Z+ such that (g, h)k = (gk, hk) = (1G, 1H) = 1(G,H). From Proposition 2.26, we

know that gk = 1G if and only if n | k and hk = 1G if and only if m | k. Since the order is the

smallest such positive integer, it follows that k = lcm(n,m), as required. On the other hand, if

either ord(g) =∞ or ord(h) =∞, it is clear that ord((g, h)) =∞ also.

Theorem 2.41 Let G and H be finite cyclic groups. Then, G×H is cyclic if and only if

the group orders |G| and |H| are coprime.

Proof : (⇐) Since G and H are cyclic, we have G = ⟨g⟩ and H = ⟨h⟩. Suppose they have orders

n and m, respectively. Then, Lemma 2.40 tells us that ord((g, h)) = lcm(n,m). However, we
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know from Lemma 2.33 that |G| = n and |H| = m, so the assumption that they are coprime

means ord((g, h)) = nm = |G×H|. So, Exercise 10 implies G×H = ⟨(g, h)⟩ is cyclic.

(⇒) Suppose that |G| = n and |H| = m are not coprime, meaning that lcm(n,m) =: l < nm.

Then, for any integers a, b ∈ Z+, it is true that (ga, hb)l = (gal, hbl) = (1G, 1H) = 1(G,H) because

n | al and n | bl (given that n,m | lcm(n,m) by definition). Thus, ord((g, h)) ≤ l, meaning that

no element has order equal to mn = |G×H|. Consequently, G×H is not cyclic.

Exercise 12 Demonstrate Theorem 2.41 by using G and H from Example 2.39.

[Hint: Show that G = {I, R, S} and H = Z∗
4 are cyclic and give a generator for G×H.]

Often in mathematics, when we have defined ourselves an object (e.g. a group, a set, whatever),

we want to be able to discuss when two of these objects are the ‘same’. For sets, we introduced

the idea of functions (specifically, a bijection tells us when two sets are the ‘same’). We have

something analogous for groups but we need some extra structure; we have group operations in

the mix that we need to worry about.

Definition 2.42 A map between groups φ : G → H is a (group) homomorphism if for all

g1, g2 ∈ G, we have φ(g1g2) = φ(g1)φ(g2) (that is φ respects the group operations). If

φ is bijective, then we call it a (group) isomorphism, wherein we say that the groups are

isomorphic, denoted G ∼= H.

Example 2.43 Here are some examples of group homomorphisms.

(i) The map φ : R→ R>0 given by ϕ(x) = exp(x); it is injective and surjective (i.e. bijective).

(ii) The map ψ : Z→ Z3 given by ψ(n) = n (mod 3); it is not injective but it is surjective.

(iii) The map ϕ : Z→ Z given by ϕ(m) = 2m; it is injective but not surjective.

(iv) The map θ : R→ R∗ given by θ(y) = exp(y); it is not injective and not surjective.

Note: If you haven’t come across the exponential function exp(x) = ex yet, don’t worry

about it. Just be aware that it allows us to ‘translate from addition to multiplication’,

and its inverse log(x) allows us to do the reverse of that.

Remark 2.44 Necessarily, for a bijection to exist between groups, then it must be a bijection on

the underlying sets. In particular, isomorphic groups have the same cardinality. This allows us

to, in principle, look at the group tables of two groups and ‘see’ an isomorphism if they are the
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same size, have elements in corresponding positions, have identities in the same place, etc. (up

to reordering the rows).

Lemma 2.45 A homomorphism φ : G → H preserves the identity and respects inverses,

that is φ(1G) = 1H and φ(g−1) = φ(g)−1 for all g ∈ G.

Proof : For the first part, φ(1G)φ(1G) = φ(1G1G) = φ(1G), by definition of a homomorphism.

However, φ(1G) ∈ H is just some element of the group H, so we can write φ(1G) = φ(1G)1H ,

by definition of the identity of H. Thus, we have φ(1G)φ(1G) = φ(1G)1H and Left Cancellation

gives us the result.

For the second part, gg−1 = 1G by definition. Therefore, φ(g)φ(g−1) = φ(gg−1) = φ(1G) = 1H

by the first part above. Hence, this tells us that the inverse of φ(g) is precisely φ(g−1). Written

out properly, that is φ(g)−1 = φ(g−1).

Proposition 2.46 Let φ : G→ H be an isomorphism. Then, the following properties hold.

(i) The elements g ∈ G and φ(g) ∈ H have the same order.

(ii) The groups have the same number of elements of order n, for each n ∈ Z+.

(iii) G is Abelian if and only if H is Abelian.

(iv) H is cyclic if and only if H is cyclic.

Proof : (i) Suppose ord(g) = n. Then, gn = 1G which means that φ(g)n = φ(gn) = φ(1G) = 1H ,

but because n is minimal such that this occurs, we have ord(φ(g)) = n also.

(ii) This is a trivial consequence of the argument in (i).

(iii) Suppose G is Abelian, meaning that g1g2 = g2g1 for all g2, g2 ∈ G. Then, φ(g1g2) = φ(g2g1)

which is equivalent to φ(g1)φ(g2) = φ(g2)φ(g1). Thus, H is Abelian. Conversely, because

φ−1 : H → G is also an isomorphism, H being Abelian implies G being Abelian.

(iv) Suppose G = ⟨g⟩. Then, because φ is surjective, for any h ∈ H, there exists a ∈ G such that

h = φ(a). By the fact that G is cyclic, we have a = gn for some n ∈ Z+. Substituting this into

the previous expression implies that h = φ(gn) = φ(g)n. Thus, H = ⟨φ(g)⟩ is cyclic. Conversely,
because φ−1 : H → G is surjective, H being cyclic implies G being cyclic.

Exercise 13 Let G = R (under +) and H = R∗ (under ×). Show that H has an element

of order two and that G does not. Conclude from this that G ≇ H are non-isomorphic.

Theorem 2.47 Two cyclic groups are isomorphic if and only if they have the same order.
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Proof : (⇐) This is trivial, since they are isomorphic as sets (see Remark 2.44).

(⇒) Suppose that G = ⟨g⟩ and H = ⟨h⟩ have the same order. If said order is infinite, then gk are

distinct for all k ∈ Z+ by Proposition 2.26. Thus, we can define φ : G→ H via φ(gk) = hk. This

is a homomorphism (something which you will prove in Exercise 14) and it is clearly bijective,

meaning that G ∼= H. If said order is finite, n say, then the powers gk repeat with period n,

again a consequence of Proposition 2.26. The same is true of the powers hk, so the same map

φ : G→ H given by φ(gk) = hk implies G ∼= H. Either way, the groups are isomorphic.

Exercise 14 Show that φ : G→ H in the proof of Theorem 2.47 is a homomorphism.

Corollary 2.48 (Chinese Remainder Theorem) Zn×Zm
∼= Znm if and only if n,m coprime.

Proof : If n and m are coprime, then Zn × Zm is cyclic by Theorem 2.41. Since Znm is cyclic

and of the same order, they are isomorphic by Theorem 2.47. Conversely, if n and m are not

coprime, then Zn × Zm is not cyclic; it is therefore not isomorphic to Znm.

Example 2.49 Z60
∼= Z20 × Z3

∼= Z5 × Z12
∼= Z5 × Z4 × Z3 by the Chinese Remainder Theorem.

Definition 2.50 Let H ≤ G be a subgroup. A right coset of H in G is a subset of G of the

form Hg := {hg : h ∈ H}, with g ∈ G fixed. Similarly, a left coset has the form gH.

Note: If a group is Abelian, then the left and right cosets are the same. Even if it is not,

we will often abuse nomenclature and just refer to the ‘cosets’ (at least if it is clear which

type of coset we are working with). To be safe, assume that ‘cosets’ means right cosets.

Example 2.51 Here are two examples of cosets.

(i) Consider the dihedral group G = D3 as in Example 2.8 with group table in Exercise 3. We

can use the group table to compute the cosets of H = {I,R, S} in D3. Indeed,

HI = {I,R, S}, HA = {A,C,B},

HR = {R,S, I}, HB = {B,A,C},

HS = {S, I,R}, HC = {C,B,A}.

Because order doesn’t matter in sets, we essentially have only two cosets of H in D3,

namely H itself and the coset {A,B,C}. We will see in Exercise 15 that the cosets really

do depend on the choice of subgroup H.
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(ii) Consider the group G = Z. We can compute the cosets of H = 3Z = {...,−6,−3, 0, 3, 6, ...}
in Z. Indeed,

3Z+ 0 = {...,−6,−3, 0, 3, 6, ...} = Z± 3 = Z± 6 = · · · ,

3Z± 1 = {...,−5,−2, 1, 4, 7, ...} = Z± 4 = Z± 7 = · · · ,

3Z± 2 = {...,−4,−1, 2, 5, 8, ...} = Z± 5 = Z± 8 = · · · .

Here, we essentially have three cosets: H = 3Z itself, 3Z+ 1 and 3Z+ 2.

Exercise 15 Determine the cosets of the subgroup K = {I, A} in D3.

Proposition 2.52 Let H ≤ G be a subgroup.

(i) H is itself a coset in G.

(ii) Every element of G belongs to a coset.

(iii) If y ∈ Hx is an element of the coset, then Hy = Hx are the same coset.

(iv) Two cosets are either equal or disjoint.

(v) Two cosets Hx = Hy if and only if xy−1 ∈ H.

Proof : (i) The subgroup H is itself a coset since H = H1, where 1 is the identity of G.

(ii) The element g ∈ G belongs to the coset Hg, since H is a subgroup and therefore contains

the identity. In other words, g = 1g ∈ Hg.

(iii) Since y ∈ Hx, it means that y = hx for some h ∈ H. But then, because H is a subgroup

and is therefore closed under forming inverses, this means that x = h−1y by the Cancellation

Laws. To show that Hx = Hy, we prove the following inclusions: Hx ⊆ Hy and Hy ⊆ Hx.

(a) To show that Hx ⊆ Hy, we need to pick an arbitrary element of Hx and show that it is

also in the coset Hy. Indeed, for h′ ∈ H, we know that h′x ∈ Hx by definition. However,

h′x = (h′h−1)y ∈ Hy by associativity and closure of H under the operation. Hence, we

have this inclusion.

(b) To show that Hy ⊆ Hx, we need to pick an arbitrary element of Hy and show that it is

also in the coset Hx. Indeed, for h′ ∈ H, we know that h′y ∈ Hy by definition. However,

h′y = (h′h)x ∈ Hx by associativity and closure of H under the operation. Thus, we also

have the other inclusion.

(iv) Suppose that Hx∩Hy ̸= ∅, that is the cosets are not disjoint. Then, there exists an element

z ∈ Hx ∩Hy. By part (iii), this means that Hx = Hz = Hy and so the cosets are equal.
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(v) Now, Hx = Hy if and only if x ∈ Hy by (iii), which is equivalent to saying there exists

h ∈ H such that x = hy, that is xy−1 = h and therefore xy−1 ∈ H.

Corollary 2.53 For H ≤ G a subgroup, G is partitioned by the cosets of H.

Proof : (Indirect) This is a direct consequence of Proposition 2.52.

(Direct) An alternate proof is to define an equivalence relation on G as follows: for x, y ∈ G,
we say x ∼ y if and only if xy−1 ∈ H (the proof that this is an equivalence relation is precisely

Exercise 16). From Theorem ??, we know that the equivalence classes partition (the underlying

set of) G. Finally, the equivalence class [x] is precisely the coset Hx. Indeed,

[x] = {y ∈ G : y ∼ x} = {y ∈ G : yx−1 ∈ H} = {y ∈ G : y ∈ Hx} = Hx.

Exercise 16 Show that ∼ in the proof of Corollary 2.53 is an equivalence relation.

Definition 2.54 Let H ≤ G be a subgroup. The right index of H in G is the number of

distinct right cosets of H in G, denoted [G : H]. Similarly, the left index is [H : G].

Theorem 2.55 (Lagrange’s Theorem) Let H ≤ G be a subgroup. Then, |G| = |H|[G : H].

Proof : By Corollary 2.53, each coset of H in G has |H| elements. Indeed, if H = {h1, ..., hk},
then Hg = {h1g, ..., hkg} and each element is distinct by the Cancellation Laws. Also, every

element of G belongs to precisely one coset (by definition of a partition). From Definition 2.54,

there are precisely [G : H] many cosets in total.

Note: Lagrange’s Theorem really says that |H| divides |G| for any subgroup H ≤ G.

Example 2.56 Consider Example 2.51(i), wherein G = D3 and H = {I,R, S}. In this situation,

we know that |G| = 6 and |H| = 3. Thus, Lagrange’s Theorem implies the index of H in G is

[G : H] = 2; this was the case in the aforementioned example.

Corollary 2.57 The order of an element of a finite group divides the order of the group.

Proof : For g ∈ G, ord(g) =
∣∣⟨g⟩∣∣ by Lemma 2.33. Apply Lagrange’s Theorem to H = ⟨g⟩.
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Corollary 2.58 Any group of prime order is cyclic.

Proof : If |G| = p for p prime, then any element g ∈ G which is not the identity will have order

p by Corollary 2.57. Consequently, such an element is a generator, i.e. G = ⟨g⟩.

Corollary 2.59 If |G| = n, then gn = 1 for all g ∈ G.

Exercise 17 Prove Corollary 2.59.

[Hint: Use Proposition 2.26(ii) and note that n is not necessarily the order of g.]

We can also finally provide a proof of Fermat’s Little Theorem using these group-theoretic means.

For reference, we stated the result in Theorem ?? (and alternate versions in Corollary ??). In

particular, we will prove the following result without using Theorem ?? (which is what we did

in Exercise ??).

Corollary 2.60 (Fermat’s Little Theorem) Let p be prime. If a ∈ Z such that p ̸ | a, then
ap−1 ≡ 1 (mod p). Otherwise, ap ≡ a (mod p).

Proof : Consider the multiplicative group Z∗
p = {1, ..., p − 1} and let r be the remainder upon

dividing a ∈ Z by p. Because we assume that p ̸ | a, it means that the remainder r ∈ Z∗
p. As

a result of Corollary 2.59, we know that rp−1 = 1. As such, ap−1 ≡ 1 (mod p). Otherwise, if

p | a, then either both sides of the congruence are zero (so the theorem is trivially satisfied) or

multiplying the formula just derived by a gives the desired result.

Definition 2.61 Let φ : G→ H be a group homomorphism.

(i) The kernel is the subset ker(φ) = {g ∈ G : φ(g) = 1H}.
(ii) The image is the subset im(φ) = {φ(g) ∈ H : g ∈ G}.

Here, the image is the same as in Definition ?? when applied to a map between two sets. The

kernel is new; this has a broader definition (which will come later). In the context of group

homomorphisms, it’s the set of all elements of G that get sent to the identity in H. They are

subsets, but we actually have more.

Proposition 2.62 For φ : G→ H a homomorphism, ker(φ) ≤ G and im(φ) ≤ H.
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Proof : For a homomorphism φ : G→ H, we will show that ker(φ) ≤ G is a subgroup and leave

the rest of the proof to do in Exercise 18. To do this, we appeal to the Subgroup Criterion. Indeed,

let g1, g2 ∈ ker(φ). Then, φ(g1) = 1H = φ(g2). But now, by properties of homomorphisms, we

see that φ(g1g2) = φ(g1)φ(g2) = 1H1H = 1H , so g1g2 ∈ ker(φ). Next, we use Lemma 2.45

to conclude immediately that 1G ∈ ker(φ) and (almost) immediately that if g ∈ ker(φ), then

φ(g−1) = φ(g)−1 = 1−1
H = 1H , i.e. g−1 ∈ ker(φ). By the Subgroup Criterion, ker(φ) ≤ G.

Exercise 18 Prove that for φ : G→ H a homomorphism, im(φ) ≤ H is a subgroup.

Example 2.63 Here are some examples of kernels and images.

(i) The homomorphism exp : C→ C∗ has kernel 2πiZ and image C∗.

(ii) The homomorphism φ : Z→ G given by φ(k) = gk has kernel ord(g)Z and image ⟨g⟩.

(iii) The homomorphism ψ : Z→ Zn given by ψ(k) = k (mod n) has kernel nZ and image Zn.

Lemma 2.64 A group homomorphism φ : G→ H is injective if and only if ker(φ) = {1G}.

Proof : (⇒) Let φ be injective and g ∈ ker(φ). Then, since φ(g) = 1H = φ(1G), the definition of

injectivity implies that g = 1G. Hence, ker(φ) = {1G}.

(⇐) Let ker(φ) = {1G} and φ(g) = φ(h). Now, φ(gh−1) = φ(g)φ(h)−1 = φ(g)φ(g)−1 = 1H , so

we conclude gh−1 ∈ ker(φ), meaning gh−1 = 1G and so g = h. Hence, φ is injective.

Exercise 19 (Harder) Let φ : G→ H and ψ : G→ H be homomorphisms. Prove that

Eq(φ,ψ) := {g ∈ G : φ(g) = ψ(g)} ≤ G

is a subgroup, called the equaliser of φ and ψ, using the Subgroup Criterion.

Classification of Groups

One of the milestones in mathematics research was the classification of finite simple groups. In

fact, the proof consists of tens of thousands of pages in several hundred journal articles written

by about 100 authors between the years 1955 and 2004. We won’t dwell on this but ‘simple’ is

defined in Section 3. There are a few results we can prove pretty much immediately.

Definition 2.65 The cyclic group of order n is the group Cn = ⟨x⟩ with ord(x) = n.
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Theorem 2.66 Up to isomorphism, the only group of prime order p is Cp.

Proof : This is a direct consequence of Corollary 2.58.

Theorem 2.67 Up to isomorphism, the groups of order four are C4 and C2 × C2.

Note: The group C2 × C2 is often called the Klein Vierergruppe, denoted V .

Proof : Let G be a group of order four. If it is cyclic, then G ∼= C4 by Theorem 2.47. Otherwise,

if it isn’t cyclic, then every element has either order one or two, meaning that all elements satisfy

g2 = 1. This completely determines the group table to be that of the Klein Vierergruppe.

Exercise 20 Construct the group table for the Klein Vierergruppe, generated by a, b, c.

[Hint: You may use the fact it is really only generated by a and b, since c = ab.]

Lemma 2.68 Let G be a group such that ord(g) = 2 for all g ̸= 1. Then, G is Abelian.

Proof : Because g2 = 1 for all g ̸= 1 (well, this is also true for the identity), it means that

g−1 = g. In other words, every element is its own inverse. Consequently,

g1g2g
−1
1 g−1

2 = g1g2g1g2 = (g1g2)
2 = 1,

which is to say g1g2 = g2g1, i.e. the operation is commutative and thus G is Abelian.

Theorem 2.69 Up to isomorphism, the groups of order six are C6 and D3.

Proof : Let G be a group of order six. If it is cyclic, then G ∼= C4 by Theorem 2.47. Otherwise, if

it isn’t cyclic, then it contains an element of order three. If not, then all non-trivial elements have

order two and, by Lemma 2.68, it meansG is commutative, soH = {1, x, y, xy} ≤ G is a subgroup

for x, y ∈ G. However, this contradicts Lagrange’s Theorem because 4 ̸ | 6. Now, let h ∈ G be such

that ord(h) = 3 and consider the subgroup H = {1, h, h2}. Consider now an element g ∈ G \H
which is not in H. By Corollary 2.53, we know that G = H ∪ Hg = {1, h, h2, g, hg, h2g}. In

the case that ord(g) = 3, it follows that g2 /∈ {1, g, hg, h2g}. Thus, the only option is to have

g2 ∈ {h, h2}. However, we get a contradiction in that g ∈ H because

g = (g2)2 ∈ {h2, h4} = {h2, h},
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using the fact that ord(h) = 3. Consequently, the only option is for ord(g) = 2 and, similarly, we

know that ord(hg) = 2 = ord(h2g) also. In particular, this means that hghg = 1 and, multiplying

by h2 on the left and g on the right, gh = h2g. This is enough information to complete the group

table for G, from which it will be the ‘same’ as Table 2, meaning G ∼= D3.

Definition 2.70 The quaternions are expressions of the form

{a+ bi+ cj + dk : a, b, c, d ∈ R and i2 = j2 = k2 = ijk = −1}.

Lemma 2.71 The quaternion units i, j, k satisfy the following properties:

(i) ij = k and ji = −k.
(ii) jk = i and kj = −i.
(iii) ki = j and ik = −j.

Proof : Using the facts ijk = −1 and k2 = −1, we see that ijk2 = −k ⇔ −ij = −k ⇔ ij = k.

Similarly, i2jk = −i⇔ jk = i, from which it follows that i2jki = −i2 = 1⇔ jki = −1. Applying
a similar procedure, we see that j2ki = −j ⇔ ki = j. The anti-commutativity, the property that

swapping the order in each of the first equations in (i), (ii) and (iii) gives a minus sign, comes

from similar manipulations.

Exercise 21 Prove the anti-commutativity statements in Lemma 2.71, that is

ji = −k, kj = −i, ik = −j.

Definition 2.72 The quaternion group is the group Q = {±1,±i,±j,±k} under the multi-

plication operation defined by the relations in Definition 2.70 and Lemma 2.71.

Theorem 2.73 Up to isomorphism, the groups of order eight are

C8, C4 × C2, C2 × C2 × C2, D4, Q.

Proof : Omitted.
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3 Normal Subgroups

The discussion now takes a turn to look at a particular class of subgroup. These are very

important in group theory, in part because they allow us to construct ‘new groups from old’ by

taking the so-called quotient of a group. First of all, we will get to grips with conjugation in a

group (as we will see, this is really the key idea behind a normal subgroup).

Definition 3.1 Let G be a group and x, y ∈ G be distinct. They are right conjugate if there

exists g ∈ G such that y = g−1xg. Similarly, they are left conjugate if y = gxg−1. The

set of all elements conjugate to a given element is called a conjugacy class. The conjugacy

class containing x is the set conjG(x) := {g−1xg : g ∈ G}.

Example 3.2 Here are some examples of conjugacy classes in groups.

(i) For any group G, we have conjG(1) = {1} since g−11g = g−1g1 = 1.

(ii) For an Abelian group G, we have conjG(x) = {x} since g−1xg = g−1gx = x.

(iii) For the dihedral group D3, the conjugacy classes are {I}, {R,S}, {A,B,C}.

Theorem 3.3 A group is the disjoint union of its conjugacy classes.

Proof : It is sufficient to prove that conjugacy is an equivalence relation. In this vein, we define

a relation on G as follows: x ∼ y if and only if there exists g ∈ G such that y = g−1xg. This is

an equivalence relation. (Symmetry) Clearly, x ∼ x because we can take g = 1. (Reflexivity) If

x ∼ y, then y = g−1xg; this is to say x = gyg−1 and since g−1 ∈ G by closure under inverses, we

have that y ∼ x. (Transitivity) If x ∼ y and y ∼ z, then y = g−1xg and z = h−1yh. But now,

we see that z = h−1(g−1xg)h = (gh)−1x(gh) and since gh ∈ G by closure under the operation,

we have that x ∼ z. Consequently, Theorem ?? implies the result.

Proposition 3.4 Conjugate elements have the same order.

Proof : Suppose that x and y are conjugate in G, meaning y = g−1xg for some g ∈ G. Assume

further that ord(y) = n. Then, we see that yn = 1 is equivalent to

(g−1xg)n = 1 ⇔ (g−1xg)(g−1xg) · · · (g−1xg) = 1 ⇔ g−1xng = 1 ⇔ xn = 1.

As n is minimal with yn = 1, it is minimal such that xn = 1. We conclude that ord(x) = n.



26 Normal Subgroups

Definition 3.5 Let G be a group and x ∈ G. Then centraliser of x in G is the set

CG(x) = {g ∈ G : gx = xg}.

Note: We call CG(x) the centraliser subgroup of x, because it is a subgroup (prove this).

Theorem 3.6 Let x ∈ G. Then,
∣∣conjG(x)∣∣ = [G : CG(x)].

Proof : We begin by showing that the cosets of CG(x) in G are equal for elements in the same

conjugacy class. So, let g, h ∈ G and suppose that g−1xg = h−1xh. If we multiply on the

right by h−1 and on the left by g, we get xgh−1 = gh−1x. By definition, this means that

gh−1 ∈ CG(x) because it commutes with x. Looking back to Proposition 2.52(v), this means

that CG(x)g = CG(x)h are equal cosets. Therefore, the number of conjugacy classes is just the

number of these cosets, which is precisely what the statement above says.

Remark 3.7 There is a significant generalisation to Theorem 3.6 discussed in Chapter ??; it is

clear that the above theorem is analogous to Theorem ?? in Section ?? (where the group action

is conjugation). More will be said in the aforementioned chapter.

We can now make the main definition of this section and develop some related theory.

Definition 3.8 A subgroup N ≤ G is called normal if g−1ng ∈ N for all g ∈ G and n ∈ N .

In other words, N is closed under conjugation. This is denoted N ⊴ G.

Example 3.9 Here are some examples and non-examples of normal subgroups.

(i) For any group G, we have {1} ⊴ G and G ⊴ G.

(ii) For an Abelian group G, any subgroup H ⊴ G is normal.

(iii) For D3, the subgroup {I,R, S} ⊴ D3 but the subgroups {I, A}, {I,B}, {I, C} ⋬ D3.

Note: If a group’s only normal subgroups are trivial, {1} and G itself, it is called simple.

Proposition 3.10 For a homomorphism φ : G→ H, the kernel ker(φ) ⊴ G is normal.

Proof : We already showed that ker(φ) ≤ G in Proposition 2.62. It remains to show that it

is closed under conjugation by elements of G. Indeed, if x ∈ ker(φ) and g ∈ G, we see that

φ(g−1xg) = φ(g)−1φ(x)φ(g) = φ(g)−11Hφ(g) = φ(g)−1φ(g) = 1H , meaning g−1xg ∈ ker(φ).
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Exercise 22 For a homomorphism φ : G→ H, is im(φ) ⊴ H normal? Justify your claim.

Lemma 3.11 Let N ≤ G. Then, N is normal if and only if Ng = gN for all g ∈ G.

Proof : (⇒) If N ⊴ G, then g−1ng ∈ N for all n ∈ N and g ∈ G. But this means that

ng = g(g−1ng) ∈ gN (since g−1ng ∈ N), which means that Ng ⊆ gN . For the other inclusion,

we can see that gng−1 = (g−1)−1n(g−1) ∈ N , from which we get gn = (gng−1)g ∈ Ng, implying

that gN ⊆ Ng. Combining both inclusions gives the desired equality.

(⇐) If the cosets Ng = gN coincide, this means that any element of the right coset can be

expressed as an element of the left coset. In particular, where n ∈ N , this means ng = gm for

some m ∈ N . Hence, g−1ng = m ∈ N and this is what it means to be normal.

Corollary 3.12 Any subgroup of index two is normal.

Proof : Let H ≤ G be a subgroup such that [G : H] = 2 = [H : G]. By definition, there are only

two right cosets; because H is always a coset, it follows from Corollary 2.53 that the other coset

is G \H, i.e. everything not in H. This is identical for the left cosets. By Lemma 3.11, the left

and right cosets coincide, so H ⊴ G is normal.

Corollary 3.13 Let N ⊴ G. For x, y ∈ G, it follows that (Nx)(Ny) = N(xy).

Proof : Well, associativity tells us that (Nx)(Ny) = N(xN)y = N(Nx)y = N(xy), where we

applied Lemma 3.11 to get the second equality. Finally, note that NN := {nm : n,m ∈ N} is
just the subgroup N itself because it is closed under the operation and contains the identity.

We are nearly ready to define the next important object in this section, but first an example.

Example 3.14 We again consider the dihedral group D3 and its group table, presented in Table 2.

For completion (spoilers for Exercise 3), we write out the table in full below, which we separate

into blocks. In fact, we can see that this defines a natural multiplication of cosets as in Table

4b, where H = {I,R, S} ⊴ D3 as in Example 3.9 and Example 2.51(i).
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◦ I R S A B C

I I R S A B C
R R S I C A B
S S I R B C A

A A B C I R S
B B C A S I R
C C A B R S I

a The completed group table for D3.

HI HA

HI HI HA

HA HA HI

b The coset group table for D3.

Table 4: The multiplication of cosets in D3.

Definition 3.15 If N ⊴ G is a normal group, then the set of cosets of N in G equipped

with the operation from Corollary 3.13 is the quotient group of G by N , denoted G/N .

We call the homomorphism π : G→ G/N given by π(g) = Ng the canonical projection.

Exercise 23 Show that the operation from Corollary 3.13 gives a group structure on G/N .

Lemma 3.16 The canonical projection is a surjective homomorphism with ker(π) = N .

Proof : Showing that π is a homomorphism is standard: π(gh) = N(gh) = (Ng)(Nh) = π(g)π(h)

for g, h ∈ G, where we use Corollary 3.13 in the second equality. Next, the pre-image of the

element Ng ∈ G/N is simply g (that is to say we have found an element of G to get to any

element of G/N), so π is surjective. Finally, g ∈ ker(π) if and only if Ng = N , which is to say

that g ∈ N by Proposition 2.52. In other words, ker(π) = N , as required.

Example 3.17 Consider the additive group G = Z. Because it is Abelian by Example 2.10(i),

we know that all subgroups are normal by Example 3.9. In particular, the subgroup nZ ⊴ Z
of multiples of n is normal. The cosets of nZ in Z are precisely nZ + 0, ..., nZ + (n − 1), a

generalisation of Example 2.51(ii). The canonical projection is the map π : Z→ Z/nZ whereby

k 7→ k (mod n). This looks awfully similar to Zn, the integers under addition modulo n....

Theorem 3.18 (First Isomorphism Theorem) For a group homomorphism φ : G→ H,

G/ ker(φ) ∼= im(φ).

Proof : The isomorphism is f : G/ ker(φ)→ im(φ), where f
(
ker(φ)g

)
= φ(g). It is well-defined

and injective since ker(φ)g1 = ker(φ)g2 ⇔ g1g
−1
2 ∈ ker(φ) ⇔ φ(g1g

−1
2 ) = 1H ⇔ φ(g1) = φ(g2).

It remains to prove surjectivity: im(f) = {f
(
ker(φ)g

)
: g ∈ G} = {φ(g) : g ∈ G} = im(φ).
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Note: In the above proof, we may write f as φ to emphasise the dependence on φ.

Exercise 24 Explain the equivalences for the injectivity in the proof of Theorem 3.18.

Example 3.63 (Continued) Here are some uses of the First Isomorphism Theorem.

(i) We have an isomorphism C/2πiZ ∼= C∗.

(ii) We have an isomorphism Z/ ord(g)Z ∼= ⟨g⟩.

(iii) We have an isomorphism Z/nZ ∼= Zn.

In fact, (ii) and (iii) suggest an additional isomorphism between cyclic groups and the integers

under addition modulo some number. In particular, the map f : Z → ⟨g⟩ given by f(k) = gk

will almost work. However, if we say that ord(g) = n, then we can see that ker(f) = nZ but it

is a surjective map. Hence, the First Isomorphism Theorem implies that Zn
∼= ⟨g⟩.

Remark 3.92 Since we know that the canonical projection π is surjective, the First Isomorphism

Theorem implies that a subgroup N ≤ G is normal if and only if it is the kernel of some group

homomorphism from G to another group (said other group is isomorphic to G/N).

Corollary 3.93 Let G and H be finite groups and φ : G→ H be a homomorphism. Then,∣∣im(φ)
∣∣ divides both the orders |G| and |H|.

Proof : By the First Isomorphism Theorem, we know G/ ker(φ) ∼= im(φ). Thus, it follows that

|G|/
∣∣ker(φ)∣∣ =

∣∣im(φ)
∣∣ since bijections, in general, preserve cardinalities (Definition ??). An

immediate consequence is that
∣∣im(φ)

∣∣ divides |G|. Next, since im(φ) ≤ H, by Proposition 2.62,

we directly apply Lagrange’s Theorem to conclude that
∣∣im(φ)

∣∣ divides |H|.
Corollary 3.94 Let G and H be finite groups whose orders |G| and |H| are coprime. Then,

any homomorphism φ : G→ H is trivial.

Proof : By Corollary 3.93,
∣∣im(φ)

∣∣ divides both |G| and |H|. Because the aforementioned numbers

are coprime, it must be that
∣∣im(φ)

∣∣ = 1. The only option for a homomorphism φ : G → H is

that which is defined by φ(g) = 1H . In other words, the homomorphism is trivial.

Exercise 25 For an arbitrary group G, prove that (i) G/{1} ∼= G and (ii) G/G ∼= {1}.

[Hint: For each, construct a homomorphism and apply the First Isomorphism Theorem.]
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There are an additional two isomorphism theorems that are widely known in group theory. They

concern isomorphisms involving normal subgroups and even getting to their statements is more

challenging. Bear with and we will soon be computing isomorphisms like nobody’s business.

Lemma 3.95 Let G be a group and H be a (possibly infinite) family of subgroups of G.

Then, the intersection of all these subgroups
⋂

H∈HH ≤ G is itself a subgroup.

Proof : We will show that the intersection of two subgroups H,K ≤ G is itself a subgroup and

then we can extend this arbitrarily. Indeed, we apply the Subgroup Criterion to H ∩K. First,

if x, y ∈ H ∩K, then x, y ∈ H and x, y ∈ K by definition of the intersection, but because these

are both subgroups, they are closed under the operation and forming inverses. Thus, xy ∈ H
and xy ∈ K (which means that xy ∈ H ∩K) as well as x−1 ∈ H and x−1 ∈ K (which means

that x−1 ∈ H ∩K). Lastly, 1 ∈ H and 1 ∈ K, so 1 ∈ H ∩K. The Subgroup Criterion implies

that H ∩K ≤ G. A near-identical argument gives the result for a generic-sized family H.

Corollary 3.96 Let G be a group and N be a (possibly infinite) family of normal subgroups

of G. Then, the intersection of all these subgroups
⋂

N∈N N ⊴ G is itself normal.

Proof : By Lemma 3.95, we know that
⋂

N∈N N ≤ G is at least a subgroup. For normality,

suppose we have n ∈
⋂

N∈N N and g ∈ G. By definition of the intersection, n ∈ N for every

normal subgroup in our family, N ∈ N . By normality in each of these subgroups, we know that

g−1ng ∈ N for every N ∈ N . Hence, it is true that g−1ng ∈
⋂

N∈N N .

Lemma 3.97 Let G be a group, H ≤ G a subgroup and N ⊴ G a normal subgroup. Then,

N ∩H ⊴ H is normal in H.

Proof : First, Lemma 3.95 implies thatN∩H ≤ H is a subgroup ofH. This is becauseN∩H ⊆ H
is at least a subset, by definition of intersection (Definition ??), and the group structure comes

from the fact that N,H ≤ G are both subgroups. It remains to show normality. Well, let

x ∈ N ∩ H (meaning x ∈ N and x ∈ H) and we will conjugate by h ∈ H. But we know that

h−1xh ∈ N because N ⊴ G is normal (and h ∈ G since H ⊆ G). Since H is closed under the

operation and forming inverses, we also have h−1xh ∈ H. Therefore, h−1xh ∈ N ∩H.
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Exercise 26 (Longer) Let G be a group, H ≤ G and N ⊴ G. Prove the following:

(i) NH = HN , where NH := {nh : n ∈ N and h ∈ H}.

[Hint: You may find it useful to work with NH =
⋃

h∈H Nh.]

(ii) NH ≤ G is a subgroup.

[Hint: Be aware of Remark 3.98.]

(iii) N ⊴ NH is a normal subgroup.

Remark 3.98 If AB = BA are equal sets, it does not imply that ab = ba (this might be true,

but this isn’t true in general). The only thing that can be concluded is ab = βα for some α ∈ A
and β ∈ B. In words, this says the elements aren’t necessarily commutative, but we can always

re-write the elements so that they are of the form

[something in A][something in B] = [something (else) in B][something (else) in A].

Theorem 3.99 (Second Isomorphism Theorem) For G a group, H ≤ G and N ⊴ G,

H/(H ∩N) ∼= NH/N.

Proof : Define the map f : H → NH/N by f(h) = Nh. Now, Lemma 3.97 and Exercise 26 imply

that this map is well-defined. It remains to show that it is a homomorphism and to compute its

kernel and image. Well, for h1, h2 ∈ H, we see f(h1h2) = N(h1h2) = (Nh1)(Nh2) = f(h1)f(h2),

by using Corollary 3.13. Next, suppose that N(nh) ∈ NH/N , where n ∈ N and h ∈ H. Then,

N(nh) = (Nn)h = Nh = f(h), so f is surjective. Finally,

ker(f) = {h ∈ H : Nh = N}

= {h ∈ H : h ∈ N}

= H ∩N,

where the second equality comes from Proposition 2.52 and the third equality is the definition

of an intersection. Hence, applying the First Isomorphism Theorem means that

H/ ker(f) ∼= im(f) ⇔ H/(H ∩N) ∼= NH/N.
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Example 3.100 Let G = Z, N = 10Z and H = 4Z. By the Second Isomorphism Theorem,

4Z/20Z = 4Z/(4Z ∩ 10Z) ∼= (10Z+ 4Z)/10Z.

Be aware that because G here is an additive group, it follows that the operations on the cosets

is also additive, so in the statement of the Second Isomorphism Theorem, instead of NH (which

is multiplicative notation), we will have N +H, which is exactly what we have above.

Lemma 3.101 Let G be a group with normal subgroups M,N ⊴ G such that M ≤ N .

(i) M ⊴ N is a normal subgroup.

(ii) N/M ⊴ G/M is a normal subgroup.

Proof : (i) We already assume thatM ≤ N , so now we take m ∈M and n ∈ N . BecauseM ⊴ G,

it is true g−1mg ∈M for any g ∈ G. In particular, this holds for n ∈ N ⊆ G, as required.

(ii) Because N ≤ G, it follows that N/M ≤ G/M , so now we take Mn ∈ N/M and Mg ∈ G/M ,

where n ∈ N and g ∈ G. Then, (Mg)−1(Mn)(Mg) =M(g−1ng) ∈ N/M by the fact N ⊴ G.

Theorem 3.102 (Third Isomorphism Theorem) For G a group, M,N ⊴ G and M ≤ N ,

(G/M)
/
(N/M) ∼= G/N.

Exercise 27 Prove the Third Isomorphism Theorem.

[Hint: Apply the First Isomorphism Theorem to f : G/M → N/M where f(Mg) = Ng.]

Example 3.103 Let G = Z, M = 12Z and N = 3Z. By the Third Isomorphism Theorem,

(Z/12Z)
/
(3Z/12Z) ∼= Z/3Z = Z3.
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4 Vector Spaces

A very important related notion to a group is that of a vector space. It is likely you will have

encountered vectors before in high school. Here, the meaning is more general than it (likely) was

back then. We will omit a little bit of generality; really we can only define a vector space ‘over

a field’, whatever that means. We will define a field but a more valid introduction is presented

in Chapter ??. We then look at a number of vector spaces consisting of so-called matrices.

Definition 4.1 A field is a set K with two binary operations + and × satisfying these:

(i) (K,+) is an Abelian group with additive identity 0.

(ii) (K∗,×) is an Abelian group with multiplicative identity 1.

(iii) For all a, b, c ∈ K, we have a× (b+ c) = (a× b) + (a× c). (Distributivity)

Example 4.2 Here are some examples and non-examples of fields.

(i) Q, R, C are all fields with their usual addition and multiplication operations.

(ii) Z is not a field because (Z∗,×) isn’t a group.

(iii) Zp for p prime is a field, with addition and multiplication modulo p.

Note: When discussing the field Zp, we denote it by Fp to emphasise that we are talking

about the field and not the group. This is then called the field with p elements.

Exercise 28 Give an example of some Zn which is not a field and explain why.

[Hint: By Example 4.2(iii), it must be that n isn’t a prime number.]

Definition 4.3 Let K be a field, whose elements are called scalars. A K-vector space (or

vector space over K) is a set V , whose elements are called vectors, with the operations

vector addition + : V × V → V and scalar multiplication · : K × V → V satisfying these:

(i) (V,+) is an Abelian group, with additive identity 0.

(ii) For all λ, µ ∈ K and v ∈ V , we have (λµ)v = λ(µv). (Compatibility)

(iii) For all v ∈ V , we have 1v = v. (Scalar Identity)

(iv) For all λ ∈ K and u,v ∈ V , we have λ(u+ v) = λu+ λv. (Distributivity)

(v) For all λ, µ ∈ K and v ∈ V , we have (λ+ µ)v = λv + µv. (Distributivity)

Example 4.4 Here are some examples of vector spaces.

(i) The space Rn of columns of n real numbers forms an R-vector space, with pointwise addition
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and scalar multiplication. In general, the space Kn of columns of n entries of the field K

forms a K-vector space. Even more generally, the space K∞ of columns of infinitely-many

entries of the field K forms a K-vector space.

(ii) The set Q[x] of polynomials with coefficients in Q in the indeterminate x (expressions of

the form a0+a1x+ · · ·+anxn with each ai ∈ Q) is a Q-vector space, with addition given by

the addition of polynomials and scalar multiplication simply multiplication by a constant.

(iii) The field C is actually an R-vector space, where addition is the usual addition of complex

numbers and scalar multiplication is the usual product λz, for λ ∈ R and z ∈ C.

Exercise 29 Give an example of a field K and a set V where V is not a K-vector space.

Notation 4.5 Hence, we denote scalars by non-bold letters (often Greek) and vectors by bold

letters (often Latin). In later chapters, it may be convenient to just call a vector v but, here and

where possible, we will write v. Note that it is common to also see vectors denoted by v and v⃗.

We will spend tome time looking at the vector spaces Rn (which we will always, unless otherwise

stated, assume are studied over the field R). This will allow us to get to grips with a very

understandable and concrete idea before we jump into the abstract world once again.

The Real Vector Space R2

The vector space R2 consists of elements with two rows and one column:

R2 =


x1
x2

 : x1, x2 ∈ R

 .

We can give a geometric picture to these vectors. Indeed, if we are stood at the origin (0, 0),

then the vector above tells us to ‘move’ x1 in the x-direction and ‘move’ x2 in the y-direction. In

this way, whether the entries xi are positive or negative tell us to move right/left, respectively,

and up/down, respectively. This is captured in Figure 4 below (in which x1 > 0 and x2 > 0).
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x

y

(0, 0)

x1

x2

Figure 4: The geometric interpretation of vectors in R2.

This essentially allows us to identify the vector space R2 with the plane R2, as in Section ??.

Note: There is something much deeper happening here; what the above says is that

columns
( x
y

)
are ‘the same’ as rows (x y). In fact, this is identifying the vector space R2

with its so-called dual space; this consists of the rows, so-called covectors. In this way, we

write
( x
y

)
= (x y)T (the superscript T stands for transpose, defined shortly).

Remark 4.6 A vector space is defined in terms of a group-theoretic object (Chapter ??), which

is an extension of the theory of sets (Chapter ??); they can also have a geometric interpretation

(Chapter ??). This is a major overlap between the three areas studied thus far.

The Real Vector Space R3

In a near-identical way, the vector space R3 consists of elements with three rows and one column:

R3 =


x1x2
x3

 : x1, x2, x3 ∈ R

 .

The corresponding geometric picture to these vectors is similar to that of R2. Indeed, if we stand

at the origin (0, 0, 0), then the vector above tells us to ‘move’ x1 in the x-direction, ‘move’ x2

in the y-direction and ‘move’ x3 in the z-direction. We can think of this as first moving in R2

by the vector ( x1
x2 ) (where we view R2 as lying flat; think of it like the top of a horizontal table)

and then we move x3 above/below the table. This idea is captured in Figure 5 below, where we

‘lift’ the two-dimensional vector to the three-dimensional one.
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x

y

z

x1

x2

x3

(0, 0, 0)

Figure 5: The geometric interpretation of vectors in R3.

The Real Vector Space Rn

We can extend the ideas discussed above to work in any dimension. The only problem is that

it is difficult (essentially impossible) to visualise what is happening above three dimensions.

Sometimes, a picture can help whereby the plane (table top) represents Rn−1 (all dimensions

except one) and the protruding axis (z-axis) represents R (the missing dimension); this it is very

abstract and really just a guide.

Now that we have some intuition, we will return to the abstract meaning of a vector space as in

Definition 4.3. But we can apply any of what comes hence to Rn, so the picture to have in mind

is R2 or R3.

Proposition 4.7 Let V be a vector space over a field K.

(i) For all λ ∈ K, we have λ0 = 0.

(ii) For all v ∈ V , we have 0v = 0.

(iii) If λ ∈ K and v ∈ V such that λv = 0, then either λ = 0 or v = 0.

(iv) For all λ ∈ V and v ∈ V , we have (−λ)v = −(λv).

Proof : (i) Since 0 is the additive identity, we have 0+ 0 = 0. Therefore, λ(0+ 0) = λ0, which

is to say λ0+ λ0 = λ0 by distributivity. Subtracting λ0 from both sides gives the result.

The proofs of (ii), (iii) and (iv) also use the vector space axioms and are thus similar.

Exercise 30 Complete the proof of Proposition 4.7.
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By definition, a vector space is essentially an Abelian group with some extra structure (the scalar

multiplication map considered in the definition of a vector space). We know that groups have

subgroups, so we should expect an analogy here.

Definition 4.8 Let V be a K-vector space. A subspace of V is a subset U ⊆ V such

that U is also a vector space under the same operations of vector addition and scalar

multiplication as are defined for V .

Theorem 4.9 (Subspace Criterion) Let V be a K-vector space. A subset U ⊆ V is a

subspace if and only if it satisfies the following properties:

(i) 0 ∈ U .

(ii) For all u,w ∈ U , we have u+w ∈ U .

(iii) For all λ ∈ K and u ∈ U , we have λu ∈ U .

Proof : This is near-identical to that of the Subgroup Criterion, so we omit it.

Note: We can state the conditions of the Subgroup Criterion in words as follows:

(i) U contains the zero vector.

(ii) U is closed under vector addition.

(iii) U is closed under scalar multiplication.

Example 4.10 Here are some examples and non-examples of subspaces.

(i) For any vector space V , we have the trivial subspace {0} and V itself as subspaces.

(ii) The subspaces of R are the trivial subspace {0} and the space itself.

(iii) The subspaces of R2 are the {0}, R2 itself and any line which passes through the origin.

(iv) The subspaces of R3 are the {0}, R3 itself, any line which passes through the origin and

any plane which contains the origin.

(v) The subset {(x, y) : y = 2x+1} ⊆ R2 is not a subspace because it doesn’t contain the zero

vector (i.e. it describes a line which does not pass through the origin).

(vi) The subspace Pn := {anxn + an−1x
n−1 + · · · + a1x + a0 : ai ∈ R} ⊆ R[x] is a subspace of

the vector space of polynomials in one variable with coefficients in R. This subspace Pn

contains polynomials of degree at most n (we will discuss this in more depth later).
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Definition 4.11 Let V and W each be K-vector spaces. A map f : V → W is called a

linear map (or linear transformation) if it satisfies the following two properties:

(i) For all v1,v2 ∈ V , we have f(v1 + v2) = f(v1) + f(v2).

(ii) For all λ ∈ K and v ∈ V , we have f(λv) = λf(v).

If a linear map is bijective, we call it a linear isomorphism and denote this by V ∼=W .

Note: We can restate the conditions of Definition 4.11 as the following single condition:

f(λ1v1 + λ2v2) = λ1f(v1) + λ2f(v2).

Example 4.12 We will show that the map f : R3 → R2 given by

f

xy
z

 =

2x+ y

y − z


is a linear map. Indeed, if we sum two vectors and apply the map f , then we get

f


xy
z

+

u

v

w


 = f

x+ u

y + v

z + w


=

2(x+ u) + (y + v)

(y + v)− (z + w)


=

2x+ y

y − z

+

2u+ v

v − w



= f

xy
z

+ f

u

v

w

 .

As for the second property, let λ ∈ R be some scalar. Then,

f

λ
xy
z


 = f

λxλy
λz

 =

2λx+ λy

λy − λz

 = λ

2x+ y

y − z

 ,

as required. Hence, we can conclude that f is indeed a linear map.
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Notation 4.13 As in the note before Remark 4.6, we can instead write a column vector as a row

vector, where we use T to denote the transpose. In this way, we could write the linear map in

Example 4.12 as follows: f((x, y, z)T ) = (2x+ y, y − z)T . This is much better for saving space,

but we can abuse notation and forget about (i) the transpose symbol T and (ii) avoid double

brackets. We will henceforth write linear maps in this abused way. For instance, the linear map

in Example 4.12 would be denoted f(x, y, z) = (2x+ y, y − z).

Exercise 31 Let f : V → W be an arbitrary linear map between K-vector spaces. Prove

that ker(f) ⊆ V and im(f) ⊆W are both subspaces in their respective vector spaces.

[Hint: Here, the kernel contains elements that get sent to 0W , the zero vector of W .]

Example 4.14 Let p ∈ Pn, that is a polynomial whose degree is at most n; this was defined in

Example 4.10(vi). We can define the evaluation map as follows:

fλ : Pn → R, f(p) = p(λ).

What does this do? Well, we first choose a fixed number λ ∈ R. Then, the map fλ just substitutes

x = λ into the polynomial p ∈ Pn. For a specific example, consider p(x) = x2+1. Then, we have

f1(p) = p(1) = 12 + 1 = 2, f2(p) = p(2) = 22 + 1 = 5,

f4(p) = p(4) = 42 + 1 = 17, fπ(p) = p(π) = π2 + 1 ≈ 10.869.

By Exercise 31, we know that ker(fλ) = {p ∈ Pn : p(λ) = 0} is a subspace of Pn.

Note: Once more, something rather deep is hinted at by Example 4.14. It is actually a

huge area of study to look at so-called ‘zero sets’ of polynomials and ‘vanishing ideals’ of

a set of points. In this language, ker(fλ) is the ‘vanishing idea’ of λ. This lies in an area

called algebraic geometry (see Chapter ??) and it has been a hot topic for a while.

Lemma 4.15 Consider a finite set of vectors S = {v1, ...,vn} in a K-vector space V .

Then, the map φS : Kn → V given by φS(a1, ..., an) = a1v1 + · · ·+ anvn is a linear map.

Proof : We appeal to the definition to show that φS is linear. Indeed,

φS

(
(a1, ..., an) + (b1, ..., bn)

)
= φS(a1 + b1, ..., an + bn)

= (a1 + b1)v1 + · · ·+ (an + bn)vn

= (a1v1 + · · ·+ anvn) + (b1v1 + · · ·+ bnvn)
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= φS(a1, ..., an) + φS(b1, ..., bn)

demonstrates the first property. Next, let λ ∈ K. Then,

φS

(
λ(a1, ..., an)

)
= φS(λa1, ..., λan)

= λa1v1 + · · ·+ λanvn

= λ(a1v1 + · · ·+ anvn)

= λφS(a1, ..., an).

Definition 4.16 The span of a finite set of vectors S = {v1, ...,vn} in a K-vector space V

is the set of all linear combinations of them, i.e. span(S) = {a1v1 + · · ·+ anvn : ai ∈ K}.

Note: By convention, we declare the span of an empty set of vectors span(∅) = {0}.

Corollary 4.17 For any finite subset S ⊆ V in a K-vector space V , span(S) is a subspace.

Proof : We can see that span(S) = im(φS), where φS is as in Lemma 4.15. As φS is linear, we

can apply Exercise 31 to conclude that span(S) ⊆ V is a subspace.

Notation 4.18 If given a set of vectors S = {v1, ...,vn}, we would often write span(v1, ...,vn) for

their span. What’s the problem? Strictly speaking, we should actually write span({v1, ...,vn})
but we omit the curly brackets from the set. This is far from a major deal but be aware of it.

Exercise 32 For a vector v ∈ Rn, give a geometric interpretation of span(v) ⊆ Rn.

[Hint: It is a subspace, by Corollary 4.17, so look to Example 4.10 for inspiration.]

Definition 4.19 Let V be a K-vector space. We call a finite set of vectors S = {v1, ...,vn}
is linearly independent if there is no linear relation between them, that is the only way we

can have a1v1 + · · ·+ anvn = 0, for ai ∈ K, is to have every scalar ai = 0. Otherwise, we

say that S is linearly dependent

The linear relation in Definition 4.19 can be interpreted as follows: it is a collection of scalars

(a1, ..., an) ∈ ker(φS), where φS is the map in Lemma 4.15. Thus, S is linearly independent if

and only if ker(φS) = {0}.
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Note: By convention, we declare the empty set to be linearly independent.

Example 4.20 Here are some examples and non-examples of linearly independent sets.

(i) The set {v} is linearly independent if and only if v ̸= 0.

(ii) The set {v,w} is linearly independent if and only if v ̸= λw for some scalar λ.

(iii) If any vi = 0, then the set {v1, ...,vn} is linearly dependent.

Proposition 4.21 The set {v1, ...,vn} ⊆ V is linearly dependent if and only if some vi is

a linear combination of its predecessors, that is vi ∈ span(v1, ...,vi−1).

Proof : (⇒) By assumption, there exists a linear relation a1v1+ · · ·+anvn = 0 where at least one

coefficient is non-zero. Let i be the largest such that ai ̸= 0. This means that all higher-indexed

scalars are zero (ai+1 = ai+2 = · · · = an = 0). We can therefore re-write the linear relation as

a1v1 + · · ·+ aivi = 0 ⇒ vi =

(
−a1
ai

)
v1 + · · ·+

(
−ai−1

ai

)
vi−1 ∈ span(v1, ...,vi−1).

(⇐) Suppose vi ∈ span(v1, ...,vi−1). By definition, there are some scalars b1, ..., bi−1 such that

vi = b1v1 + · · · + bi−1vi−1. This easily rearranges to b1v1 + · · · + bi−1vi−1 − vi = 0; the final

coefficient is −1 so we have a non-trivial linear relation, as required.

Exercise 33 Determine if {(1, 2, 3), (2, 3, 0), (0, 4, 0)} ⊆ R3 is a linearly independent set.

Definition 4.22 Let V be a K-vector space. We say that a finite subset of vectors S is a

basis for V if it is linearly independent and it spans V , that is span(S) = V .

Example 4.23 The so-called standard basis (or canonical basis) for the vector space R3 is the

set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. However, there are other bases for this same vector space. For

instance, {(1, 2, 4), (0, 1, 2), (0, 0, 3)} is another basis for R3.

Theorem 4.24 For a K-vector space V and S = {v1, ...,vn} ⊆ V , these are equivalent:

(i) The set S is a basis for V .

(ii) The map φS : Kn → V is an isomorphism.

(iii) Every v ∈ V can be written uniquely as v = a1v1 + · · ·+ anvn for ai ∈ K.
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Proof :
(
(i)⇔ (ii)

)
Because span(S) = im(φS), as mentioned in the proof of Corollary 4.17, we

know that S spans V if and only if φS is surjective. But by the discussion immediately after

Definition 4.19, we know that S is linearly independent if and only if φS is injective (has trivial

kernel). Hence, S is a basis for V if and only if φS is a bijective linear map, i.e. an isomorphism

of vector spaces.(
(ii)⇔ (iii)

)
This is obvious by definition of φS .

The goal is to determine that every basis of a given vector space will contain the same number

of elements (this is then a numerical invariant of that vector space, that is a number associated

to the vector space which will not change if we change bases). We will see time and again that

invariants are of fundamental importance in many areas of mathematics. To convincingly prove

this fact, we can appeal to matrices to make life easier.
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5 Matrices

As mentioned, matrices are an incredibly helpful object in algebra. They can encode information

about systems of linear equations, differential equations, vector spaces and many more things.

At long last, let’s finally introduce and discuss them.

Definition 5.1 An m× n matrix A is a grid with m rows and n columns of the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 ,

where aij is the entry in the ith row and jth column. The entries are usually elements of

a field K (e.g. real numbers or complex numbers, but others are possible). The space of

m× n matrices with entries in K is denoted Mm×n(K). A matrix is square if m = n.

Note: The identity matrix is the square matrix whose main diagonal (top-left to bottom-

right) consists of ones; all other entries are zero. We denote the identity matrix by 1n.

Exercise 34 Explain how we can view each of a column and row vector as a matrix.

We can define addition of matrices (of the same size), multiplication of matrices (of the relevant

size) and scalar multiplication of a matrix (of any size). This, along with the fact that we have

an identity matrix, suggests we should get some group-like or vector space-like structure for

Mm×n(K). We almost get this, but we will see that the sizes of the matrices (plural of matrix)

really inhibits what can be achieved.

Lemma 5.2 We can view Mm×n(K) as a K-vector space.

Proof : We won’t go through all the details, but the main idea is to define a natural way to add

two matrices from this space and to multiply a matrix by a scalar. Indeed, let A,B ∈Mm×n(K).

Then, the sum of matrices is A + B, with ijth entry aij + bij . This means that we simply add

corresponding elements. Similarly, for λ ∈ K, the scalar multiple of a matrix is λA, with ijth

entry λaij . The zero vector is the m× n matrix consisting of all-zeros.
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Definition 5.3 For two matrices A = (aij) ∈ Mm×n(K) and B = (bjk) ∈ Mn×p, we can

define matrix multiplication as AB, with ijth entry given by
∑n

k=1 aikbkj .

Remark 5.4 Again, we have encountered an operation which is non-commutative. In general, we

have that AB ̸= BA for two matrices. In fact, even if AB is well-defined, it might not even be

the case that BA is defined.

Definition 5.5 Let A ∈Mm×n(K) be a matrix. The transpose of this matrix is the matrix

AT ∈Mn×m(K) such that, if A = (aij), then A
T = (aji).

Example 5.6 Let’s consider the following matrix A ∈M2×3(R):

A =

3 2 8

7 π 1

 .

By definition, the transpose occurs by swapping the roles of the columns and rows (i.e. so the

rows of A are the columns of AT and the columns of A are the rows of AT ). In this way, we get

AT =

3 7

2 π

8 1

 .

Exercise 35 For A in Example 5.6, compute the transpose of the transpose (AT )T .

Lemma 5.7 Let A and B be matrices such that their product AB is well-defined. Then,

(AT )T = A and (AB)T = BTAT .

Proof : The fact the transpose of the transpose gives the original matrix is trivial, by Definition

5.5. As for the product property, note that the ijth entry of (AB)T is the jith entry of AB, by

definition, and this is given in Definition 5.3 as
∑

k ajkbki. If we denote the entries of AT and

BT by aTij and bTij , respectively, then we see that∑
k

bTika
T
kj =

∑
k

bkiajk =
∑
k

ajkbki,

but the left-hand side is simply the ijth entry of the matrix BTAT . Hence, all corresponding
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entries of BTAT and (AB)T are identical, meaning they are equal as matrices.

Exercise 36 For matrices A,B,C of sizes to ensure well-definedness, prove the following:

(i) (A+B)C = AC +BC. (Distributivity)

(ii) A(B + C) = AB +AC. (Distributivity)

(iii) A(BC) = (AB)C. (Associativity)

Lemma 5.8 For A ∈Mm×n(R), the map f : Rn → Rm given by f(x) = Ax is linear.

Proof : Let λ, µ ∈ R be scalars and x,y ∈ Rn be (column) vectors. Then, since we can treat the

vectors as n× 1 matrices by Exercise 34, we can use the properties in Exercise 36 to see that

f(λx+ µy) = A(λx+ µy) = Aλx+Aµy = λAx+ µAy = λf(x) + µf(y).

Note: One can adapt the proof of Lemma 5.8 to give the same result for f : V → W ,

where V and W are two K-vector spaces. In this general case, the matrix A ∈Mm×n(K).

Theorem 5.9 Let V and W be two K-vector spaces and f : V → W . Then, f is linear if

and only if there exists A ∈Mm×n(K) such that f(v) = Av.

Proof : (⇐) This is (the note about) Lemma 5.8 above.

(⇒) Let {v1, ...,vn} ⊆ V be a basis for V . Therefore, any v ∈ V can be written uniquely as

v = a1v1 + · · ·+ anvn for ai ∈ K. By linearity, T (v) = a1T (v1) + · · ·+ anT (vn). Consequently,

the image of v under f is given as a linear combination of the vectors {T (v1), ..., T (vn)} ⊆ W .

As such, we can take A to have columns {T (v1), ..., T (vn)}, that is

A =

 ↑ ↑
T (v1) · · · T (vn)

↓ ↓

 .

To motivate the next subtopic of discussion regarding matrices, we consider A ∈M2×2(R) ‘acting’
on R2 (the topic of an action is discussed later in Chapter ?? but here, we just mean how a matrix

interacts with a two-dimensional vector). Let {e1, e2} be the standard basis for R2. Then, we

can get the first column of A by Ae1; similarly, we get the second column of A by Ae2. We can

consider also the action of such a matrix on the vector e1 + e2.
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Geometrically, 0, e1, e2, e1 + e2 are the corners of a square of side length one and the matrix A

transforms this shape into a parallelogram. Specifically, if we say that

A =

a b

c d

 ,

the area of the parallelogram can be expressed as follows:

Parea = |Ae1||Ae2| sin(θ),

where θ is the angle between the vectors Ae1 and Ae2. We can use the dot product formula in

Theorem ?? to get an explicit formula for the area of the parallelogram. Indeed, recall that

x · y = |x||y| cos(θ),

where θ is the angle between the vectors x and y. We will apply this formula for x = Ae1 and

y = Ae2. Now, (the two-dimensional analogue of) Definition ?? gives (Ae1) · (Ae2) = ab + cd,

which we make use in the following argument:

P 2
area = |Ae1|

2|Ae2|2 sin2(θ)

= |Ae1|2|Ae2|2(1− cos2 θ)

= |Ae1|2|Ae2|2 − |Ae1|2|Ae2|2 cos2(θ)

= (a2 + c2)(b2 + d2)− (ab+ cd)2

= (ad− bc)2.

Taking the square root reveals that the area of the parallelogram is Parea = |ad− bc|.

Note: The number ad− bc is the so-called determinant of the matrix A ∈M2×2(R).

Definition 5.10 Let A ∈ Mm×n(K) be a matrix. The ijth minor of A is the matrix

Aij ∈M(m−1)×(n−1)(K) obtained from A by removing the ith row and the jth column.
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Exercise 37 Write out all minors of the following matrices:

(i)

 1 2

−2 1

 and (ii)

 3 2 2

−1 0 8

0 7 5

 and (iii)
(
4
)
.

[Note: The final part is a bit of a cruel question as it really is a matter of convention.]

We can now define the determinant for any square matrix (not just 2× 2).

Definition 5.11 The determinant of a matrix A ∈Mn×n(K) is the alternating sum

det(A) =

n∑
k=1

(−1)k+1a1k det(A1k),

where we note that the determinant of a 1 × 1 minor is simply the entry of that minor

and the determinant of a 2 × 2 minor is computed using the formula in the note above

Definition 5.10. We also denote the determinant by |A|.

Remark 5.12 As we can see in Definition 5.11, the determinant has been defined based on fixing

row one (as we can see, all the minors we consider are ones where the first row is removed and

we move along the columns). We can equally define the determinant by fixing any row, e.g.

det(A) =
n∑

k=1

(−1)k+4a4k det(A4k).

Moreover, we could instead fix any column and move along the rows, e.g.

det(A) =

n∑
k=1

(−1)k+1ak1 det(Ak1).

For the sake of consistency, we will use Definition 5.11 in its written form most of the time, but

we will occasionally take the determinant in a different way if it is convenient to do so.

Note: We saw the geometric interpretation of the determinant of a 2 × 2 matrix as the

area of a parallelogram achieved when applying the matrix transformation to the unit

square. Similarly, the determinant of an n× n matrix is the n-dimensional volume of the

parallelotope when applying the matrix transformation to the n-dimensional cube.
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Example 5.13 Consider the following matrix A ∈M3×3(Z):

A =

1 2 3

4 5 6

7 8 9

 .

We can compute the determinant by using the formula in Definition 5.11:

det(A) = 1 det(A11)− 2 det(A12) + 3 det(A13)

= 1

∣∣∣∣∣∣5 6

8 9

∣∣∣∣∣∣− 2

∣∣∣∣∣∣4 6

7 9

∣∣∣∣∣∣+ 3

∣∣∣∣∣∣4 5

7 8

∣∣∣∣∣∣
= 1(45− 48)− 2(36− 42) + 3(32− 35)

= 0.

Exercise 38 Compute the determinant of the matrices in Exercise 37.

In order to prove some useful formulae regarding the determinant, it will be helpful to consider

so-called row operations applied to matrices and prove some results in more generality. This will

also help with the discussion in Section 7.

Definition 5.14 A matrix is in row echelon form (REF) if the following are true:

(i) The first non-zero number in each row is 1, called the leading one.

(ii) Each leading one appears in a column to the right of the leading one before it.

(iii) Any all-zero rows appear at the bottom of the matrix.

Example 5.15 The following matrix is written in row echelon form:1 2 2 1

0 1 −9 6

0 0 0 1

 .

However, the following matrix is not in row echelon form:1 3 2

0 6 1

2 0 0

 .
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Definition 5.16 The elementary row operations applied to a matrix are as follows:

(i) Swap two rows, denoted Ri ↔ Rj .

(ii) Multiply a row by a non-zero scalar, denoted Ri 7→ λRi.

(iii) Add a non-zero multiple of one row to another, denoted Ri 7→ Ri + λRj .

Note: Applying a single row operation to the identity matrix gives an elementary matrix.

We will soon see that these allow us to translate between doing elementary row operations

and performing matrix multiplication.

Exercise 39 Determine the elementary 3× 3 matrices corresponding to these operations:

(i) R1 7→ R1 + 2R2.

(ii) R3 ↔ R2.

(iii) R2 7→ −3R2.

Remark 5.17 Analogous to Definition 5.16, we can define the elementary column operations ap-

plied to a matrix in a near-identical way to the row operations. In this way, we have Ci ↔ Cj ,

Ci 7→ λCi and Ci 7→ Ci + λCj as the column operations.

Theorem 5.18 Let A be an m×n matrix and ER be the elementary matrix corresponding

to some row operation R. Then, applying R to matrix A is equivalent to computing ERA.

Proof : We will consider cases depending on if R is each elementary row operation. First, let

A =


← a1 →

...

← am →

 ,

so the rows of A are the (row) vectors a1, ...,am, and suppose also that

ER =


← r1 →

...

← rm →

 .

(i) Let R be the operation Ri ↔ Rj . By definition, the ith row of ER has a one in the jth

column and zeros everywhere else; similarly, the jth row of ER has a one in the ith column
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and zeros everywhere else. Hence, the ith and jth rows of ERA are given as follows:

riA = aj and rjA = ai.

All other rows of ERA are the same as the rows of A. Hence, applying the row operation

and considering ERA are one in the same.

(ii) Let R be the operation Ri 7→ λRi. By definition, the ith row of ER has a λ in the ith

column and zeros everywhere else. Thus, the ith row of ERA is given as follows:

riA = λai.

All other rows of ERA are the same as the rows of A. Thus, once more, we see that the

row operation and the multiplication with the elementary matrix yield the same result.

(iii) Let R be the operation Ri 7→ Ri + λRj . By definition, the ith row of ER has a one in the

ith column and a λ in the jth column and zeros everywhere else. So, the ith row of ER is

give as follows:

riA = ai + λaj .

All other rows of ER are the same as the rows of A. Once again, the row operations

approach is the same as the matrix multiplication approach.

Exercise 40 Attempt the proof of Theorem 5.18 in the following specific example: the row

operation R is the operation R1 7→ R1 + 2R2, which is applied to the matrix

A =

1 1 2

2 8 4

0 6 5

 .

We now describe an algorithm to follow to transform a matrix into a row echelon form.
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Method – Gaussian Elimination: Let A be an m× n matrix.

(i) If every column of A is zero, we are done. Otherwise, go to Step (ii).

(ii) In the first non-zero column, choose a non-zero element; this is called the pivot.

(a) If the pivot is at the top of the column, proceed to Step (ii)(b). Otherwise,

swap the top row with the pivot row.

(b) If the pivot is a one, proceed to Step (iii). Otherwise, divide the pivot row by

the pivot value.

(iii) If the pivot from Step (ii) is in the nth row, we are done. Otherwise, use the pivot

to make the entries below it zero by adding/subtracting multiples of the pivot row

to/from the rows below it.

(iv) Now, the first non-zero row has a leading one with zeros below it. Fix the first row

and repeat Steps (i)-(iii) with each of the following rows.

Example 5.19 We will transform the following into row echelon form via Gaussian Elimination:2 2

3 4

 .

The first step is to choose a pivot in the first column, say 2. By Method ??, the pivot is already

at the top of the column but we do have to divide the pivot row by two. Indeed,2 2

3 4

 ∼
1 1

3 4

 , via R1 7→
1

2
R1.

We can now use the pivot to clear the entries below it, that is we need a zero in the bottom-left

position. This can be achieved by subtracting the first row from the second three times, that is

∼

1 1

0 3

 , via R2 7→ R2 − 3R1.

We are done with the first row and so proceed to the second. The pivot here is 3 by default; this

is not a leading one, so dividing the row by three will do the trick. Well,

∼

1 1

0 1

 , via R2 7→
1

3
R2.

This is all we need to do, and we have found a row echelon form.
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Lemma 5.20 A matrix does not have a unique row echelon form.

Proof : We need only exhibit an example of this for the statement to be true. Indeed, we turn

to Example 5.19. We found (at least) one row echelon form by following Method ??. We can,

however, perform the row operation R1 7→ R1 −R2 to the final matrix in the example to get1 1

0 1

 ∼
1 0

0 1

 ,

which is also in row echelon form; we can reach (at least) two different row echelon forms.

Exercise 41 Use Gaussian Elimination to transform the following into row echelon form:0 7 21

2 10 −6
2 6 5

 .

Definition 5.21 A matrix is in reduced row echelon form (RREF) if these are true:

(i) The matrix is in row echelon form.

(ii) All columns containing a leading one have zeros everywhere else.

Method – Gauss-Jordan Elimination: Let A be an m× n matrix.

(i) Transform A into a row echelon form by using Gaussian Elimination.

(ii) Starting at the right-most column, add/subtract multiples of the leading one row

to/from the rows above it.

(iii) We have now transformed the last column so that the only non-zero entry is the

leading one; repeat Step (ii) with the next column along (working right-to-left).

Example 5.22 We will transform the matrix in Example 5.19 into reduced row echelon form

via Gauss-Jordan Elimination. Well, much of the hard work was done whilst following Method

??, but it remains to clear the leading one columns by Method ??. Indeed, we can see that

subtracting the second row from the first will clear the end column:1 1

0 1

 ∼
1 0

0 1

 , via R1 7→ R1 −R2.

We are now done, since the only other leading one satisfies Definition 5.21(ii) already.
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Exercise 42 Two matrices are row equivalent if it is possible to transform one to the other

using row operations. Determine if row equivalence is an equivalence relation.

Theorem 5.23 A matrix does have a unique reduced row echelon form.

Proof : Suppose that matrix A has two reduced row echelon forms, namely B and C; we aim to

prove that B = C. Note that the three matrices A,B,C are row equivalent by definition. Thus,

using the elementary matrix approach, every row of A is a linear combination of the rows of B

and vice versa (and similar for C). Assume to the contrary that B ̸= C. We will choose the

first (from the left) column where they differ, along with all pivot columns to the left of this

column. We can form a matrix from these columns, say R and S (corresponding to B and C

respectively). Because B and C are row equivalent, so too are R and S. In fact, are can swap

columns so that they have the form

R =

1k r

0 0

 and S =

1k s

0 0

 .

As they are row equivalent, we have r = s. We thus have R = S, a contradiction to B ̸= C.

We aim to simplify how we compute the determinant beyond the alternating sum given in Defi-

nition 5.11 (because doing that for a large matrix is quite tedious). Well, we can use elementary

row operations to make our lives easier, but proving this fact requires a bit of work. We begin

with some auxiliary results which can be helpful in their own right.

Lemma 5.24 Let A be an n× n matrix. Then, det
(
AT

)
= det(A).

Proof : For notation, let A = (aij) and A
T = (aTij) where a

T
ij = aji. By definition,

det
(
AT

)
=

n∑
k=1

(−1)k+1aT1k det
(
AT

1k

)
=

n∑
k=1

(−1)k+1ak1 det(Ak1)

= det(A),

where we use Remark 5.12 to see that the determinant can also be given by fixing a column and

moving along the rows (this is how we pass from the second line to the third line above).
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Definition 5.25 Let A be a square matrix.

(i) We say A is upper triangular if all entries below the main diagonal are zero.

(ii) We say A is lower triangular if all entries above the main diagonal are zero.

(iii) We say A is diagonal if all entries not on the main diagonal are zero.

Remark 5.26 If we apply the transpose to an upper triangular matrix, we get a lower triangular

matrix (and vice versa). Moreover, all diagonal matrices are fixed by the transpose, that is it

will not change the matrix at all.

Exercise 43 Prove that the product of two upper triangular matrices is upper triangular.

What can we say about the product of k upper triangular matrices, for some k ∈ Z+? Use

Lemma 5.7 to conclude the analogue for the product of lower triangular matrices .

Proposition 5.27 Let A = (aij) be n× n upper triangular. Then, det(A) = a11a22 · · · ann.

Proof : Proceed by induction on the size of the matrix. The base case is clear. Assume that the

result holds for an (n− 1)× (n− 1) upper triangular matrix. Note that ai1 = 0 for every i > 1

(i.e. everything in the first column is zero except for the top entry). By definition, we know that

det(A) = a11 det(A11). But the minor A11 is also upper triangular and is size (n− 1)× (n− 1).

Thus, the inductive hypothesis tells us that det(A11) = a22a33 · · · ann. Substituting this into the

formula we just wrote for det(A) gives the result.

Corollary 5.28 Let A = (aij) be n× n lower triangular. Then, det(A) = a11a22 · · · ann.

Proof : If A is lower triangular, then AT is upper triangular by Remark 5.26. Hence, we see that

det
(
AT

)
= a11a22 · · · ann by Proposition 5.27, but det

(
AT

)
= det(A) by Lemma 5.24.

It now seems that, if we can determine the effect performing row operations has on a determinant,

then we can do row operations to transform a matrix to upper/lower triangular form and pretty

much read-off the determinant fully. This is the true aim of this part of the discussion. We still

have some work to do, however.

Lemma 5.29 Any square matrix A is row equivalent to an upper/lower triangular matrix.

Proof : We prove the result for upper triangular matrices, but the argument is near-identical for

lower triangular matrices. Recall from Exercise 42 that the statement means we can perform

elementary row operations to get from A to an upper triangular matrix. We will prove this by
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induction. Again, the base case is trivial. Assume the result holds for any (n − 1) × (n − 1)

matrix and let A be an n× n matrix. There are two cases to consider.

(i) Suppose the first column of A is all-zero. Then, A is upper triangularisable if and only if

the minor A11 is upper triangularisable. Indeed, because A11 has size (n − 1) × (n − 1),

the inductive hypothesis says that this is indeed the case. Note that the elementary row

operations which achieve this will not change the fact that the first column of A is all-zero.

Hence, A is indeed upper triangularisable.

(ii) Suppose the first column of A is not all-zero.

(a) Let a11 = 0. Then, suppose i is the smallest such that ai1 ̸= 0 (so we are picking

the first non-zero element in the first column from top-to-bottom). Said i will exist

because we are assuming there is an element of the first column which is non-zero.

If we apply the operation R1 → R1 + Ri, this will mean that the new entry in the

top-left is non-zero, that is a′11 ̸= 0. We can then move to Case (b) below.

(b) Let a11 ̸= 0. If we apply the operation Ri → Ri− ai1
a11
R1 for every i ∈ {2, 3, ..., n}, this

will ensure the first column is all-zero except for the top-left entry. It again follows

that A is upper triangularisable if and only if A11 is; this is just another use of the

inductive hypothesis.

Hence, all cases are exhausted and A is always row equivalent to an upper triangular matrix.

Exercise 44 Perform row operations to the following so the result is upper triangular:
0 2 0 4

1 0 7 9

8 3 0 5

0 0 1 6

 .

Lemma 5.30 Let A ∈Mn×n(K) and R be a sequence of elementary row operations which

are applied to A; call the resulting matrix A′. Then, there exists λ ∈ K such that

det(A) = λdet
(
A′).

Proof : Omitted; it is an induction proof which isn’t very illuminating.

Theorem 5.31 Let A and B be n× n matrices. Then, det(AB) = det(A) det(B).
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Proof : From Lemma 5.29, we can convert A into an upper triangular matrix by a sequence of

row operations; call the resulting matrix A′. If we let C = AB, then we call C ′ = A′B. By

Lemma 5.7, we know that (C ′)T = (A′B)T = BT (A′)T . Again by applying Lemma 5.29, we can

convert BT into a lower triangular matrix by a sequence of row operations; call the resulting

matrix (BT )′. Then, we call C ′′ = (BT )′(A′)T . Because A′ is upper triangular, we know that

(A′)T is lower triangular. Hence, by Exercise 43, we know that C ′′ is also lower triangular (it is

the product of two lower triangular matrices). Hence, applying Corollary 5.28 tells us that

det
(
(BT )′(A′)T

)
= det

(
(BT )′

)
det

(
(A′)T

)
.

But by Lemma 5.30, we know that

det(A) = α det
(
A′),

det
(
BT

)
= β det

(
(BT )′

)
,

from which it follows that

det(C) = α det
(
C ′),

det
(
(C ′)T

)
= β det

(
C ′′).

Combining all this together gives us

det(C) = α det
(
C ′)

= α det
(
(C ′)T

)
= αβ det

(
C ′′)

= αβ det
(
(BT )′(A′)T

)
= α det

(
(A′)T

)
β det

(
(BT )′

)
= α det

(
A′) det(BT

)
= det(A) det(B).

Note: Truthfully, the proof of Theorem 5.31 is also not exactly illuminating; don’t worry

if you can’t follow all the details. The statement is the most important thing about this.

We can now state one of the most important results about determinants and row operations.
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Corollary 5.32 Let A be a square matrix.

(i) Applying Ri ↔ Rj has the effect of multiplying det(A) by −1.
(ii) Applying Ri 7→ λRi has the effect of multiplying det(A) by λ.

(iii) Applying Ri 7→ Ri + λRj has no effect to det(A).

Sketch of Proof : Compute the determinant of the corresponding elementary matrix. Then, we

can appeal to Theorems 5.18 and 5.31 to conclude that the statements above are true.

Note: An analogous result to Corollary 5.32 holds for elementary column operations.

Remark 5.33 We can now state a number of properties of the determinant of a square matrix A

that are a consequence of Corollary 5.32:

(i) If A has two (or more) identical rows, then det(A) = 0.

(ii) If A has two (or more) identical columns, then det(A) = 0.

(iii) If A has an all-zero row, then det(A) = 0.

(iv) If A has an all-zero column, then det(A) = 0.

Method – Finding the Determinant: Let A be a square matrix.

(i) If A is triangular, we are done. Otherwise, go to Step (ii).

(ii) If A is not triangular, perform a sequence of row operations to transform it to an

triangular matrix, which we now call A′.

(iii) Compute the changes made to the determinant of A by performing the sequence of

row operations in Step (ii); this is done by using Corollary 5.32.

(iv) Finally, we can write det(A) by dividing det
(
A′) by the number we find in Step (iii).

Example 5.34 We will use Method ?? to compute the determinant of the following:

A =


0 3 9 12

1 5 6 7

1 7 10 11

2 9 12 23

 .
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Indeed, we will first apply row operations to get the matrix into upper triangular form, so
0 3 9 12

1 5 6 7

1 7 10 11

2 9 12 23

 ∼

1 5 6 7

0 3 9 12

1 7 10 11

2 9 12 23

 , via R1 ↔ R2,

∼


1 5 6 7

0 3 9 12

0 2 4 4

2 9 12 23

 , via R3 7→ R3 −R1,

∼


1 5 6 7

0 3 9 12

0 2 4 4

0 −1 0 9

 , via R4 7→ R4 − 2R1,

∼


1 5 6 7

0 1 3 4

0 2 4 4

0 −1 0 9

 , via R2 7→
1

3
R2,

∼


1 5 6 7

0 1 3 4

0 0 −2 −4
0 −1 0 9

 , via R3 7→ R3 − 2R2,

∼


1 5 6 7

0 1 3 4

0 0 −2 −4
0 0 3 13

 , via R4 7→ R4 +R2,

∼


1 5 6 7

0 1 3 4

0 0 −2 −4
0 0 0 7

 , via R4 7→ R4 +
3

2
R3.

The resulting matrix, denoted A′, is such that det
(
A′) = −14 (multiply the diagonal entries).

Now, if we look at the row operations performed above, we see that they corresponding to

the constant −1/3 (because we did one swap and we multiplied one row by 1/3; all the other
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operations we did don’t change the determinant). Hence, we conclude that

det(A) =
det

(
A′)

−1/3
= −3 det

(
A′) = 42.

Note: To transform a matrix into upper triangular form, one can almost follow the method

of Gaussian Elimination directly; we can be a little bit more relaxed here and not make

the pivots into ones (e.g. we didn’t change the −2 to a 1 in the last step above) but this

is just dealer’s choice.

Exercise 45 Compute the determinant of the matrix given in Exercise 44.
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Theorem 5.35 Any bases of the K-vector space V have the same number of elements.

Proof : Suppose {v1, ...,vn} and {w1, ...,wm} are both bases of V .
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6 Permutation Groups



62 Solving Linear Equations

7 Solving Linear Equations
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8 Eigenvalues and Eigenvectors
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9 Exercise Solutions

We provide detailed solutions to the exercises interwoven within each section of the module.

Hopefully you have given these questions a try whilst on your learning journey with the module.

But mathematics is difficult, so don’t feel disheartened if you had to look up an answer before

you knew where to begin (we have all done it)!

Solutions to Exercises in Section 2

Exercise 1 Prove that (Z,+) is a group.

Solution : This is much the same as the proof of Lemma 2.4.

(i) It is clear that a+ (b+ c) = a+ (b+ c) for any a, b, c ∈ Z, giving us associativity.

(ii) The sum of two integers is obviously an integer, so Z is closed under +.

(iii) The element 0 ∈ Z is the identity since it is an integer and a+0 = a = 0+a for any a ∈ Z.

(iv) Finally, we have an inverse −a ∈ Z for any integer a ∈ Z because a+(−a) = 0 = (−a)+ a.

Consequently, we can see that (Z,+) is a group.

Note: We haven’t really proved such, but we noted in Lemma 2.4 that addition in R is

associative. Because Z ⊆ R is a subset, and the addition in the group (Z,+) is really the

same as the addition in the group (R,+), we already get the associative condition for free.

Exercise 2 Write out the group table for (Z5,+mod 5).

Solution : This is similar to Example 2.6 in the notes. The solution is Table 5 below.

+mod 5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 5: The group table for (Z5,+mod 5).
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Exercise 3 Complete the below group table for the dihedral group D3.

◦ I R S A B C

I I R S A B C
R S C
S R
A I
B I
C I

Table 2: The group table for (D3, ◦).

Solution : The idea here is to see how the different symmetries in D3 interact with each other.

The best way to do so is to draw some pictures of a triangle ABC and apply these symmetries,

much as we did in Example 2.8. Here, we provide explanation but we won’t draw any pictures.

First, note that I ◦ [anything] = anything because it is the identity. Hence, this means the first

column in Table 2 will be trivial. Now, rotating by both 2π/3 and 4π/3 gives a rotation by 2π,

which is again equivalent to doing nothing.

The composition of two reflections will give a rotation and the composition of a rotation and

reflection will give another reflection. This will mean that the group table should contain four

3× 3 grids. where the top left and bottom right are rotations and the top right and bottom left

are reflections. We can see the finished table in Table 2 below.

◦ I R S A B C

I I R S A B C
R R S I C A B
S S I R B C A
A A B C I R S
B B C A S I R
C C A B R S I

Table 2: The group table for (D3, ◦).

Exercise 4 Fully understand the proofs of Propositions 2.12 and 2.13.

[Note: Knowing how to use each part of the definition of a group is vitally important.]

Solution : In the proof of Proposition 2.12, we use the fact that anything multiplied by f will

give the original thing back (this is what is means for f to be an identity) and we use the fact

that anything multiplied by e will give the original thing back (again because e is an identity).



66 Exercise Solutions

In the proof of Proposition 2.13, we use the fact that k is an inverse of g (which means that

e = gk by definition) to re-write he and then we use associativity of the group operation to

change the brackets: h(gk) = (hg)k. From here, we use the fact that h is also an inverse of g

(which means that e = hg).

Exercise 5 Prove Lemma 2.15(ii), that is Right Cancellation.

Solution : We practically replicate the proof of Lemma 2.15(i). Indeed, assume hg = kg. Then,

we can multiply by g−1 on the right to get (hg)g−1 = (kg)g−1 ⇒ h(gg−1) = k(gg−1)⇒ h = k.

Exercise 6 Construct the group table of Z∗
10.

[Hint: To determine Z∗
10, recall that coprime is introduced in Definition ??.]

Solution : First, note that Z∗
10 = {1, 3, 7, 9}, with multiplication defined modulo 10. We can easily

multiply the numbers and look at their remainders on division by ten; see Table 3 below.

×mod 10 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Table 3: The group table for Z∗
10.

Exercise 7 Verify that the other compositions presented in Table 3 are correct.

Solution : We must show (i) Tm ◦Rn = Rm+n, (ii) Rm ◦Tn = Rm−n and (iii) Rm ◦Rn = Tm−n. It

is done by using the formulae; (Tm◦Rn)(x, y) = Tm(−x+2n, y) = (−x+2n+2m, y) = Rm+n(x, y)

means (i) is true. Similarly, (Rm ◦ Tn)(x, y) = Rm(x+ 2n, y) = (−x− 2n+ 2m, y) = Rm−n(x, y)

gives (iii) and, lastly, (Rm ◦Rn)(x, y) = Rm(−x+ 2n, y) = (x− 2n+ 2m, y) = Tm−n(x, y).
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Exercise 8 Consider the frieze pattern drawn in Figure 3 below.

· · · · · ·

Figure 3: A frieze pattern of triangles.

Suppose one of the triangles has vertices (0, 0), (0, 1), (1, 0). The isometries of the plane

that preserve the frieze are translations Tn which shift the diagram n periods to the right

and rotations Sn about the point (n, 0) by the angle π.

(i) Write down formulae for Tn(x, y) and Sn(x, y).

(ii) Construct the group table for the frieze group.

(iii) State the orders of the elements in the frieze group.

Solution : (i) The translation Tn(x, y) = (x + 2n, y) and the rotation Sn(x, y) = (2n − x,−y).
note that it is 2n (and not just n) because the pattern in Figure 3 repeats ‘every two places’.

(ii) We can proceed similarly to Exercise 7 to construct the group table. Indeed, we just need to

apply the formulae for Tn and Sn to see how they interact; this gives Table 4.

◦ Tn Sn
Tm Tn+m Sn+m

Sm Sn−m Tn−m

Table 4: The group table of the isometries preserving the frieze in Figure 3.

(iii) The elements of the frieze group are T0, T1, T2, ... and R0, R1, R2, .... Well, ord(T0) = 1 as it

is the identity. It is easy to notice ord(Ti) = ∞ for all i ≥ 1 and ord(Rj) = 2 for all j ≥ 0. In

words, all non-trivial translations have infinite order and all rotations have order two.

Exercise 9 Use the Subgroup Criterion to prove that {2n : n ∈ Z} ≤ Q∗ is a subgroup.

Solution : Let H = {2n : n ∈ Z}. We are to prove that H ≤ Q∗.

(i) The identity in Q∗ is 1, but 1 = 20 ∈ H.

(ii) Let x, y ∈ H be of the form x = 2n and y = 2m for some m,n ∈ Z. Then, xy = 2n+m ∈ H
because n+m ∈ Z by the fact that Z is closed under addition.
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(iii) Let x ∈ H have the form x = 2n as in (ii). Because −n ∈ Z since Z is closed under forming

(additive) inverses, we know 2−n ∈ H also. However, we see that x(2−n) = 1 = (2−n)x, so

we have found the inverse of x. Namely, x−1 = 2−n ∈ H.

By the Subgroup Criterion, one can conclude that H ≤ Q∗.

Exercise 10 We call G cyclic if it is generated by an element, i.e. G = ⟨g⟩ for some g ∈ G.
Prove that a group of order n is cyclic if and only if it contains an element of order n.

Solution : (⇒) Suppose that G is a cyclic group of order n. By Lemma 2.33, we know that any

generator of the group will have order n, so it clearly contains an element of order n.

(⇐) Conversely, suppose that G contains an element of order n, g say. Then, ⟨g⟩ ≤ G is a

subgroup of order n, but this is true only when ⟨g⟩ = G. Thus, G is cyclic.

Exercise 11 Prove that K = {k ∈ Z : gk ∈ H} is a subgroup of Z.

[Hint: Remember that Z is an additive group, which means so too is K.]

Solution : Recall that G = ⟨g⟩ is a cyclic group and H ≤ G is a subgroup (this exercise relates

to proving something we used in the proof of Theorem 2.37).

(i) Because g0 ∈ H, since g0 = 1H is the identity and H is a subgroup, this means that 0 ∈ K.

Therefore, K contains the identity of Z.

(ii) Let k, n ∈ K, meaning that gk, gn ∈ H by definition. Because H is a subgroup, it is closed

under the operation. Hence, gkgn = gk+n ∈ H. As such, we conclude that k + n ∈ K so it

too is closed under its operation.

(iii) Let k ∈ K, meaning that gk ∈ H. Again, by the fact that H is a subgroup, it is closed

under forming inverses, so (gk)−1 = g−k ∈ H. But this implies that −k ∈ K, so it too is

closed under forming inverses.

Once again, the Subgroup Criterion implies the result.

Exercise 12 Demonstrate Theorem 2.41 by using G and H from Example 2.39.

[Hint: Show that G = {I, R, S} and H = Z∗
4 are cyclic and give a generator for G×H.]

Solution : The group G is cyclic since it is generated by R, or by S. This is clear when looking

at Table 2 (or at least the upper left block). The group H = Z∗
4 = {1, 3} is also cyclic as it is
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generated by 3. Both are finite and so satisfy the hypotheses of Theorem 2.41. By this result,

the group G×H is cyclic. In full, this is the group whose underlying set is

G×H = {(I, 1), (R, 1), (S, 1), (I, 3), (R, 3), (S, 3)}.

Because the group operation for G × H is inherited from those of the constituent groups, we

know that G×H = ⟨(R, 3)⟩ since this consists of the generators of each of the other groups.

Exercise 13 Let G = R (under +) and H = R∗ (under ×). Show that H has an element

of order two and that G does not. Conclude from this that G ≇ H are non-isomorphic.

Solution : The element −1 ∈ H has order two, because (−1)2 = 1 and 2 is the least positive

integer such that this occurs. In G, we have ord(0) = 1 because it is the identity and, for any

x ̸= 0, the elements x, x + x, x + x + x, ... are all distinct. Thus, ord(x) = ∞. In particular,

there is no element of order two. If an isomorphism G ∼= H existed, then Proposition 2.46(ii) is

contradicted. Therefore, there is no such isomorphism.

Exercise 14 Show that φ : G→ H in the proof of Theorem 2.47 is a homomorphism.

Solution : So, G = ⟨g⟩ andH = ⟨h⟩ have the same order and φ : G→ H is defined by φ(gk) = hk.

To show this is a homomorphism, it suffices to show φ respects the group operations. For

gk, gn ∈ G, we have φ(gkgn) = φ(gk+n) = hk+n = hkhn = φ(gk)φ(gn) and we are done.

Exercise 15 Determine the cosets of the subgroup K = {I, A} in D3.

Solution : This can be done relatively easily by using Table 2. Indeed, we just need to see how the

elements of K interact with the other elements of the group. For example, KI = {I ◦ I, A ◦ I} =
{I, A} and KA = {I ◦ A,A ◦ A} = {A, I}, so we know that the cosets KI = KA. This can be

done similarly and the punchline is written below:

KI = {I, A} = KA,

KR = {R,B} = KB,

KS = {S,C} = KC.

Hence, there are only the three cosets written above in this situation.
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Exercise 16 Show that ∼ in the proof of Corollary 2.53 is an equivalence relation.

Solution : Recall that the equivalence relation is defined as follows: x ∼ y if and only if xy−1 ∈ H,

where x, y ∈ G are elements of a group and H ≤ G is a subgroup. The justification for the things

below is simply the Subgroup Criterion.

(i) Clearly, x ∼ x because xx−1 = 1G ∈ H.

(ii) Let x ∼ y, so xy−1 ∈ H. Then, (xy−1)−1 = yx−1 ∈ H, and so y ∼ x.

(iii) Let x ∼ y and y ∼ z, so xy−1, yz−1 ∈ H. Then, (xy−1)(yz−1) = xz−1 ∈ H, and so x ∼ z.

As the relation is (i) reflexive, (ii) symmetric and (iii) transitive, it is an equivalence relation.

Exercise 17 Prove Corollary 2.59.

[Hint: Use Proposition 2.26(ii) and note that n is not necessarily the order of g.]

Solution : Let |G| = n and g ∈ G be a general element. By Proposition 2.26(ii), we know that

ord(g) | n. Let’s relabel ord(g) =: m, so we know that there exists k ∈ Z such that n = km (by

definition of divisors). Thus, gn = gkm = (gk)m = 1m = 1, as required.

Exercise 18 Prove that for φ : G→ H a homomorphism, im(φ) ≤ H is a subgroup.

Solution : We once again apply the Subgroup Criterion.

(i) We know from Lemma 2.45 that φ(1G) = 1H . Therefore, 1H ∈ im(φ).

(ii) Let x, y ∈ im(φ), meaning there exist elements g, h ∈ G such that x = φ(g) and y = φ(h).

Because φ is a homomorphism, we know that xy = φ(g)φ(h) = φ(gh) ∈ im(φ) since gh ∈ G
by closure under the operation.

(iii) Let x ∈ im(φ), meaning there is an element g ∈ G such that x = φ(g). By Lemma 2.45,

we have x−1 = φ(g)−1 = φ(g−1) ∈ im(φ), as g−1 ∈ G by closure under forming inverses.

Again, this suffices to show that im(φ) ≤ H is a subgroup.
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Exercise 19 (Harder) Let φ : G→ H and ψ : G→ H be homomorphisms. Prove that

Eq(φ,ψ) := {g ∈ G : φ(g) = ψ(g)} ≤ G

is a subgroup, called the equaliser of φ and ψ, using the Subgroup Criterion.

Solution : The difficulty here really comes from understanding how Eq(φ,ψ) is defined.

(i) By Lemma 2.45, we know that any homomorphism sends the identity to the identity. In

particular then, φ(1G) = 1H = ψ(1G). By definition, 1G ∈ Eq(φ,ψ).

(ii) Let g, h ∈ Eq(φ,ψ); this means that φ(g) = ϕ(g) and φ(h) = ψ(h). But now, we can see

that φ(gh) = φ(g)φ(h) = ψ(g)ψ(h) = ψ(gh) by the defining property of a homomorphism.

Thus, gh ∈ Eq(φ,ψ).

(iii) Let g ∈ Eq(φ,ψ); this means that φ(g) = ϕ(g). By Lemma 2.45 again, we can invert this

equation to see that φ(g)−1 = ψ(g)−1 ⇔ φ(g−1) = ψ(g−1). Thus, g−1 ∈ Eq(φ,ψ).

Consequently, the equaliser of φ and ψ is a subgroup of G by the Subgroup Criterion.

Exercise 20 Construct the group table for the Klein Vierergruppe, generated by a, b, c.

[Hint: You may use the fact it is really only generated by a and b, since c = ab.]

Solution : We are told that this group V is generated by three elements, but of course we need

an identity also. Hence, we are considering a 4× 4 table with entries consisting of applying the

operation to elements in {1, a, b, c}. Because 1 is the identity, we at least know the first row

immediately. Now, per the note after Theorem 2.67, we have that V = C2 × C2, the direct

product of two cyclic groups of order two. Well, any cyclic group of order two has two elements,

an identity and an element of order two. Thus, we can write V = ⟨a⟩ × ⟨b⟩ where a2 = 1 and

b2 = 1. From this, we know that the diagonal in our group table will consist of ones.

Note: The hint says c = ab, from which it follows that c2 = (ab)2 = abab. However, this

must be the identity; if it is not, as |V | = 4 and the order of an element divides the order

of the group, we get ord(c) = 4 and this makes V cyclic. This contradicts Theorem 2.41.

Given we now know that c2 = 1, this implies also that ab = ba, making V an Abelian group. We

can now fill in the rest of the group table (e.g. ca = aba = aab = a2b = b because a2 = 1, and

so forth). The conclusion to this is Table 5 below.
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· 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Table 5: The group table for the Klein Vierergruppe V .

Exercise 21 Prove the anti-commutativity statements in Lemma 2.71, that is

ji = −k, kj = −i, ik = −j.

Solution : We already proved the commutativity part of Lemma 2.71, and these (along with the

definition of quaternions) will near-on immediately give us the anti-commutativity rules.

� To prove ji = −k, multiply the equation ki = j by i. Indeed, ki2 = ji⇔ ji = −k.

� To prove kj = −i, multiply the equation ij = k by j. Indeed, ij2 = kj ⇔ kj = −i.

� To prove ik = −j, multiply the equation jk = i by k. Indeed, jk2 = ik ⇔ ik = −j.

Exercise 22 For a homomorphism φ : G→ H, is im(φ) ⊴ H normal? Justify your claim.

Solution : This is not true in general. Let G = {I, A}, a subgroup of D3, and take H = D3 to be

the whole of the dihedral group. We can define a homomorphism φ : G→ H by φ(g) = g. This

essentially ‘places’ the subgroup {I, A} inside the dihedral group D3. From Example 3.9(iii), we

can see that im(φ) = {I, A} ⋬ D3 is not normal.

Exercise 23 Show that the operation from Corollary 3.13 gives a group structure on G/N .

Solution : This amounts to demonstrating the axioms of a group where the operation is ‘coset

multiplication’. Throughout, we consider the quotient G/N of a group G by a normal N ⊴ G.

(i) Well, (Ng)
(
(Nh)(Nk)

)
= (Ng)

(
N(hk)

)
= N(ghk) =

(
N(gh)

)
(Nk) =

(
(Ng)(Nh)

)
(Nk)

establishes the associativity of the operation on the quotient group; this implicitly uses the

associativity of G when splitting N(ghk) into a product of two cosets.

(ii) By Corollary 3.13, we know that the quotient group is closed under this operation.

(iii) The identity is the trivial coset N(1G), which is clear by Corollary 3.13.
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(iv) We can define the inverse coset (Ng)−1 := N(g−1), which works by Corollary 3.13.

Exercise 24 Explain the equivalences for the injectivity in the proof of Theorem 3.18.

Solution : In the proof of the First Isomorphism Theorem, we have three equivalence statements

in quick succession: ker(φ)g1 = ker(φ)g2 ⇔ g1g
−1
2 ∈ ker(φ)⇔ φ(g1g

−1
2 ) = 1H ⇔ φ(g1) = φ(g2).

(i) ker(φ)g1 = ker(φ)g2 ⇔ g1g
−1
2 ∈ ker(φ) is a direct consequence of Proposition 2.52(v).

(ii) g1g
−1
2 ∈ ker(φ)⇔ φ(g1g

−1
2 ) = 1H is a direct consequence of Definition 2.61.

(iii) φ(g1g
−1
2 ) = 1H ⇔ φ(g1) = φ(g2) is a direct consequence of Definition 2.42.

Exercise 25 For an arbitrary group G, prove that (i) G/{1} ∼= G and (ii) G/G ∼= {1}.

[Hint: For each, construct a homomorphism and apply the First Isomorphism Theorem.]

Solution : (i) Let φ : G → G be given by φ(g) = g. Then, it is clear that the only element of

the kernel is the identity, that is ker(φ) = {1}. By the First Isomorphism Theorem, we see that

G/{1} ∼= G, since im(φ) is quite clearly all of G (this homomorphism is already an isomorphism).

(ii) Let ψ : G→ {1} be given by ψ(g) = 1. It is obvious that everything gets sent to the identity,

so ker(ψ) = G. Moreover, there is only one element in the image and it is clearly achieved, so

im(ψ) = {1}. By the First Isomorphism Theorem, we conclude that G/G ∼= {1}.

Exercise 26 (Longer) Let G be a group, H ≤ G and N ⊴ G. Prove the following:

(i) NH = HN , where NH := {nh : n ∈ N and h ∈ H}.

[Hint: You may find it useful to work with NH =
⋃

h∈H Nh.]

(ii) NH ≤ G is a subgroup.

[Hint: Be aware of Remark 3.98.]

(iii) N ⊴ NH is a normal subgroup.

Solution : (i) Per the hint, we write NH =
⋃

h∈H Nh =
⋃

h∈H hN = HN , where we use Lemma

3.11 in the second equality to translate between right and left coset,

(ii) It is first clear that NH ⊆ G, because both N and H are (at least) subsets. This then allows

for the use of the Subgroup Criterion. Indeed, let nh,mk ∈ NH. Now, we can use (i) above

to re-write nhmk = nm′h′k for some m′ ∈ N and h′ ∈ H; this is discussed in Remark 3.98.
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Basically, because h ∈ H and m ∈ N , we have hm ∈ HN , but we can always re-write this so

that something in N appears on the left (this is what we call m′) and something in H appears

on the right (this is what we call h′). Thus, nhmk = nm′h′k ∈ NH because each of N and H

are closed under the operation (nm′ ∈ N and h′k ∈ H); this shows closure under the operation.

Next, 1G ∈ N and 1G ∈ H since they are subgroups, so 1G ∈ NH.

Finally, for nh ∈ NH, we see that (nh)−1 = h−1n−1. Again, we can re-write this using (i) above

so that it is of the form (nh)−1 = h−1n−1 = n′h′ for n′ ∈ N and h′ ∈ H. Thus, (nh)−1 ∈ NH;

it is closed under forming inverses.

(iii) Let n ∈ N and x ∈ NH. We must show that x−1nx ∈ N for normality to hold. First, we

write x = mh for some m ∈ N and h ∈ H. Clearly, x ∈ G. Because of the usual normality

N ⊴ G within G, it immediately follows that x−1nx ∈ N .

Exercise 27 Prove the Third Isomorphism Theorem.

[Hint: Apply the First Isomorphism Theorem to f : G/M → N/M where f(Mg) = Ng.]

Solution :

Exercise 28 Give an example of some Zn which is not a field and explain why.

[Hint: By Example 4.2(iii), it must be that n isn’t a prime number.]

Solution :

Exercise 29 Give an example of a field K and a set V where V is not a K-vector space.

Solution :
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