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1 Prime Factorisation

Reminder: The set of natural numbers in this module is N := {0, 1, 2, ..., } (including zero).
In contrast, the set of positive integers in this module is Z+ := {1, 2, 3, ...} (excluding zero).

1.1 Greatest Common Divisors

Definition 1.1.1 Let n, d ∈ Z. We say that d is a divisor (or factor) of n if there exists
q ∈ Z such that n = qd. In this case, we write d | n. If d is not a divisor, we write d ̸ | n.

Remark If d | a and d | b, then we have d | (ax + by) for any x, y ∈ Z. Indeed, by assumption
there exist q1, q2 ∈ Z with a = q1d and b = q2d. Thus, ax + by = (q1x + q2y)d =: qd, which
satisfies Definition 1.1.1 since Z is closed under addition and multiplication (it is a ring).

Note: Furthermore, if a | b and b | c, then a | c. In words, this says divisors are transitive.

Definition 1.1.3 If a, b ∈ Z are not both zero, then their greatest common divisor (or
highest common factor) is the largest d ∈ Z+ that is a factor of both a and b. We denote
this by gcd(a, b) or hcf(a, b) or simply (a, b).

We extend Definition 1.1.3 by declaring gcd(0, 0) := 0, so we now work with any pair of integers.

Definition If a, b ∈ Z with gcd(a, b) = 1, then we call them coprime (or relatively prime).

Lemma 1.1.5 (Division Algorithm) Let a, b ∈ Z with b ̸= 0. Then, there exist some q, r ∈ Z
(called the quotient and remainder, respectively) with 0 ≤ r < |b| such that a = qb+ r.

Proof : Suppose first that b > 0 and let q ∈ Z be the largest integer where qb ≤ a. By this
assumption, we must have that a < (q + 1)b. We now define r := a− qb and claim this satisfies
the inequality. Indeed, what we have so far is qb ≤ a < (q + 1)b = qb + b, and subtracting qb
from everything yields 0 ≤ a− qb < b, the middle being precisely r.

Next, if b < 0, we know that −b > 0 so we can find q′, r ∈ R from the argument above such that
a = q′(−b) + r. If we then absorb the minus into the q′ and relabel (setting q := −q′), then this
is a = qb+ r. The fact that 0 ≤ r < |b| is again a consequence of the case above.

Theorem 1.1.7 (Bézout’s Lemma) For every a, b ∈ Z, there exist s, t ∈ Z such that

gcd(a, b) = sa+ tb.

Moreover, if a, b > 0, we can always find s and t where they satisfy s > 0 and t < 0.
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Proof : If a = b = 0, then s = t = 0 satisfies the result. Now, suppose at least one of a, b ̸= 0;
this means there exist positive integers expressible in the form sa+ tb (e.g. |a| if a ̸= 0). So let
h ∈ Z be the smallest such of these integers. We aim to prove that h = gcd(a, b).

Since h > 0, we can apply the Division Algorithm to write a = qh + r for some q, r ∈ Z with
0 ≤ r < h. But now, the remainder is nothing more than

r = a− qh = a− q(sa+ tb) = (1− qs)a+ tb.

This is a linear combination of a and b, so by the minimality of h, the only option is to have r = 0
(since r < h when we apply the Division Algorithm). Therefore, h | a and h | b, showing that
h ≤ gcd(a, b). Conversely, gcd(a, b) divides both a and b, so it divides any linear combination. In
particular, gcd(a, b) | h which means gcd(a, b) ≤ h. Combining these gives us equality. Finally,
if a, b > 0, then we can find a sufficiently large k ∈ Z ensuring the following inequalities are true:

s′ := s+ kb > 0 and t′ := t− ka < 0.

But clearly s′a+ t′b = sa+ kba+ tb− kba = sa+ tb = gcd(a, b), so we are done.

Note: We haven’t yet found a concrete process for computing greatest common divisors
or the integers s and t in Bézout’s Lemma. But don’t fear; we do this in the next section.

1.2 Euclid’s Algorithm

Theorem 1.2.1 (Euclid’s Algorithm) Let a, b ∈ Z with b ̸= 0 and we obtain the following:

a = q1b+ r1, for 0 ≤ r1 < |b1|,
b = q2r1 + r2, for 0 ≤ r2 < r1,

r1 = q3r2 + r3, for 0 ≤ r3 < r2,

...
...

rk−2 = qkrk−1 + rk, for 0 ≤ rk < rk−1.

The algorithm terminates when rk = 0 for some k ∈ Z+. Consequently, gcd(a, b) = rk−1.

Proof : First, the algorithm terminates because |b| > r1 > r2 > · · · ≥ 0 so there will certainly be
some k such that rk = 0. We now just need to show that gcd(a, b) = rk−1. Indeed, the last few
steps of the algorithm are as follows:

rk−4 = qk−2rk−3 + rk−2, for 0 ≤ rk−2 < rk−3,

rk−3 = qk−1rk−2 + rk−1, for 0 ≤ rk−1 < rk−2,

rk−2 = qkrk−1 + rk, for 0 ≤ rk < rk−1.

Because rk = 0, the final line tells us that rk−1 | rk−2. But by using the second-to-last line, we
therefore conclude that rk−1 | rk−2. Proceeding like this up the whole ladder of equalities, we

3



conclude that rk−1 | rj for every j, ending with rk−1 | b and rk−1 | a. This means it is at least a
common divisor, so rk−1 ≤ gcd(a, b). On the other hand, we can again work backwards to obtain

rk−1 = rk−3 − qk−1rk−2

= rk−3 − qk−1(rk−4 − qk−2rk−3) (substituting for rk−2)

= (1− qk−1qk−2)rk−3 − qk−1rk−4

= (1− qk−1qk−2)(rk−5 − qk−3rk−4)− qk−1rk−4 (substituting for rk−3)

...

= ma+ nb,

for some m,n ∈ Z given in terms of the quotients and remainders . What this establishes is that
rk−1 is a linear combination of a and b, which means that gcd(a, b) | rk−1, so gcd(a, b) ≤ rk−1.
Combining both inequalities gives us an equality.

Corollary 1.2.3 Let a, b, n ∈ Z. Then, we have the following:
(i) If n | a and n | b, then n | gcd(a, b).
(ii) If n | ab and gcd(a, n) = 1, then n | b.
(iii) If gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.
(iv) If gcd(a, b) = 1 with a | n and b | n, then ab | n.

Proof : (i) If n | a and n | b, then we see that n | (sa + tb) for any s, t ∈ Z. But by Bézout’s
Lemma, we can find s and t such that sa+ tb = gcd(a, b); this gives the result.

(ii) Using Bézout’s Lemma, there exist s, t ∈ Z such that gcd(a, n) = sa + tn = 1. Multiplying
by b tells us that sab+ tnb = b. Combined with the fact n | ab and n | n, we see that n divides
the entire of the left-hand side, so n | b.

(iii) Suppose d | ab and d | n is an arbitrary common divisor. We note that gcd(a, n) = 1 implies
gcd(a, d) = 1, so d | b by part (ii) above (substitute n = d into the statement). Therefore, d is a
divisor of both n and b, so we must have d ≤ gcd(b, n) = 1. We thus must have d = 1.

(iv) Using Bézout’s Lemma, there exist s, t ∈ Z such that gcd(a, b) = sa + tb = 1. Multiplying
by n tells us that san + tbn = n. Because a | n and b | n, we know there exist q1, q2 ∈ Z
such that n = q1a and n = q1b. Substituting these into the multiplied equation tells us that
n = sa(q2b) + tb(q1a) = (sq2 + tq1)ab, so ab | n as required.

1.3 Prime Numbers

Definition 1.3.1 An integer p > 1 is prime if its only positive factors are one and itself. If
an integer is not prime, it is called a composite.

Note: Another neat definition is this: a prime is a positive integer with exactly two distinct
positive factors. Of course, one and itself always satisfy this, so “exactly two” ensures the
usual notion of a prime and “distinct” ensures that 1 is not classed as a prime number.
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Lemma 1.3.2 Let p be prime and a, b ∈ Z. If p | ab, then p | a or p | b.

Proof : Suppose p ̸ | a. Then, gcd(a, p) = 1 and Corollary 1.2.3(ii) implies that p | b.

Note: We extend Lemma 1.3.2 inductively: if p | (a1 · · · an), then p | ai for at least one i.

Theorem 1.3.3 Every positive integer can be written as a product of primes.

Proof : Let n ∈ Z+. For ease, we consider n > 1 (note that n = 1 can be considered as the
“empty product” of primes, so it satisfies the theorem vacuously). Suppose to the contrary that
n is the least integer that can not be written as a product of primes. Then, n itself is not prime
(otherwise it is the trivial product of one prime). We can therefore factorise it as n = ab where
1 < a < n and 1 < b < n. Because n is the smallest such where this property fails, we know that
each of q and s are a product of primes, say a = p1 · · · pr and b = q1 · · · qs. But then we see that
n = p1 · · · prq1 · · · qs is a product of primes, a contradiction.

Theorem 1.3.4 (Euclid’s Theorem) There are infinitely-many primes.

Proof : Suppose for a contradiction there are finitely-many primes, say p1, ..., pr. We consider
the number n := p1 · · · pr +1, that is multiply the finite list of primes and add one. If n is prime,
this isn’t on our list and we have a contradiction. If n is composite, we can write n as a product
of primes, say n = q1 · · · qs, by Theorem 1.3.3. But each pi ̸ | n which means q1 is a new prime
number not on our list, another contradiction.

Theorem 1.3.6 (Fundamental Theorem of Arithmetic) Every n > 1 can be expressed as a
unique product of primes up to order, that is if n = p1 · · · pr and n = q1 · · · qs where pi, qj
are primes, then r = s and the pi and qj can be paired-off so they are equal within pairs.

Proof : Suppose this is not the case and let n be the smallest integer which can be written as a
product of primes in different ways, say n = p1 · · · pr and n = q1 · · · qs. The first tells us that
p1 | n, so the second implies p1 | (q1 · · · qs). By (the extension of) Lemma 1.3.2, we know that
p1 | qj for some j. Because qj is also prime, we must have that p1 = qj . Cancelling p1, we obtain
p2 · · · pr = q1 · · · qj−1qj+1 · · · qs. Repeating this with p2, ..., pr, we pair-off each pi with some qj ,
but then we have that r = s, a contradiction to distinct products.

Remark 1.3.8 Using the Fundamental Theorem of Arithmetic to write two positive integers
n = pα1

1 pα2
2 · · · pαk

k and m = pβ1
1 p

β2
2 · · · pβk

k as a product of prime powers, we obtain the following:

gcd(n,m) = p
min(α1,β1)
1 p

min(α2,β2)
2 · · · pmin(αk,βk)

k ,

lcm(n,m) = p
max(α1,β1)
1 p

max(α2,β2)
2 · · · pmax(αk,βk)

k .
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2 Modular Arithmetic

2.1 Congruences

Definition 2.1.1 Let a, b,m ∈ Z with m > 1. We say a and b are congruent modulo m if
there exists k ∈ Z with a = b+ km, meaning m | (a− b). This is denoted a ≡ b (mod m).
Otherwise, we say that they are incongruent modulo m and write a ̸≡ b (mod m).

Lemma Let a, b,m ∈ Z with m > 1. Then, a ≡ b (mod m) if and only if a and b have the
same remainder on dividing by m. In particular, a ≡ 0 (mod m) is equivalent to m | a.

Proof : (⇒) Let a ≡ b (mod m), meaning a = b+ km for some k ∈ Z. If we apply the Division
Algorithm to a on dividing by m, we can writea = qm+ r. But then, qm+ r = b+ km which is
equivalent to b = (q − k)m+ r, so the remainder on diving b by m is also r.

(⇐) Let r be the common remainder upon dividing a and b each by m, meaning a = pm+ r and
b = qm + r for some p, q ∈ Z. But then, we see that a − pm = b − qm and this rearranges to
a = b+ (p− q)m and thus Definition 2.1.1 is satisfied with k = p− q.

Note: Each integer is congruent modulo m to exactly one of 0, 1, ...,m− 1 (which we can
shift by one to be 1, 2, ...,m). We then call these the “complete set of residues modulo m”

Reminder: An equivalence relation on a set X is a relation ∼ satisfying these properties:
(i) For all x ∈ X, we have x ∼ x. (Reflexivity)
(ii) For all x, y ∈ X, we have x ∼ y ⇒ y ∼ x. (Symmetry)
(iii) For all x, y, z ∈ X, we have x ∼ y and y ∼ z ⇒ x ∼ z. (Transitivity)

Proposition Congruence modulo m is an equivalence relation.

Proof : We need to verify the three properties in the above reminder for a, b, c,m ∈ Z withm > 1.

(i) We see that a ≡ a (mod m) by virtue of taking k = 0 in Definition 2.1.1.

(ii) Let a ≡ b (mod m), meaning a = b + km for k ∈ Z. We can re-write this as b = a − km;
this satisfies Definition 2.1.1e, so b ≡ a (mod m).

(iii) Let a ≡ b (mod m) and b ≡ c (mod m), meaning a = b+ km and b = c+ lm for k, l ∈ Z.
Substituting gives a = c+ (k + l)m; this satisfies Definition 2.1.1, so a ≡ c (mod m).
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Lemma 2.1.3 (Arithmetic of Congruences) Congruence modulo m is compatible with addi-
tion, subtraction, multiplication and powers. In other words, for a, b, c, d ∈ Z and n ∈ Z+,
assume a ≡ b (mod m) and c ≡ d (mod m). Then, we have the following:
(i) a+ c ≡ b+ d (mod m).
(ii) a− c ≡ b− d (mod m).
(iii) ac ≡ bd (mod m).
(iv) an ≡ bn (mod m).

Proof : Throughout, we are assuming that a = b+ km and c = d+ lm for some k, l ∈ Z.

(i) Here, a+ c = (b+ d) + (k + l)m, which shows a+ c ≡ b+ d (mod m).

(ii) Next, a− c = (b− d) + (k − l)m, which shows a− c ≡ b− d (mod m).

(iii) Now, ac = (b+ km)(d+ lm) = bd+ (bl + dk + kl)m, implying ac ≡ bd (mod m).

(iv) Finally, an = (b+ km)n = bn +
( n∑

i=1

(
n
i

)
bn−ikimi−1

)
m, implying an ≡ bn (mod m).

Lemma 2.1.4 (Cancellation) Let a,m ∈ Z with m > 1. If gcd(a,m) = 1, then there exists
some b ∈ Z such that ab ≡ 1 (mod m).

Proof : By Bézout’s Lemma, we can write gcd(a,m) = sa+ tm = 1 for some s, t ∈ Z. Applying
congruence modulo m, we see that sa ≡ 1 (mod m) and thus b = s is the desired integer.

Note: We see Lemma 2.1.4 implies these only when gcd(a,m) = 1 and ab ≡ 1 (mod m):
� If ax ≡ c (mod m), then abx ≡ bc (mod m), meaning x ≡ bc (mod m).
� If ax ≡ ay (mod m), then abx ≡ aby (mod m), meaning x ≡ y (mod m).

Remark The condition that gcd(a,m) = 1 is absolutely necessary for Lemma 2.1.4 and the above
note to hold true. For example, 8 ≡ 12 (mod 4) but dividing by two fails since 4 ̸≡ 6 (mod 4).

2.2 Fermat’s Little Theorem

Reminder: The factorial of a positive integer n ∈ Z+ is the product n! := n · (n−1) · · · 2 ·1.

Theorem 2.2.3 (Fermat’s Little Theorem 1) Let p be prime and a ∈ Z with p ̸ | a. Then,

ap−1 ≡ 1 (mod p).

Proof : Consider the numbers a, 2a, ..., (p−1)a and note that none are congruent to zero modulo p.
This is because p ̸ | a and, since it is prime, it also doesn’t divide any of the coefficients 1, 2, ..., p−1.
Furthermore, gcd(a, p) = 1 by primality and so Lemma 2.1.4 tells us that ra ≡ sa (mod p)
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implies r ≡ s (mod p). Therefore, a, 2a, ..., (p− 1)a are congruent in some order to 1, 2, ..., p− 1.
If we multiply these numbers together, we obtain (p− 1)!ap−1 ≡ (p− 1)! (mod p). Since (p− 1)!
is coprime to p, we simply cancel to obtain the intended ap−1 ≡ 1 (mod p).

Corollary 2.2.4 (Fermat’s Little Theorem 2) If p is prime and a ∈ Z, then ap ≡ a (mod p).

Proof : If p | a, then a ≡ 0 (mod p) and therefore ap ≡ 0 (mod p) so the result holds. Otherwise,
p ̸ | a and we use Theorem 2.2.3 to conclude ap−1 ≡ 1 (mod p); then just multiplying by a.

Definition A Mersenne prime is a prime number of the form 2r − 1 where r ∈ Z.

Remark 2.2.5 It turns out if the number 2r − 1 is prime, then r is prime (proved in an exercise
sheet). The converse is not true, e.g. r = 11 is prime but 211 − 1 = 2047 = 23 · 89 is composite.

Theorem 2.2.6 Let r > 2 be prime. Every prime factor of 2r − 1 is of the form 2kr + 1.

Proof : Let p be a prime factor of 2r−1, meaning that p | (2r−1) and therefore 2r ≡ 1 (mod p).
But we know by Fermat’s Little Theorem that 2p−1 ≡ 1 (mod p). We aim to show that 2r | (p−1)
since this is equivalent to p− 1 = 2kr which rearranges to the form we wish to prove. Of course,
2 | (p − 1) since p > 2 is a prime (because 2r − 1 is odd so it has no even factors) and thus
one less is even. Since gcd(r, 2) = 1, it suffices to show that r | (p − 1). Therefore, suppose to
the contrary that r ̸ | (p− 1). Because r is prime, we have gcd(r, p− 1) = 1. Applying Bézout’s
Lemma tells us sr + t(p − 1) = 1 for some s, t ∈ Z with s > 0 and t < 0. If we define m := −t,
we can write sr = 1+m(p− 1). Exponentiating, we see that 2sr = 21+m(p−1). However, we have

2sr ≡ (2r)s ≡ 1s = 1 (mod p) and 21+m(p−1) = 2(2p−1)m ≡ 2(1)m = 2 (mod p).

Therefore, 1 ≡ 2 (mod p) which is false; this is the contradiction we were after.

Method – Mersenne Numbers: Suppose we want to determine if 2r − 1 is prime.
(i) Check that r is prime.
(ii) Use Theorem 2.2.6 to look for factors of the form 2kr + 1.
(iii) Reduce 2r modulo 2kr + 1; if you reach 1, then 2r − 1 is composite.

2.3 Wilson’s Theorem

Theorem 2.3.1 (Wilson’s Theorem) For p prime, we have (p− 1)! ≡ −1 (mod p).

Proof : For p = 2, 3 it is clear, so suppose p > 3 is prime. We will show that 2, 3, ..., p− 2 can be
paired-off such that the products within each pair are congruent to one modulo p. Indeed, let
a ∈ {1, 2, ..., p− 1}. Since gcd(a, p) = 1, we know there exists b ∈ Z such that ab ≡ 1 (mod p) by
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Lemma 2.1.4. We can replace b by its remainder modulo p (which is clearly non-zero) so we can
always assume that b ∈ {1, 2, ..., p}. Furthermore, we get uniqueness by applying cancellation.

However, the situation b = a occurs if and only a2 ≡ 1 (mod p); this is equivalent to p | (a2− 1).
Since we can factorise a2 − 1 = (a− 1)(a+1), Lemma 1.3.2 implies that p | (a− 1) ir p | (a+1).
Since a ∈ {1, 2, ..., p − 1}, this means either a = 1 or a = p − 1. Therefore, we pair-off the
remaining integers 2, 3, ..., p− 2 with a being matched to its corresponding b. Consequently,

2 · 3 · · · (p− 2) ≡ 1 (mod p) ⇔ (p− 2)! ≡ 1 (mod p).

As a result, we see that (p− 1)! = (p− 1) · (p− 2)! ≡ p− 1 ≡ −1 (mod p).

Corollary 2.3.3 Let p be prime. Then, the congruence equation x2 ≡ −1 (mod p) has a
solution if and only if p = 2 or p ≡ 1 (mod 4), that is p = 4k + 1 for some k ∈ Z.

Proof : The p = 2 case is trivial; take x = 1. We assume p > 2, in particular that p− 1 is even.

(⇒) Let x = a be a solution, so a2 ≡ −1 (mod p). Applying Fermat’s Little Theorem yields

1 ≡ ap−1 = (a2)
p−1
2 ≡ (−1)

p−1
2 (mod p).

This tells us that p−1
2 is even and therefore 4 | (p− 1); this is equivalent to p ≡ 1 (mod 4).

(⇐) Suppose p ≡ 1 (mod 4) and notice p− k ≡ −k (mod p) for every 1 ≤ k ≤ p−1
2 . Then,

(p− 1)! = 1 · 2 · · · p− 1

2
· p+ 1

2
· · · (p− 2) · (p− 1)

= 1 · 2 · · · p− 1

2
·
(
−p− 1

2

)
· · · (−2) · (−1)

=

(
p− 1

2

)
! · (−1)

p−1
2 ·

(
p− 1

2

)
!

= (−1)
p−1
2 ·

((
p− 1

2

)
!

)2

.

ByWilson’s Theorem, the left-hand side is congruent to −1 modulo p. Given that p ≡ 1 (mod 4),
this tells us that p−1

2 is even, in particular the final line above is positive. Hence, we can take

x =

(
p− 1

2

)
!.
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2.4 Chinese Remainder Theorem

Theorem 2.4.1 (Chinese Remainder Theorem) Let a1, ..., ak ∈ Z and supposem1, ...,mk > 1
are pairwise coprime. Then, the following simultaneous congruences has a solution x ∈ Z:

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

...

x ≡ ak (mod mk).

Moreover, the solution is unique up to congruence modulo m1m2 · · ·mk.

Proof : We prove this for k = 2 (the general case follows by induction). Bézout’s Lemma tells us
there exist s, t ∈ Z with sm1 + tm2 = 1 by the fact the mi are pairwise coprime. We claim that
x = sm1a2+ tm2a1 is a solution. Justifying this amounts to showing the congresses are satisfied:

x = sm1a2 + (1− sm1)a1 ≡ a1 (mod m1),

x = (1− tm2)a1 + tm1a2 ≡ a2 (mod m2).

As for uniqueness up to congruence, suppose y ∈ Z is another solution, meaning that y ≡
ai (mod mi), which is equivalent to y ≡ x (mod mi) and therefore mi | (y − x). Consequently,
y is a solution if and only if both m1 and m2 divide y − x. Since the mi are coprime, it is
equivalent to their product dividing y − x, meaning y ≡ x (mod m1m2).

Note: Denote the residues modulom by Zm and letM := m1m2 · · ·mk. In this notation, a
non-constructive proof of the Chinese Remainder Theorem is to show that this is bijective:

f : ZM → Zm1 × · · · × Zmk
, f(a+MZ) = (a+m1Z, ..., a+mkZ).

Remark 2.4.2 The idea to take x = sm2a1 + tm1a2 in the proof of the Chinese Remainder
Theorem seems to come at random, so we will justify this here. Indeed, if we solve the first
congruence x ≡ a1 (mod m1), then we get x = a1 + km1 for some k ∈ Z (this is immediate from
Definition 2.1.1). Substituting this into the second equation gives us

km1 ≡ a2 − a1 (mod m2).

Using Lemma 2.1.4, there exists s ∈ Z such that sm1 ≡ 1 (mod m2). Furthermore, we can take
the same s as in Bézout’s Lemma because sm1 + tm2 = 1 implies that sm1 ≡ 1 (mod m2) by
reducing modulo m2. Multiplying both sides of the above stand-alone equation by s gives

ksm1 ≡ s(a2 − a1) (mod m2) ⇒ k ≡ s(a2 − a1) (mod m2).

Therefore, we can simply take k = s(a2 − a1) and substituting this into the first solution for x
produces exactly what we expect, namely x = sm2a1 + tm1a2.
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3 Euler’s Totient Function

3.1 Euler’s Totient Function

Definition 3.1.1 For n ∈ Z+, the totient of n is the number of integers k with 1 ≤ k ≤ n
which are coprime to n, that is gcd(n, k) = 1. The totient is a function denoted ϕ(n).

Remark 3.1.3 The integers from 1 to n that are coprime to n are a group under multiplication
modulo n, denoted Zn since its elements are residues modulo n. The group’s order is just ϕ(n).

Note: We have always that ϕ(1) = 1 and ϕ(p) = p− 1, where p is a prime number.

Notation We can work with either {1, 2, ..., n} or with {0, 1, ..., n− 1}; it really doesn’t matter.

Lemma 3.1.4 If m,n ∈ Z+ are coprime, then ϕ(m)ϕ(n) = ϕ(mn).

Proof : Let f : {0, 1, ...,m− 1} → {0, 1, ...,m− 1}× {0, 1, ...,m− 1} given by f(x) = (a, b) where
x ≡ a (mod m) and x ≡ b (mod n), that is it sends an element to the pair of remainders upon
division by each of m and n. By the Chinese Remainder Theorem, this map is a bijection. Note
that x is coprime to mn is equivalent to x being coprime with each of m and n separately by
Corollary 1.2.3(iii), but this is equivalent to gcd(a,m) = 1 and gcd(b, n) = 1. By definition,
there are ϕ(m) possibilities for a and ϕ(n) possibilities for b, so there are ϕ(m)ϕ(n) possibilities
for the pair (a, b). In other words, there are ϕ(m)ϕ(n) possible x which are coprime to mn, but
this is just ϕ(mn) by Definition 3.1.1.

Definition We say f is multiplicative if f(1) = 1 and f(ab) = f(a)f(b) for coprime a, b ∈ Z.
We say f is completely multiplicative if f(1) = 1 and f(ab) = f(a)f(b) for every a, b ∈ Z.

We have therefore established in Lemma 3.1.4 that the totient function ϕ is multiplicative.

Remark 3.1.5 There are many important multiplicative functions in number theory such as these:

� The function d(n), which outputs the number of positive factors of n.

� The function σ(n), which outputs the sum of positive factors of n.

� The function σk(n), which outputs the sum of the kth powers of the positive factors of n.

Note: We have σ0(n) = d(n) and σ1(n) = σ(n), so this covers the first two examples.

� The Möbius function µ(n) which is defined as follows:

µ(n) =


1, if n = 1

(−1)k, if n is a product of k distinct primes

0, otherwise

.
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3.2 Euler’s Theorem

Theorem 3.2.1 Let p be prime. Then, for a prime power pα with α ∈ Z+, we have

ϕ(pα) = pα − pα−1 = pα
(
1− 1

p

)
.

In general, writing n = pα1
1 · · · pαk

k as a product of powers of distinct primes, we obtain

ϕ(n) = (pα1
1 − pα1−1

1 ) · · · (pαk
k − pαk−1

k ) = n

(
1− 1

p1

)
· · ·
(
1− 1

pk

)
.

Proof : If p is prime, then ϕ(pα) is the number of integers in 1, 2, ..., pα that are coprime to pα, by
definition. But the numbers in this range that have a common divisor with pα are the multiplies
of p since it is prime, namely p, 2p, ..., pα and there are pα−1 of them. Therefore, we see that

ϕ(p) = pα − pα−1,

which factorises in the necessary way. Lemma 3.1.4 implies ϕ is multiplicative, so the result for
any n ∈ Z written as a product of powers of distinct primes follows immediately.

Note: For n > 2, the totient ϕ(n) is even. Indeed, ϕ(n) counts the number of k such that
gcd(n, k) = 1, but gcd(n, n−k) = gcd(n, k) so each k gives rise to two coprime integers: k
itself and n− k. The degenerate situation k = n− k has gcd(n, k) ̸= 1 so it doesn’t count.

Theorem 3.2.3 (Euler’s Theorem) If a, n ∈ Z are coprime, then aϕ(n) ≡ 1 (mod n).

Proof : Let r1, ..., rϕ(n) be the numbers amongst 0, 1, ..., n − 1 that are coprime to n. Note that
the numbers ar1, ..., arϕ(n) are pairwise incongruent modulo n. Indeed, if ari ≡ arj (mod n),
then ri ≡ rj (mod n) by cancellation, so the only option here is ri = rj . This establishes that
ar1, ..., arϕ(n) are congruent modulo n to r1, ..., rϕ(n) in some order. So taking products yields

(ar1) · · · (arϕ(n)) ≡ r1 · · · rϕ(n) (mod n).

Because gcd(n, ri) = 1 for each i, we can cancel them all to obtain aϕ(n) ≡ 1 (mod n).

Remark 3.2.4 It turns out Euler’s Theorem is a generalisation of Fermat’s Little Theorem.
Indeed, notice that Theorem 2.2.3 is a special case with n being prime, wherein ϕ(n) = n− 1.

Method – Finding the Last Digits: Suppose we wish to find the last n digits of k. The
objective is to reduce k using congruence modulo 10n; we can speed it up slightly.
(i) Apply Euler’s Theorem to see that xϕ(10

n) ≡ 1 (mod 10n).
(ii) Write k as a product involving a power of ϕ(10n).
(iii) Use Step (i) to eliminate a factor in Step (ii).
(iv) Continue to reduce modulo 10n until the result is less than 10n.
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3.3 Gauss’ Theorem

Theorem 3.3.1 (Gauss’ Theorem) Let n ∈ Z+. Then, the sum of divisors
∑

d|n ϕ(d) = n.

Proof : For each positive d | n, define the set Sd := {m ∈ Z : 1 ≤ m ≤ n and gcd(m,n) = d}.
Thus, m ∈ Sd if and only if d | m and gcd(m/d, n/d) = 1. The size of this set is |Sd| = ϕ(n/d).
Furthermore, each m lies in exactly one of these sets, namely with d = gcd(m,n). As a result,

n =
∑
d|n

|Sd| =
∑
d|n

ϕ

(
n

d

)
.

But d is a factor of n if and only if n/d is a factor of n. This allows us to re-order the sum on
the right-hand side above and replace n/d with d, giving the result.

Note: The Sd partition the set {1, 2, ..., n}, meaning we can write this set as a union of the
Sd such that no two different Sd’s contains a common element. This implies n =

∑
d|n |Sd|.
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4 Primitive Roots

4.1 Orders and Primitive Roots

Definition 4.1.1 Let a, n ∈ Z be coprime. The order of a modulo n is the smallest d > 0
satisfying the congruence ad ≡ 1 (mod n).

Remark The order modulo n always exists as a result of Euler’s Theorem; we know that ϕ(n)
satisfies the condition. However, it may be there is a smaller integer which is congruent to one.
Similar reasoning tells us that the order of an element modulo n is at most ϕ(n).

Proposition 4.1.2 Let n > 1 with gcd(n, 10) = 1. Then, the decimal expansion of 1/n
recurs with period d, where d is the order of 10 modulo n

Proof : The period of 1/n is the least integer d > 0 such that the following is an integer:

10d ·
(
1

n

)
− 1

n
.

We can rearrange this to say that 10d − 1 = kn for some k ∈ Z. Therefore, we are looking for
the smallest d > 0 such that n | (10d − 1), but this is precisely to say 10d ≡ 1 (mod n), that is d
is the order of 10 modulo n.

Lemma 4.1.3 Let a, n ∈ Z be coprime and suppose that a has order d modulo n. Then,
am ≡ 1 (mod n) if and only if d | m. In particular, we conclude that d | ϕ(n).

Proof : (⇐) If d | m, we have m = kd for some k ∈ Z. Therefore, am = (ad)k ≡ 1k = 1 (mod n).

(⇒) If am ≡ 1 (mod n), then the Division Algorithm allows us to write m = qd + r for some
0 ≤ r < d. We aim to show that r = 0. Indeed, we see that am = (ad)qar ≡ ar (mod n) by
definition of order. However, we assume that this is congruent to one, so ar ≡ 1 (mod n). But
because d is the order, it is the least integer satisfying this; the fact r < d tells us we must have
r = 0. This establishes that m = qd which is equivalent to d | m.

Note: The fact d | ϕ(n) in Lemma 4.1.3 is now a direct consequence of Euler’s Theorem.

Definition 4.1.5 Let a, n ∈ Z be coprime. We say that a is a primitive root modulo n (or
simply a primitive root of n) if the order of a is maximal, that is its order is exactly ϕ(n).

14



4.2 A Theorem of Lagrange

Theorem 4.2.1 (Lagrange’s Theorem) If p is prime and f(x) is a polynomial of degree n
with integer coefficients and leading coefficient (in front of xn) not divisible by p, then the
equation f(x) ≡ 0 (mod p) has at most n pairwise incongruent solutions modulo p.

Proof : We proceed by induction on n. The base case n = 1 and f(x) = ax + b for a, b ∈ Z is
clear: any two solutions x and y satisfy ax+ b ≡ ay+ b (mod p) which means ax ≡ ay (mod p),
so x ≡ y (mod p) by cancellation. We now assume the result holds for n = k. Suppose now
that f(x) has degree k+1. If there are no solutions modulo p, then the result is vacuously true.
Otherwise, suppose x = c is a solution. Polynomial division allows us to write

f(x) = q(x)(x− c) + r,

where q(x) is a polynomial and r ∈ Z. Since f(c) ≡ 0 (mod p), we have r ≡ 0 (mod p). Thus,

f(x) ≡ 0 (mod p) ⇔ x ≡ c (mod p) or q(x) ≡ 0 (mod p).

Because x−c is linear and f(x) has degree n+1, it means that q(x) has degree n. Therefore, the
inductive hypothesis tells us there are at most n incongruent solutions to q(x) ≡ 0 (mod p). If
we add to this the solution x ≡ c (mod p), this gives us a total of n+1 incongruent solutions.

Note: This means there are at most n solutions in any complete set of residues modulo p.

Corollary 4.2.2 If p is prime and d | (p − 1), then the equation xd − 1 ≡ (mod p) has
exactly d solutions up to congruence modulo p.

Proof : By Fermat’s Little Theorem, xp−1 − 1 ≡ (mod p) has exactly p− 1 solutions modulo p,
namely 1, 2, ..., p− 1. Under the divisibility assumption, we write p− 1 = kd for some k ∈ Z, so

xp−1 − 1 = xkd − 1 = (xd − 1)(xd(k−1) + xd(k−2) + · · ·+ xd + 1).

By the fact that p is prime, any solution to xp−1 − 1 ≡ 0 (mod p) must also be a solution to

xd − 1 ≡ 0 (mod p) or xd(k−1) + xd(k−2) + · · ·+ xd + 1 ≡ 0 (mod p).

By Lagrange’s Theorem, the second has at most d(k − 1) solutions modulo p, so the first must
have at least (p−1)−d(k−1) = kd−d(k−1) = d solutions modulo p. But Lagrange’s Theorem
says it has at most d solutions modulo p; it has exactly d incongruent solutions.

Lemma 4.2.3 Let a ∈ Z have order d modulo p, where p is some prime.
(i) The a, a2, ..., ad are all incongruent solutions to xd − 1 ≡ 0 (mod p).
(ii) The ak with 1 ≤ k ≤ d and gcd(k, d) = 1 are all incongruent elements of order d.
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Proof : (i) We first show that the powers are pairwise incongruent. Indeed, if ai ≡ aj (mod p)
where 1 ≤ i < j ≤ d without loss of generality, then ai−j ≡ 1 (mod p), a contradiction to the
fact that d is minimal (since it is the order of a). Moreover, these ak are all solutions because

(ak)d − 1 = (ad)k − 1 ≡ 1k − 1 = 0 (mod p).

Therefore, Corollary 4.2.2 guarantees any solution is congruent to some ak for 1 ≤ k ≤ d.

(ii) If x be an element of order d, then it is a solution to xd− 1 ≡ (mod 0); we aim to show that
gcd(k, d) = 1. To that end, we know x ≡ ak (mod p) for some 1 ≤ k ≤ 1. So if c is a non-trivial
common divisor of k and d, then xd/c ≡ (ak)d/c = (ad)k/c ≡ 1 (mod p), but this contradicts the
fact that d is minimal (again because it is the order of a). Thus, c = 1 and we get gcd(k, d) = 1.
Conversely, let gcd(k, d) = 1 and assume its order of ak is e; we aim to show that e = d. Indeed,
we can use Lemma 4.1.3 to determine that

e | m ⇔ (ak)m ≡ 1 (mod p) ⇔ d | km,

where m ∈ Z is some integer. But because gcd(k, d) = 1, we know that d | km implies d | m by
Corollary 1.2.3(ii). Since m is arbitrary, this is true for every m. This says that e is a divisor if
and only if d is a divisor, which means e = d.

4.3 Results about Existence of Primitive Roots

Theorem 4.3.1 If p is prime, then it has ϕ(p− 1) primitive roots modulo p.

Proof : Suppose d | (p− 1) and let ψ(d) denote the number of integers in the range 1, 2, ..., p− 1
that have order d modulo p. Then, every m in this range has order dividing ϕ(p) = p− 1, and

p− 1 =
∑

d|(p−1)

ψ(d).

Note that ψ(d) ≤ ϕ(d). Indeed, either ψ(d) = 0 or ψ(d) > 0 in which case there exists an element
of order d and then we have ψ(d) = ϕ(d) by Lemma 4.2.3. Applying this inequality above gives

p− 1 =
∑

d|(p−1)

ψ(d) ≤
∑

d|(p−1)

ϕ(d) = p− 1,

with the last equality via Gauss’ Theorem. But clearly this means that ψ(d) = ϕ(d) for all d. In
particular, the number of primitive roots, namely ϕ(p− 1), is precisely the same as ψ(p− 1).

Note: This implies the existence of primitive roots modulo some prime. However, this is
not true for composite numbers, e.g. there are no primitive roots modulo 8 since ϕ(8) = 4
and its totatives (elements less than 8 coprime to it: 1, 3, 5, 7) have orders 1 ̸= 4 or 2 ̸= 4.

Proposition 4.3.3 Let n = uv ∈ Z with u, v > 2 coprime. Then, n has no primitive roots.
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Proof : Recall that ϕ(k) is even for k > 2. Using Lemma 3.1.4, we know that ϕ(n) = ϕ(u)ϕ(v)
with each of ϕ(u) and ϕ(v) being even. Furthermore, for some a ∈ Z with gcd(a, n) = 1, we have

aϕ(u) ≡ (mod u) and aϕ(v) ≡ 1 (mod v).

We claim that m = 1
2ϕ(n) =

1
2ϕ(u)ϕ(v) is a solution to am ≡ 1 (mod n). Indeed, we see that

ϕ(u) | m and ϕ(v) | m, which tells us that am ≡ 1 (mod u) and am ≡ 1 (mod v), respectively.
Combining these and using the fact n = uv implies the claim. Finally, since m < ϕ(n), it means
that its order is strictly less than ϕ(n), so a is not a primitive root modulo n.

Theorem 4.3.4 (Classification of Primitive Roots) Let n > 1 be an integer. Then, n has a
primitive root if and only if n ∈ {2, 4, pk, 2pk} for some positive k ∈ Z+ and prime p.

Proof : (Non-examinable) Omitted.
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5 Detecting Primality

5.1 Detecting Primality using Powers

Definition A composite n ∈ Z is a Carmichael number if an ≡ a (mod n) for all a ∈ Z.

Remark The smallest Carmichael number is 531 = 3 · 11 · 17. To verify that a531 ≡ a (mod 531),
we can re-write this as a530 ≡ 1 (mod 531) and use the fact that 530 is divisible by 2, 10 and 16.

Note: Consequently, we cannot use Fermat’s Little Theorem as a test for primality. This
is because Carmichael numbers will pass the so-called test without actually being prime!

Proposition 5.1.3 Let n > 1 and p1, ..., pk be the distinct prime factors of n− 1. Ifa
n−1 ≡ 1 (mod n)

a
n−1
pi ̸≡ 1 (mod n)

(∗)

for some a ∈ Z and every i ∈ {1, ..., k}, then n is prime.

Proof : The hypotheses imply that a has order n − 1 modulo n. Indeed, gcd(a, n) = 1 is clear
and its order d modulo n must satisfy d | (n− 1) per Lemma 4.1.3. However, we also know that
d | ϕ(n) by the same result and the incongruence assumptions imply that d ̸ | (n − 1)/pi, which
means that d = n− 1. Therefore, ϕ(n) = n− 1 and this is equivalent to n being prime.

Method – Detecting Primes: Suppose we wish to verify n is prime via Proposition 5.1.3.
(i) Find a ∈ Z such that an−1 ≡ 1 (mod p) is satisfied.
(ii) Determine distinct prime factors p1, ..., pk of n− 1.
(iii) Reduce the powers a(n−1)/pi modulo n; they should not be congruent to one.

5.2 A Probabilistic Test

Proposition 5.2.1 Let n > 1 and p1, ..., pk be the distinct prime factors of n− 1. Consider
N random integer values in {1, ..., n− 1} and take (∗) from Proposition 5.1.3.
(i) If (∗) ever holds, then n is prime.
(ii) If (∗) always fails, then n is probably composite.

Moreover, the probability a prime slips through the test is less than (1− 1
2k
)N .

Proof : If n is prime, (∗) holds for any primitive root. The proportion of primitive roots here is

ϕ(n− 1)

n− 1
=

(
1− 1

p1

)
· · ·
(
1− 1

pk

)
≥ 1

2k
.

The probability N random numbers from 1, 2, ..., n−1 are not primitive roots is as indicated.

18



5.3 Detecting Primality using Powers

Proposition 5.3.1 Let n > 1 where n− 1 = 2km for some k,m ∈ Z with m odd. If{
am ̸≡ 1 (mod n)

a2
rm ̸≡ −1 (mod n)

(†)

for some a ∈ Z and every 0 ≤ r < k, then n is composite.

Proof : We prove the contrapositive, so suppose that n is prime. By Fermat’s Little Theorem,
we have a2

km ≡ 1 (mod n). Now let 0 ≤ s ≤ k be minimal with a2
sm ≡ 1 (mod n). If s = 0,

then (†) fails, so suppose s > 0 and define r := s− 1 and x := a2
rm. We can now see that

x2 = a2
sm ≡ 1 (mod n).

Because n is prime, this implies that x ≡ ±1 (mod n). Indeed, if n divides x2−1 = (x−1)(x+1)
then it divides one of the factors by Corollary 1.2.3(iii). By minimality, we have x ≡ −1 (mod n).
Therefore, a2

rm ≡ −1 (mod n) and again (†) fails.

5.4 The Miller-Rabin Test

Theorem 5.4.1 (Miller-Rabin Test) Let n ≥ 5 where n−1 = 2km for k,m ∈ Z with m odd.
Consider N random integer values in {1, ..., n− 1} and take (†) from Proposition 5.3.1.
(i) If (†) ever holds, then n is composite.
(ii) If (†) always fails, then n is probably prime.

Moreover, the probability that a composite slips through the test is less than (14)
N .

Proof : (Non-examinable) Omitted.

5.5 RSA Encryption

Definition The RSA public key encryption system is a type of encryption consisting of a
pair (n, e) ∈ Z2 called the public key and a positive integer s ∈ Z+ called the private key.

Method – RSA Encryption: We will generate public and private keys for an RSA system.
(i) Choose two distinct large primes p and q and consider their product n := pq.
(ii) Use Lemma 3.1.4 to see that ϕ(n) = (p− 1)(q − 1).
(iii) Find e ∈ Z with 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.
(iv) Find s ∈ Z+ with se ≡ 1 (mod ϕ(n)) by using Euclid’s Algorithm on se− tϕ(n) = 1.

Definition A message is an integer 0 ≤ m < n. In the context of RSA encryption, we say
that an encrypted message is r ≡ me (mod n) and a decrypted message is rs ≡ m (mod n).
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6 Sums of Squares

6.1 Pythagorean Triples

Definition 6.1.1 A Pythagorean triple is a triple x, y, z ∈ Z+ such that x2+y2 = z2. In the
case x, y, z has no common divisor, we say that (x, y, z) is a primitive Pythagorean triple.

Note: Let (x, y, z) be a Pythagorean triple and d := gcd(x, y, z). Then, we can divide each
integer by the greatest common divisor to obtain a primitive Pythagorean triple (xd ,

y
d ,

z
d).

Lemma 6.1.2 Let (x, y, z) be a primitive Pythagorean triple. Then, x and y have opposite
parity, that is one of them is odd and the other is even.

Proof : If both x and y are even, then 2 | x and 2 | y, in particular 2 | (x2+y2), that is 2 | z2, which
means that 2 | z, so (x, y, z) is not primitive, a contradiction. On the other hand, if both x and
y are odd, this means x ≡ ±1 (mod 4) and y ≡ ±1 (mod 4). Thus, z2 = x2 + y2 ≡ 2 (mod 4).
However, if 2 | z2, then we get 2 | z which means 4 | z2 and so z2 ≡ 0 (mod 4), a contradiction
since zero and two are incongruent modulo four.

Lemma 6.1.3 Let m,n ∈ Z be coprime such that their product mn is a perfect square,
which means mn = a2 for some a ∈ Z. Then, each of m and n are perfect squares.

Proof : Let mn be a perfect square, meaning that its prime factorisation consists of only even
powers. Assume to the contrary that m is not a perfect square. Then, its prime factorisation

m = pα1
1 · · · pαk

k

has at least one αi odd. Because m and n are coprime, the prime factors pi ̸= qj for any i, j
where qi are the prime factors of n (otherwise we would have a common factor). Thus, we have

mn = (pα1
1 · · · pαk

k )n.

Since at least one αi is odd, it means that mn is not a perfect square, a contradiction. An
identical argument works with n, so the result follows.

Theorem 6.1.4 Let a, b ∈ Z+ have opposite parity and be coprime with a > b. Then,
(x, y, z) is a primitive Pythagorean triple if and only if (x, y, z) = (a2 − b2, 2ab, a2 + b2).

Proof : (⇐) We verify that the stated formulae satisfy Definition 6.1.1. Indeed, we see that
(a2 − b2)2 + (2ab)2 = a4 + 2a2b2 + b4 = (a2 + b2)2. Now if it is not primitive, then a2 − b2 and
a2 + b2 have a common prime divisor p. But adding/subtracting these, we see that p | 2a2 and
p | 2b2. But opposite parity implies a2−b2 is odd, so p ̸= 2. Thus, p | a and p | b, a contradiction.
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(⇒) On the other hand, let (x, y, z) be a primitive Pythagorean triple. By Lemma 6.1.2, x and
y have opposite parity, so (exchanging them if necessary) we can assume that x is odd and y is
even. Suppose y = 2w for some w ∈ Z. Because z2 = x2 + y2, it follows that z is also odd, but
that z ± x is even. Thus, we see that

y2 = 4w2 = z2 − x2 ⇒ w2 =

(
z + x

2

)(
z − x

2

)
.

The two numbers in this factorisation of w2 are coprime. Indeed, if they were not and p is a
common prime divisor, then p also divides their sum and difference, that is p | z and p | x. This
perpetuates to p | (z2 − x2) ⇔ p | y2 and so p | y, a contradiction to primitivity of (x, y, z).
Consequently, we have two numbers which are coprime whose product is a perfect square: Lemma
6.1.3 applies, telling us that there exist some a, b ∈ Z with

z + x

2
= a2 and

z − x

2
= b2.

Clearly, x = a2− b2 and z = a2+ b2. Last, y = 2w = 2
√
w2 = 2

√
a2b2 = 2ab, so we are done.

Corollary 6.1.5 Let a, b, s ∈ Z+ be any positive integers with a > b. Then, (x, y, z) is a
Pythagorean triple if and only if (x, y, z) =

(
s(a2 − b2), s(2ab), s(a2 + b2)

)
.

Proof : (⇐) This is another algebra exercise in verifying the formulae satisfy Definition 6.1.1.
Indeed, (s(a2 − b2))2 + (s(2ab))2 = s2a4 + s2(2a2b2) + s2b2 = (s(a2 + b2))2.

(⇒) Suppose (x, y, z) is a Pythagorean triple and let s := gcd(x, y, z). As we noted above, we
know (xs ,

y
s ,

z
s ) =: (x′, y′, z′) is a primitive Pythagorean triple. Indeed, if h > 1 is a common

divisor of x′, y′, z′, then hs > s is a common divisor of x, y, z but this contradicts maximality of
s. Thus, Theorem 6.1.4 implies (x′, y′, z′) = (a2 − b2, 2ab, a2 + b2), from which we conclude that

(x, y, z) =
(
s(a2 − b2), s(2ab), s(a2 + b2)

)
.

Note: Geometrically, this classification comes from a stereographic projection of rational
points (x, y), i.e. points where x, y ∈ Q are rational numbers, onto the circle x2 + y2 = 1.

6.2 Application to Fermat’s Last Theorem

Theorem (Fermat’s Last Theorem) For n > 2, there are no non-trivial integer solutions to

xn + yn = zn.

Proof : (Non-examinable) This was a crowning achievement of 20th Century mathematics.
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Remark (Non-examinable) This theorem was conjecture for 358 years before Andrew Wiles was
able to prove the then-known Modularity Conjecture; this relates elliptic curves over Q to so-
called modular forms. The point is that if the equation xp+yp = zp where p is prime (which turns
out to be sufficient; we don’t need to consider composite powers) has a non-trivial solution, then
the elliptic curve v2 = u(u−xp)(u+yp) in (u, v)-coordinates cannot be modular. The now-called
Modularity Theorem would contradict this and so Fermat’s Last Theorem is true!

Note: If we can prove Fermat’s Last Theorem for n = 4 and for odd primes p = 2k + 1,
then if we can solve xab + yab = zab, then we can get solutions for n = a and n = b too.

Theorem 6.2.1 There are no non-trivial integer solutions to x4 + y4 = z2, in particular
there are no solutions where z is a perfect square (Fermat’s Last Theorem with n = 4).

Proof : Suppose x4 + y4 = z2 does have a non-trivial solution, i.e. it is satisfied by some positive
integers x, y, z ∈ Z. We can choose z to be as small as possible. In particular, this means that
any two of x, y, z are coprime. Indeed, if two of them had a common prime factor p, we must
have p | x, p | y and p2 | z, so we can divide through by p4 to reduce the size of z. Notice that
this makes (x2, y2, z) a primitive Pythagorean triple, so Theorem 6.1.4 tells us that

x2 = a2 − b2, y2 = 2ab, z = a2 + b2

for some a, b ∈ Z (by swapping x and y if necessary). Note that x is odd since it its square is odd
and thus the difference of two numbers of opposite parity, so x ≡ 1 (mod 4). Therefore, it follows
that a is odd and b is even; the other way would result in x2 ≡ −1 ̸≡ 1 (mod 4). Since it is even,
we can write b = 2k for some k ∈ Z. Then, y2 = 2ab = 4ak. We claim that a and k are perfect
squares. Indeed, this is a direct result of the fact gcd(a, b) = 1, which implies gcd(a, k) = 1 and
so Lemma 6.1.3 applies. Consequently, let a = v2 and k = w2. We can substitute these:

x2 = v4 − 4k2 = v4 − 4w4 ⇔ x2 + 4w4 = v4.

This shows that we have yet another primitive Pythagorean triple (x, 2w2, v2) and we can repeat
the argument: there exist α, β ∈ Z via Theorem 6.1.4 such that

x = α2 − β2, 2w2 = 2αβ, v2 = α2 + β2,

where gcd(α, β) = 1 and they have opposite parity. Notice the second equation implies αβ = w2,
which means α and β are themselves perfect squares by Lemma 6.1.3, say α = s2 and β = t2.
Substituting these into the third equation produces

s4 + t4 = v2,

which is another solution to the equation in question. However, v =
√
a < a2 + b2 = z and this

contradicts the minimality of z. Therefore, there is no solution to this equation after all.

Note: Fermat first proved Theorem 6.2.1 (the margin wasn’t too narrow for this, at least).
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6.3 Representation of Integers as a Sum of Two Squares

Lemma 6.3.1 (Brahmagupta-Fibonacci Identity) For any integers a, b, c, d ∈ Z, we have

(a2 + b2)(c2 + d2) = (ac± bd)2 + (ad∓ bc)2.

In particular, if n,m ∈ Z are each the sum of two squares, so too is their product nm.

Proof : Simply expand both sides and compare. In fact, this can also be viewed as a sort-of
corollary of the following fact for complex numbers: |a± ib|2|c± id|2 =

∣∣(a± ib)(c± id)
∣∣2.

Theorem 6.3.2 Every prime p with p ≡ 1 (mod 4) is expressible as a sum of two squares.

Proof : By Corollary 2.3.3, we can solve z2 ≡ −1 (mod p) for 1 ≤ z ≤ p − 1. Hence, we have
found some multiple of p which is a sum of two squares, say np = z2 + 12. Now, suppose mp is
the least positive multiple of p with this sum of two squares property, say mp = x2+y2. Suppose
for a contradiction that m ≥ 2. Observe that m < p because m ≤ n which means that

mp ≤ np = z2 + 1 ≤ (p− 1)2 + 1 < p2.

Now, let −m/2 ≤ u, v ≤ m/2 be integers such that u ≡ x (mod m) and v ≡ y (mod m). Thus,

u2 + v2 ≡ x2 + y2 ≡ 0 (mod m) ⇒ u2 + v2 = km

for some k ∈ Z. If k = 0, then u = v = 0 and x ≡ y ≡ 0 (mod m), meaning that m | x and
m | y; this implies that m2 | (x2 + y2) ⇔ m2 | mp. Since m < m2, we conclude that m | p,
but this is a contradiction since p is prime and 1 < m < p. Therefore, this tells us that k > 0.
Moreover, notice that

k =
1

m
(u2 + v2) ≤ 1

m

(
m2

4
+
m2

4

)
=
m

2
< m.

We can now apply the Brahmagupta-Fibonacci Identity in the following way:

m2kp = (mk)(mp) = (x2 + y2)(u2 + v2) = (xu+ yv)2 + (xv − yu)2.

Looking at each of these summands modulo m, we conclude that

xu+ yv ≡ x2 + y2 ≡ 0 (mod m)

xv − yu ≡ xy − yx ≡ 0 (mod m).

Therefore, each summand is divisible by m2, so dividing through results in kp = a2+ b2 for some
a, b ∈ Z. Since 0 < k < m, this contradicts the minimality of m.
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Method – Prime as a Sum of Two Squares: Suppose p is prime with p ≡ 1 (mod 4). In
order to express p as a sum of two squares, we just follow through the proof of Theorem
6.3.2 in the specific context that we are working in.

Theorem 6.3.4 (Fermat’s Christmas Theorem) An integer n > 0 is the sum of two squares
if and only if each prime of the form 4k+3 in its factorisation into distinct prime powers
has an even power.

Proof : (⇐) Note that p = 2 = 12 + 12 and Theorem 6.3.2 guarantees any prime of the form
p = 4k + 1 is a sum of two squares. The only other primes are of the form p = 4k + 3. Since
we assume these have even powers, it is unproblematic because p2m = p2m + 0m for any m ∈ Z.
Combining all this with the Brahmagupta-Fibonacci Identity, this guarantees that an integer
n > 0 of the stated form is the sum of two squares.

(⇒) Suppose n = x2 + y2 and let p | n by a prime divisor of the form p = 4k + 3; we will show
that p | x and p | y. Indeed, since p is prime, we know that gcd(y, p) ∈ {1, p}, that is there are
two options. If y and p are coprime, we know there exists z ∈ Z such that yz ≡ 1 (mod p) by
cancellation (Lemma 2.1.4). Therefore, the sum of two squares expression implies

nz2 = x2z2 + y2z2 ≡ x2z2 + 1 (mod p).

But because p | n, it follows that p | nz2 and thus x2z2 ≡ −1 (mod p), a contradiction to
Corollary 2.3.3 since such things only have solutions modulo two or p = 4k + 1. This means
the only option we have is gcd(y, p) = p and thus p | y. An identical argument is true where
we replace y with x instead, so p | x. This means that p2 | n as desired. It remains to mention
therefore that (

n

p2

)
=

(
x

p

)2

+

(
y

p

)2

and we can repeat the same argument to conclude that having odd powers results in a contra-
diction. Indeed, all prime factors of the form 4k + 3 have even powers.

6.4 Sums of Four Squares

The aim of this section is to prove that every integer is the sum of four squares.

Lemma 6.4.2 (Non-examinable) For any a, b, c, d ∈ Z, we have

(a2 + b2 + c2 + d2)(α2 + β2 + γ2 + δ2)

=

(aα+ bβ + cγ + dδ)2 + (aβ − bα− cδ + dγ)2

+ (aγ + bδ − cα− dβ)2 + (aδ − bγ + cβ − dα)2.

In particular, if n,m ∈ Z are each the sum of four squares, so too is their product nm.
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Remark 6.4.3 How the Brahmagupta-Fibonacci Identity can be proved using complex numbers,
Lemma 6.4.2 can be explained using the language of quaternions. This is how the strange-looking
formula is obtained in the first place.

Lemma 6.4.4 For p prime, there exists m ∈ Z with 0 < m < p where mp = x2 + y2 + 1.

Proof : Finding m requires us to solve x2 + y2 ≡ −1 (mod p). Note that p = 2 yields the trivial
solution (x, y) = (1, 0). Suppose therefore that p is odd (in fact, Corollary 2.3.3 establishes the
result for p ≡ 1 (mod 4) so we can be even more specific and assume only that p ≡ 3 (mod 4),
but we won’t do this). Since p is odd, we can define the following sets:

S1 :=

{
1 + x2 : 0 ≤ x ≤ p− 1

2

}
and S2 :=

{
−y2 : 0 ≤ y ≤ p− 1

2

}
.

No two distinct elements of S1 are congruent modulo p. Indeed, if 1 + x21 ≡ 1 + x22 (mod p),
this implies that p | (x21 − x22) and therefore p | (x1 + x2) or p | (x1 − x2) by Lemma 1.3.2. But
because x1, x2 ≤ (p − 1)/2, the only way this can happen is if x1 = x2. An identical argument
shoes that no two distinct elements of S2 are congruent. This implies that the cardinalities are

|S1| =
p+ 1

2
= |S2| ⇒ |S1 ∪ S2| = p+ 1,

because each of x and y have (p − 1)/2 + 1 = (p + 1)/2 possibilities which lead to incongruent
elements. But since there are at most p distinct remainders modulo p, this means that some
element of S1, say 1+ x2, is congruent to some element of S2, say −y2. Hence, we conclude that
1+x2 ≡ −y2 (mod p), equivalent to saying there exists m ∈ Z with mp = 1+x2+ y2. The final
thing to show is the inequality 0 < m < p, but this is clear from x, y ≤ (p− 1)/2 < p/2 and so

0 < mp = x2 + y2 + 1 <
p2

4
+
p2

4
+ 1 < p2.

Theorem 6.4.1 (Lagrange’s Four-Square Theorem) Every n ∈ N is the sum of four squares.

Proof : (Non-examinable) By Lemma 6.4.2, it is sufficient to represent any prime number as the
sum of four squares. We have already established in Theorem 6.3.2 that p = 2 and p ≡ 1 (mod 4)
require two squares (so they can be represented by four squares where two of them are 02). It
remains to consider p ≡ 3 (mod 4). We can interpret Lemma 6.4.4 as establishing that some
multiples of p are expressible as a sum of three (and therefore four) squares; let mp be the least
such multiple, say

mp = a2 + b2 + c2 + d2.

Suppose to the contrary thatm ≥ 2 (we know from Lemma 6.4.4 thatm < p). We now follow the
proof of Theorem 6.3.2 closely. Indeed, we can choose some integers −m/2 ≤ α, β, γ, δ ≤ m/2
such that a ≡ α, b ≡ β, c ≡ γ, d ≡ δ (mod m). Thus,

α2 + β2 + γ2 + δ2 ≡ 0 (mod m) ⇒ α2 + β2 + γ2 + δ2 = km
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for some k ∈ Z. If k = 0, then α = β = γ = δ = 0 and a ≡ b ≡ c ≡ d (mod m), meaning that
m | a, m | b, m | c, m | d and therein m | (a2 + b2 + c2 + d2) ≡ m2 | mp. Since m < m2 we
conclude that m | p but this is a contradiction since p is prime and m < p. Therefore, this tells
us that k > 0. Moreover, notice that

k =
1

m
(α2 + β2 + γ2 + δ2) ≤ 1

m

(
m2

4
+
m2

4
+
m2

4
+
m2

4

)
= m.

We will show k < m (the inequality is strict). To do so would require α, β, γ, δ ∈ {±m/2} and
therefore a ≡ b ≡ c ≡ d ≡ m/2 (mod m). Indeed, suppose a = (s+ 1

2)m. Then we see that

a2 = (s2 + s+
1

4
)m2 ≡ m2

4
(mod m2).

The same holds for b, c, d also. Therefore,

mp = a2 + b2 + c2 + d2 ≡ m2

4
+
m2

4
+
m2

4
+
m2

4
= m2 ≡ 0 (mod m2),

but this again says that m2 | mp which we saw was impossible. We can conclude that 0 < k < m.
We can now apply Lemma 6.4.2 in the following way:

m2kp = (mk)(mp) = (α2 + β2 + γ2 + δ2)(a2 + b2 + c2 + d2) = w2 + x2 + y2 + z2

for the relevant w, x, y, z ∈ Z given in terms of the a, b, c, d, α, β, γ, δ. Importantly, we see that
m | w, m | x, m | y and m | z from which we can divide out by m2 to get kp as the sum of four
squares.Since 0 < k < m, this contradicts the minimality of m.

6.5 Variations

Theorem 6.5.1 (Legendre’s Three-Square Theorem) Every n ∈ N is expressible as a sum
of three squares if and only if n is not of the form 4a(8b+ 7) where a, b ∈ Z.

Proof : Omitted.

Note: Let g(n) be the number of nth powers required to express every n ∈ N as a sum of
them. Clearly, g(1) = 1 because every integer can be written as a sum of first powers using
only one integer. We have also proven that g(2) = 4, that is there is a minimum of four
square-powers required to express every integer. Waring’s Problem about the existence of
g(n) for all n ∈ N was proven by Hilbert in 1909. What is still conjecture is this formula:

g(n) = 2n +

⌊(
3

2

)n
⌋
− 2.
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7 Quadratic Reciprocity

7.1 Quadratic Residues

Definition 7.1.1 Let a,m ∈ Z with m ≥ 2. We say that a is a quadratic residue modulo m
if there exists x ∈ Z with x2 ≡ a (mod m). If not, it is a quadratic non-residue modulo m.

Note: We can restrict to 1 ≤ a ≤ m− 1 (obviously a = 0 is always a quadratic residue)

Method – Quadratic Residues: To determine all quadratic residues modulom, it amounts
to computing the remainders modulo m of each of the powers 12, 22, ..., (m− 1)2.

Proposition 7.1.3 If p is an odd prime, then half the numbers 1, ..., p − 1 are quadratic
residues modulo p and half are quadratic non-residues modulo p.

Proof : The quadratic residues are the remainders of 12,..., (p− 1)2 on division by p. Moreover,
each remainder occurs exactly twice because x2 ≡ y2 (mod p) is equivalent to p | (x+ y)(x− y),
which means p | (x+ y) or p | (x− y) by Lemma 1.3.2. For x, y ∈ {1, 2, ..., p}, this is equivalent
to x = y or x = p− y. Since p is odd, p− 1 is even and this splits 1, ..., p− 1 exactly in half.

7.2 The Legendre Symbol

Definition 7.2.1 For p an odd prime and a ∈ Z coprime with p, the Legendre symbol is(
a

p

)
=

{
1, if a is a quadratic residue modulo p

−1, if a is a quadratic non-residue modulo p
.

Lemma 7.2.3 For p an odd prime and a, b ∈ Z not divisible by p, we have the following:

(i) If a ≡ b (mod p), then
(
a
p

)
=
(

b
p

)
.

(ii)
(
a2

p

)
= 1.

(iii)
(
a
p

)
≡ a

p−1
2 (mod p). (Euler’s Criterion)

(iv)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Proof : (i) and (ii) These are immediate from Definition 7.2.1.

(iii) Let y = a(p−1)/2, which means y2 = ap−1 ≡ 1 (mod p) by Fermat’s Little Theorem. Hence,
p | (y2 − 1) and again we know from Lemma 1.3.2 that p | (y + 1) or p | (y − 1). This tells
us that y ≡ ±1 (mod p), so the goal now is to prove that y ≡ 1 (mod p) if and only if a is
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a quadratic residue modulo p. Well, suppose first that a is a quadratic residue modulo p, say
a ≡ x2 (mod p). Then we can apply Fermat’s Little Theorem to see that

y = a
p−1
2 ≡ xp−1 ≡ 1 (mod p).

On the other hand, suppose that y = a(p−1)/2 ≡ 1 (mod p) and let r be a primitive root modulo
p. Then, for some 1 ≤ k ≤ p− 1, we know that a ≡ rk (mod p) and we have by assumption that

y = a
p−1
2 = r

k(p−1)
2 ≡ 1 (mod p).

That said, we clearly see that (p− 1) | k(p− 1)/2 which implies that k/2 ∈ Z and, consequently,
k is even. But then, we see that a is a quadratic residue modulo p since we have the congruence

a ≡ rk = (r
k
2 )2 (mod p).

(iv) The final property follows immediately from Euler’s Criterion:(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p),

but since each side is ±1, it must be that the congruences are straight-up equalities.

Note: Euler’s Criterion allows us to compute Legendre symbols when a and p are small.

7.3 Gauss’ Law of Reciprocity

Lemma 7.3.5 (Gauss’ Lemma) Let p be an odd prime with a ∈ Z coprime to p and define

S =

{
a, 2a, 3a, ...,

p− 1

2
a

}
.

If there are n elements of S whose remainder modulo p is strictly larger than p/2, then(
a

p

)
= (−1)n.

Proof : Since p ̸ | a by coprimality, all the elements of S are incongruent to each other (and to
zero) modulo p. Thus, we can re-order them so that r1, ..., rm are their remainders less than p/2
and s1, ..., sn are their remainders larger than p/2. Totalling up the number of elements, this
means m+ n = (p− 1)/2. Note also that

1 ≤ r1, .., rm <
p

2
and 1 ≤ (p− s1), ..., (p− sn) <

p

2
.

We cannot have p− si = rj for any i or j. If we did, then si ≡ va (mod p) and rj ≡ wa (mod p)
for some integers 1 ≤ v, w ≤ (p−1)/2. This would imply that (v+w)a ≡ si+rj = p ≡ 0 (mod p)
and thus p | (v + w), which is impossible by the fact v, u,≤ (p− 1)/2. This establishes that

{r1, ..., rm, s1, ..., sn} =

{
1, 2, ...,

p− 1

2

}
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in some order. Multiplying the elements of the right-hand set and working modulo p yields(
p− 1

2

)
! = r1 · · · rm · (p− s1) · · · (p− sn)

≡ r1 · · · rm · (−s1) · · · (−sn)
≡ (−1)nr1 · · · rm · s1 · · · sn

≡ (−1)na · 2a · · ·
(
p− 1

2

)
a

= (−1)na
p−1
2

(
p− 1

2

)
!.

Because p ̸ |
(
p−1
2

)
!, we can cancel it to obtain 1 ≡ (−1)na

p−1
2 (mod p), which is equivalent to

a
p−1
2 ≡ (−1)n (mod p). One need only apply Euler’s Criterion to now conclude the result.

Theorem 7.3.2 (Supplementary Laws) For p an odd prime, we have the following:(
−1

p

)
=

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4)
and

(
2

p

)
=

{
1, if p ≡ 1 or 7 (mod 8)

−1, if p ≡ 3 or 5 (mod 8)

Note: Equivalently, we can reformulate the statements of the Supplementary Laws as(
−1

p

)
= (−1)

p−1
2 and

(
2

p

)
= (−1)

p2−1
8 .

Proof : The first of the two laws is immediate from Corollary 2.3.3. As for the second, we can use
Gauss’ Lemma with S = {2, 4, 6, ..., p− 1}. It turns out that reducing modulo p has no effect, so
we just need to know how many elements are larger than p/2. There are four cases to analyse:

� If p = 8k + 1, S = {2, 4, ..., 4k, 4k + 2, ..., 8k}; there are 2k such elements.

� If p = 8k + 3, S = {2, 4, ..., 4k, 4k + 2, ..., 8k + 2}; there are 2k + 1 such elements.

� If p = 8k + 5, S = {2, 4, ..., 4k + 2, 4k + 4, ..., 8k + 4}; there are 2k + 1 such elements.

� If p = 8k + 7, S = {2, 4, ..., 4k + 2, 4k + 4, ..., 8k + 6}; there are 2k + 2 such elements.

Theorem 7.3.1 (Gauss’ Law of Quadratic Reciprocity) For p and q distinct odd primes,(
p

q

)
=

(
q

p

)
if at most one p, q ≡ 3 (mod 4),

whereas (
p

q

)
= −

(
q

p

)
if both p, q ≡ 3 (mod 4).
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Note: Equivalently, we can reformulate Gauss’ Law of Quadratic Reciprocity as(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Proof : (Non-examinable) Consider integer pairs (x, y) ∈ Z2 where 0 < x < p/2 and 0 < y < q/2;
all our points lie within a rectangle on the plane. We then split this rectangle into four regions
by way of the following three lines (and provide a sketch in Figure 1 below):

py = qx+
p

2
, py = qx, py = qx− q

2
.

x

y

p/2

q/2

py = qx+ p
2

py = qx

py = qx− q
2

A
B

C
D

Figure 1: Four regions separated by the three equations above.

Note that there are no integer points on these lines. Indeed, if (x, y) was on py = qx, then it
follows that p | x, but 0 < x < p/2 disallows this. Similar contradictions work for the other lines.
Now, every x ∈ Z admits at most one integer point (x, y) in the region labelled B in Figure 1.
There is such a point if and only if the remainder of qx upon division by p is larger than p/2.
We therefore conclude that (x, y) is in region B if and only if qx < py < qx + p/2, which is
equivalent to py − p/2 < qx < py. Applying Gauss’ Lemma tells us(

q

p

)
= (−1)|B|,

where there are |B|-man integer points in region B. By an identical argument, we have(
p

q

)
= (−1)|C|.

Now, |A| = |D| since the integer points in regions A and D are in 1-1 correspondence by the
fact that we can apply the map (x, y) 7→ (p+1

2 − x, q+1
2 − y) which associates to each point in

one region a unique point in the other. Therefore, the total number of integer points in the
rectangle is 2|A|+ |B|+ |C| = (p− 1)(q− 1)/4. Noting that this total is even except when both
p ≡ 3 (mod 4) and q ≡ 3 (mod 4), we obtain the reformulation of the statement of Gauss’ Law
of Quadratic Reciprocity noted above. Therefore,(

p

q

)(
q

p

)
= (−1)|B|+|C| = (−1)2|A|+|B|+|C| = (−1)

(p−1)(q−1)
4 .
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Method – Computing Legendre Symbols: Suppose we want to compute
(
a
p

)
.

(i) Write a as a product of powers of primes.

(ii) Use Step (i) and Lemma 7.2.3(iv) to write
(
a
p

)
=

(
q
α1
1
p

)
· · · =

(
q
αk
k
p

)
.

(iii) Use previous results to handle the individual Legendre symbols: (a) use reciprocity
and reduce modulo qi, or (b) apply Lemma 7.2.3(ii), or (c) use Euler’s Criterion.

7.4 Some Applications of Quadratic Reciprocity

Theorem 7.4.1 If p = 2k + 1 is prime and p ≡ 1 or 7 (mod 8), then p | (2k − 1).

Proof : Note that p | (2k − 1) ⇔ p | (2(p−1)/2 − 1) ⇔ 2(p−1)/2 ≡ 1 (mod p) just by rearranging
p = 2k + 1 and interpreting divisors as congruences. But by Euler’s Criterion, we know this

occurs if and only if
(
2
p

)
= 1, which holds if q ≡ 1 or 7 (mod 8) as required.

Note: Theorem 7.4.1 implies that 211 − 1 is not prime, since 2(11) + 1 = 23 ≡ 7 (mod 8).

Theorem 7.4.2 There are infinitely-many primes of the form p = 8k + 7 for k ∈ Z.

Proof : Suppose that p1, ..., pn is a complete list and define the number

N := (p1 · · · pn)2 − 2.

Since each pi ≡ −1 (mod 8), it follows that their product p1 · · · pn ≡ ±1 (mod 8), and thus
squaring implies (p1 · · · pn)2 ≡ 1 (mod 8). In all, this means that N ≡ 7 (mod 8). Note also
that pi ̸ | N since N ≡ −2 (mod pi) for each i. Therefore, if q is a prime such that q | N , then
q ̸= 2 since N is odd and

(p1 · · · pn)2 ≡ 2 (mod q) ⇒
(
2

q

)
= 1.

We can now use the Supplementary Laws to conclude that q ≡ 1 or 7 (mod 8). But we have
shown that q ̸= pi for any i, which are all congruent to 7. Thus, we must have q ≡ 1 (mod 8).
Since this holds for all q, it means that N ≡ 1 (mod 8), a contradiction.

Theorem 7.4.3 There are infinitely-many primes of the form p = 3k + 1 for k ∈ Z.

Proof : Suppose that p1, ..., pn is a complete list and define the number

N := 4(p1 · · · pn)2 + 3.
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Since each pi ≡ 1 (mod 3), it follows that N ≡ 1 (mod 3). Now, if N is prime then the
contradiction is achieved immediately. We therefore assume that N is composite, i.e. there is a
prime q such that q | N . Then, (2p1 · · · pn)2 ≡ −3 (mod q) and Euler’s Criterion tells us that(

−3

q

)
= 1.

Of course, note that q ̸= 3 so we only consider q ≥ 5. To determine for what q this Legendre
equation is satisfied, note that it can be re-written as(

−1

q

)(
3

q

)
= 1.

Hence, this is true if and only if both factors are one or both factors are minus one. By the
Supplementary Laws (the first one), we see that the first factor is one when p = 4k + 1 and is
minus one when p = 4k + 3. By Gauss’ Law of Quadratic Reciprocity, this means that(

3

q

)
=

(
q

3

)
= 1 and

(
3

q

)
= −

(
q

3

)
= −1,

respectively, which tells us that q ≡ 1 (mod 3). Therefore, since q = 3k + 1, it must be one of
the pi, but this is a contradiction to the fact that pi ̸ | N .
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8 Gaussian Integers

8.1 Integral Domains

Reminder: A ring is a set R with an addition operation and a multiplication operation
that satisfy a number of axioms. A subring is a subset S ⊆ R containing the multiplicative
identity of R which is closed under multiplication and subtraction.

Definition 8.1.1 The ring of Gaussian integers is Z[i] := {a+ bi : a, b ∈ Z}.

Lemma The Gaussian integers form a subring of C.

Proof : It is clear that the multiplicative identity 1 = 1 + 0i ∈ Z[i] since 0, 1 ∈ Z. As for closure
under multiplication and subtraction, let α, β ∈ Z[i] be of the form α = a+ bi and β = c+ di:

� For multiplication, we have αβ = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i ∈ Z[i].

� For subtraction then, α− β = (a+ bi)− (c+ di) = (a− c) + (d− b)i ∈ Z[i].

Definition 8.1.2 An integral domain is a ring R satisfying the following conditions:
(i) R is commutative, that is rs = sr for all r, s ∈ R.
(ii) R has no non-zero zero divisors, that is rs = 0 implies r = 0 or s = 0.

Remark Remark Most people simply call them zero divisors, omitting the “non-zero” for brevity.

Note: Any subring of C is automatically an integral domain, in particular Z[i] is such.

Definition 8.1.3 Let R be an integral domain and α, β ∈ R. We say that β divides α if
there exists γ ∈ R such that α = γβ. In this case, we write β | α.

Remark In the case R is a subring of C and β ̸= 0, we have that β | α if and only if α/β ∈ R.
Indeed, this is clear because Definition 8.1.3 say that we have the division if and only if α = γβ
for some γ ∈ R, but we are in C; we can rearrange this by dividing usually to obtain γ = α/β.

Definition 8.1.4 Let R be an integral domain. We call α ∈ R a unit if α | 1.

Lemma 8.1.5 Let α, β ∈ R be elements of an integral domain. Then, α | β and β | α if
and only if there exists a unit u ∈ R such that α = uβ.
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Proof : (⇒) Let α | β and β | α. Per Definition 8.1.3, there exist γ, δ ∈ R such that β = γα
and α = δβ. Therefore, we can substitute the first into the second to obtain α = δγα, which is
equivalent to (1− δγ)α = 0. Since R is an integral domain, either α = 0 or 1− δγ = 0.

� If α = 0, then β = 0 and the result holds trivially for any unit u ∈ R.

� If 1− δγ = 0, then 1 = δγ, and so δ | 1, that is δ is a unit; take u = δ.

(⇐) Let α = uβ for a unit u ∈ R. This immediately implies that β | α. On the other hand, we
can rearrange to get β = u−1α and thus α | β.

Note: A Gaussian integer α ∈ Z[i] is a unit if and only if 1
α ∈ Z[i]. Its units are {±1,±i}.

8.2 Norms

Definition 8.2.1 The norm of a Gaussian integer α = a+ bi ∈ Z[i] is defined as

N(α) = a2 + b2.

For α ∈ Z[i], it is clear that N(a) is a non-negative integer. More generally, we can define
N(z) = a2 + b2 for any complex number z = a+ bi ∈ C and thus we can write N(z) = |z|2.

Lemma 8.2.2 For all α, β ∈ Z[i], the norm satisfies N(αβ) = N(α)N(β).

Sketch of Proof : Let α = a+ bi and β = c+ di and expand out both sides fully.

Lemma 8.2.3 Let α ∈ Z[i].
(i) The norm N(α) = 0 if and only if α = 0.
(ii) The norm N(α) = 1 if and only if α is a unit.

Proof : (i) This is clear directly from Definition 8.2.1

(ii) If α is a unit, then αβ = 1 for some β ∈ Z[i]. Therefore, applying the norm and using Lemma
8.2.2 tells us that N(α)N(β) = 1. But since this is a product of non-negative integers, it must
be that N(α) = 1. Conversely, if N(α) = 1, let α = a+ bi. Then, in C, we have

1

α
=

1

a+ bi
=

a− bi

a2 + b2
=
a− bi

N(α)
= a− bi ∈ Z[i].

We conclude that α is a unit since its reciprocal is a Gaussian integer (the above note).
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8.3 The Division Algorithm for Gaussian Integers

Proposition 8.3.1 (Division Algorithm for Gaussian Integers) Let α, β ∈ Z[i] with β ̸= 0.
Then, there exist q, r ∈ Z[i] with 0 ≤ N(r) < N(β) such that α = qβ + r.

Proof : The quotientα/β makes sense in C where we can write α/β = A+Bi for some A,B ∈ R.
Let q ∈ Z[i] be as close as possible to α/β in this sense: set q := a+ bi where a, b ∈ Z such that

|a−A| ≤ 1

2
and |b−B| ≤ 1

2
.

Let r := α− qβ ∈ Z[i]. Then, we see that α = qβ+ r is satisfied. As for the inequality condition,

N

(
α

β
− q

)
= N

(
(A− a) + (B − b)i

)
= (A− a)2 + (B − b)2 ≤

(
1

2

)2

+

(
1

2

)2

=
1

2
.

This, in turn, implies precisely the inequality we desire (of course 0 ≤ N(r) by default), namely

N(r) = N(α− qβ) = N

(
α

β
− q

)
N(β) ≤ 1

2
N(β) < N(β).

Definition 8.3.3 Let R be an integral domain and α, β ∈ R. A greatest common divisor
(or highest common factor) is an element γ ∈ R with the following properties:
(i) It is a common divisor, that is γ | α and γ | β.
(ii) It is largest in the sense that if δ ∈ R with δ | α and δ | β, then δ | γ.

Note: It may be that a greatest common divisor doesn’t exist, and is not unique if it does!

Lemma 8.3.4 Let R be an integral domain and α, β ∈ R have greatest common divisor γ.
Then, ε is a greatest common divisor of α and β if and only if ε = uγ for a unit u ∈ R.

Proof : (⇒) Let ε be a greatest common divisor. In particular, this means that ε | δ for any δ ∈ R
with δ | α and δ | β. Specifically, this is true for δ = γ. We conclude that ε | γ. But because γ is
also a greatest common divisor, this also works for δ = ε, so γ | ε. Therefore, applying Lemma
8.1.5 tells us that there exists a unit u ∈ R with ε = uγ.

(⇐) Let ε = uγ. Because u | 1 by definition of a unit, we know that u divides any element of
the integral domain (since any µ ∈ R can be written as µ = µ · 1). In particular, u | α and u | β,
which means that ε | α and ε | β (since γ | α and γ | β by the fact it is a greatest common
divisor). Moreover, if δ ∈ R with δ | α and δ | β, then δ | γ, so γ = qδ for some q ∈ R. However,
this is equivalent to ε = uqδ, so δ | ε also. Hence, Definition 8.3.3 is satisfied with ε.
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Theorem 8.3.5 Any two Gaussian integers α, β ∈ Z[i] have a greatest common divisor γ.
Moreover, there exist s, t ∈ Z[i] such that

γ = sα+ tβ.

Proof : If α = β = 0, we can take γ = 0 and we are done. Now, suppose at least one of α ̸= 0
and β ̸= 0. Amongst all non-zero elements γ = sα + tβ for s, t ∈ Z[i], choose one with N(γ)
minimal. We will show that γ | α. Indeed, by the Division Algorithm for Gaussian Integers, we
can write

α = qγ + r

where 0 ≤ N(r) < N(γ). But then, we see that

r = α− qγ = α− q(sα+ tβ) = (1− qs)α− qtβ,

which contradicts the minimality of N(γ) unless r = 0. Thus, we conclude that γ | α. A near-
identical argument means that γ | β, so we have at least that γ is a common divisor of α and β.
Now, suppose that δ is another common divisor. Then, since it divides each of them, it divides
any linear combination, i.e. δ | (sα+ tβ) ⇔ δ | γ.

Method – Greatest Common Divisor in Z[i]: To find a greatest common divisor γ of two
Gaussian integers, and to determine some elements s, t ∈ Z[i] such that γ has the form in
Theorem 8.3.5, we simply adapt Euclid’s Algorithm to the Gaussian integers by using the
Division Algorithm for Gaussian Integers.

8.4 Primes and Irreducibles

Definition 8.4.1 Let R be an integral domain.
(i) We call α ∈ R is irreducible if α ̸= 0 and α is not a unit, and if this property is true:

α = βγ ⇒ β is a unit or γ is a unit.

(ii) We call α ∈ R is prime if α ̸= 0 and α is not a unit, and if this property is true:

α = βγ ⇒ α | β or α | γ.

Theorem 8.4.2 We have the following relationship between prime and irreducible elements:
(i) For any integral domain R, we have α ∈ R is prime implies α ∈ R is irreducible.
(ii) For the integral domain Z, an element is prime if and only if it is irreducible.
(iii) For the integral domain Z[i], an element is prime if and only if it is irreducible.

Proof : (i) Let α ∈ R be a prime and suppose that α = βγ. We trivially have α | βγ, but the
fact it is prime means it divides one of the factors. Without loss of generality, suppose α | β.
Then, β = qα for some q ∈ R. Therefore, α = qαγ which means that qγ = 1, so γ is a unit.
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(ii) It follows from Definition 8.4.1 that the irreducible elements in Z are the numbers ±p where
p is prime. Now, if p | ab, then p | a or p | b by Lemma 1.3.2. It follows that ±p are prime
elements in Z, so they are indeed the same.

(iii) Let α ∈ Z[i] be irreducible with α = βγ such that α ̸ | β. In order to conclude that α is also
prime, we must show that α | γ. Well, we know from Theorem 8.3.5 that the greatest common
divisor of α and β exists, namely δ. Moreover, since δ | α, we have α = qδ for some q ∈ Z[i]. But
by irreducibility, q or δ is a unit. Note that q is not a unit since δ | β but α ̸ | β, so δ is the unit.
Consequently, we know from Lemma 8.3.4 that 1 is a greatest common divisor, so we can write

sα+ tβ = 1.

Multiplying gives us γ = sαγ + tβγ and both terms are divisible by α, so α | γ. The converse
(that prime implies irreducible) holds in general and thus we refer to part (i) above.

Note: Traditionally, the irreducible/prime elements in Z[i] are known as Gaussian primes.

Theorem 8.4.4 (Fundamental Theorem of Arithmetic for Gaussian Integers) Every non-zero
and non-unit α ∈ Z[i] can be expressed as a unique product of Gaussian primes up to
order, that is if α = π1 · · ·πr and α = σ1 · · ·σs where πi, σj are primes, then r = s and
the πi and σs can be paired-off so that πi = uσj for some unit u ∈ Z[i].

Proof : We proceed inductively on k that any α ∈ Z[i] with 1 ≤ N(α) ≤ k can be written as
a product of primes. Indeed, if k = 1, there is nothing to do and the result is vacuously true.
Assume the result holds for k and let N(α) = k + 1. If α is prime, there is again nothing to
do. Otherwise, we can write it as α = βγ with β, γ ∈ Z[i] not units. Therefore, N(β) ̸= 1 and
N(α) ̸= 1 and, by Lemma 8.2.2, we have that

N(β)N(γ) = N(α) = k + 1.

It follows that N(β), N(γ) ≤ k so the inductive hypothesis means we can write β and γ each as
a product of primes. Therefore, α can be written as a product of primes. For uniqueness, let

π1 · · ·πr = σ1 · · ·σs.

Thus, π1 | σ1 · · ·σs but because π1 is prime, it divides some σj . Because σj is irreducible, we have
π1 = uσj for a unit u ∈ Z[i]. Thus, we can substitute this and cancel to obtain the following:

uσjπ2 · · ·πn = σ1 · · ·σs ⇒ vπ2π3 · · ·πr = σ1 · · ·σj−1σj+1 · · ·σs.

If we do this repeatedly, we pair-off each πi with some σj , so we must have r = s so that when
we get down to one irreducible on the left, say, we also have one irreducible on the right.

Theorem 8.4.6 If p ≡ 1 (mod 4) is prime in Z, then p is not prime in Z[i] and there exist
a, b ∈ Z such that p = a2 + b2.

Note: We are using Gaussian integers to essentially re-prove Theorem 6.3.2 quickly.
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Proof : Recall from the proof of Corollary 2.3.3 that x2 ≡ −1 (mod p) is solved by x =
(p−1

2

)
!.

In other words, p | (x2 + 1) in Z, which means p | (x2 + 1) in Z[i]. However, we can factorise
x2 + 1 = (1 + xi)(1− xi) in the Gaussian integers, but be aware that 1±xi

p /∈ Z[i], so p ̸ | (1± xi)
in Z[i]. Because p divides a product without dividing one of the factors, it means it is not prime
in Z[i] and, hence, is not irreducible. Suppose p = αβ with α, β ∈ Z[i] not units. Then,

p2 = N(p) = N(α)N(β).

Since p is prime in Z and N(α), N(β) ∈ Z, it must be that N(α) = N(β) = p (since N(α) ̸= 1
and N(β) ̸= 1 by the fact they are not units). So if we write α = a+ bi, this tells us that

p = N(α) = a2 + b2.

Theorem 8.4.8 The Gaussian primes are precisely the following elements:
� Primes in Z of the form 4k + 3, multiplied by ±1 or ±i.
� Elements a+ bi where a2 + b2 is either 2 or a prime of the form 4k + 1,

Proof : It is straightforward to see that the listed elements are prime. indeed, if p = 4k + 3
is prime in Z and it factorises p = αβ for α, β ∈ Z[i] not units, then p2 = N(α)N(β) and so
N(α) = N(β) = p. But p = 4k + 3 cannot be written as a sum of two squares, so there are no
elements of norm p. Now, any Gaussian integer a+ bi divides an ordinary integer, for instance

(a+ bi)(a− bi) = a2 + b2.

This ordinary integer can be written as a product of primes in Z by the usual Fundamental
Theorem of Arithmetic. But primes of the form 4k + 3 are prime in Z[i], and the other primes
factorise as a product of irreducible elements of the form listed in the statement, namely

p = (a+ bi)(a− bi).

Therefore, if a+ bi is prime, then it is (a unit multiplied by) one of the listed elements.
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9 Some Other Rings of Integers

9.1 The Ring Z[
√
d]

Definition 9.1.1 For d ∈ Z not a perfect square, the ring of square root-adjoined integers is

Z[
√
d] := {a+ b

√
d : a, b ∈ Z}.

Note: Again, we can realise Z[
√
d] as a subring of C. Moreover, it is an integral domain

and therefore we still have the notions of units, divisors and greatest common divisors.

Definition 9.1.2 The norm of an element α = a+ b
√
d ∈ Z[

√
d] is defined as

N(α) =
∣∣a2 − db2

∣∣.
Proposition Let α, β ∈ Z[

√
d]. Then, we have the following:

(i) The norm N(αβ) = N(α)N(β).
(ii) The norm N(α) = 0 if and only if α = 0.
(iii) The norm N(α) = 1 if and only if α is a unit.

Proof : Omitted (pretty much the same as those for Z[i] from Lemmata 8.2.2 and 8.2.3).

Theorem 9.1.3 (Division Algorithm for Z[
√
d]) If d ∈ {−2,−1, 2, 3} and α, β ∈ Z[

√
d] with

β ̸= 0, there exist q, r ∈ Z[
√
d] with 0 ≤ N(r) < N(β) such that α = qβ + r.

Proof : (d = −2) First, we write α/β = A + B
√
−2 for some A,B ∈ R. Let q ∈ Z[

√
−2] be as

close as possible to α/β in this sense: set q := a+ b
√
−2 where a, b ∈ Z such that

|a−A| ≤ 1

2
and |b−B| ≤ 1

2
.

Let r := α− qβ ∈ Z[
√
−2]. We see that α = qβ + r is satisfied. As for the inequality condition,

N

(
α

β
− q

)
= N

(
(A− a) + (B − b)

√
d
)
=
∣∣∣(A− a)2 + 2(B − b)2

∣∣∣ ≤ (1

2

)2

+ 2

(
1

2

)2

=
3

4
.

This, in turn, implies precisely the inequality we desire (of course 0 ≤ N(r) by default), namely

N(r) = N(α− qβ) = N

(
α

β
− q

)
N(β) ≤ 3

4
N(β) < N(β).

(d = −1, 2, 3) These arguments are similar in flavour to the one done above.
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Note: This proof fails for d = −3, say, because the inequality at the end doesn’t work.

Theorem 9.1.4 If d ∈ {−2,−1, 2, 3}, then any two α, β ∈ Z[
√
d] have a greatest common

divisor γ. Moreover, there exist s, t ∈ Z[
√
d] such that

γ = sα+ tβ.

Proof : Omitted (similar to Theorem 8.3.5).

Theorem 9.1.5 If d ∈ {−2,−1, 2, 3}, then α ∈ Z[
√
d] is prime if and only if it is irreducible.

Proof : Omitted (similar to Theorem 8.4.2).

Remark 9.1.6 It turns out this result is not true for d = −3. Indeed, 2 ∈ Z[
√
−3] is irreducible.

Indeed, if 2 = αβ where α, β ∈ Z[
√
−3] are not units, then 4 = N(2) = N(α)N(β). But

N(α) ̸= 1 and N(β) ̸= 1, which implies N(α) = N(β) = 2. However, if α = a+ b
√
−3, then

2 = N(α) = a2 + 3b2,

which has no solutions for a, b ∈ Z. On the other hand, we can factorise 4 = (1+
√
−3)(1−

√
−3)

and note that 2 ̸ | (1±
√
−3) which means that 2 is not prime in Z[

√
−3].

Theorem 9.1.7 (Fundamental Theorem of Arithmetic) If d ∈ {−2,−1, 2, 3}, then every
non-zero and non-unit α ∈ Z[

√
d] can be expressed as a unique product of primes up to

order, that is if α = π1 · · ·πr and α = σ1 · · ·σs where πi, σj are primes, then r = s and
the πi and σs can be paired-off so that πi = uσj for some unit u ∈ Z[

√
d].

Proof : Omitted (similar to Theorem 8.4.4).

9.2 Solving a2 + 2b2 = n

Theorem 9.2.1 Any n ∈ Z+ can be written in the form n = a2+2b2 for a, b ∈ Z if and only
if the primes of the form 8k+5 and 8k+7 have even exponent in the prime factorisation
of n.

Proof : (⇐) Saying n = a2 + 2b2 is the same as saying n is the norm of an element of Z[
√
−2].

Thus, any product of two such n can also be written in the same form. Clearly, any square is
of the form a2 + 2b2 with a = 0. Now, if p is a prime integer not of the form p ≡ 5 (mod 8) or
p ≡ 7 (mod 8), then either p = 2 or we have p ≡ 1 (mod 8) or p ≡ 3 (mod 8). Clearly, p = 2
can be written in the form a2 + 2b2 (take a = 0 and b = 1). Now, notice that(

−2

p

)
=

(
−1

p

)
·
(
2

p

)
= 1
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by the Supplementary Laws (Theorem 7.3.2); this means that −2 is a quadratic residue modulo
p, that is there exists a solution to x2 ≡ −2 (mod p). Thus,

p | (x2 + 2) ⇔ p | (x+
√
−2)(x−

√
−2).

However, p ̸ | (x2 ±
√
−2) and so p is not prime in Z[

√
−2]. In particular, it is not irreducible, so

can be written as a product of non-units p = αβ. Then, if α = a+ b
√
−2, we have

p = N(α) = a2 + 2b2.

(⇒) Suppose p | n where n = a2+2b2 and p ≡ 5 (mod 8) or p ≡ 7 (mod 8). We shall show that
p | a and p | b. Well, we now have(

−2

p

)
=

(
−1

p

)
·
(
2

p

)
= −1

by the Supplementary Laws; this means that −2 is a quadratic non-residue modulo p, that is
there is no solution to x2 ≡ −2 (mod p). However, we do have a solution to x2 ≡ 2y2 (mod p)
in x = a and y = b. If p ̸ | y, then we can divide by y2 and express −2 as a quadratic residue, a
contradiction. So p | y. Similarly, p | x. Thus, p2 | n and n/p2 can be written in the same form.
Proceeding inductively, it must involve p to an even power.

Definition A Diophantine equation is one for which only integer solutions are considered.

Theorem 9.2.3 The only Diophantine solutions to x2 + 2 = y3 are x = ±5 and y = 3.

Proof : We can re-write the equation as (x +
√
−2)(x −

√
−2) = y3 and we will now show that

the two factors on the left-hand side are coprime in Z
√
−2. Indeed, suppose α ∈ Z[

√
−2] is

irreducible and divides both of x±
√
−2. Then, by subtracting, we see that

α | (−2
√
−2) ⇔ α | (

√
−2)3.

Since α is irreducible, and therefore prime, we see that α |
√
−2 and we must have N(α) = 2.

Consequently, α = ±
√
−2 and we then conclude that

√
−2 | (x+

√
−2) in Z[

√
−2] ⇒

√
−2 | x in Z[

√
−2] ⇒ 2 | x2 in Z.

This tells us that x is even, so 4 | x2. It follows that y is also even, so 8 | y3. This means
that x2 + 2 ≡ 0 (mod 4) which is impossible. Therefore, no prime of Z[

√
−2] can divide both of

x±
√
−2 and thus they are coprime. Now, by the Fundamental Theorem of Algebra (specifically,

the uniqueness of the factorisation), it must be that x +
√
−2 and x −

√
−2 are both cubes in

Z[
√
−2]. Indeed, say

x+
√
−2 = (a+ b

√
−2)3 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2.

Comparing coefficients of
√
−2, we have 1 = 3a2b − 2b3 = b(2a2 − 2b2), from which it follows

that b = ±1. Therefore, we have also that 3a2 − 2 = ±1 and we have two options: (i) 3a2 = 1
which has no integer solutions and (ii) 3a2 = 3 which has a = ±1 as the only solutions. Thus,

x = a3 − 6ab2 = ±5 ⇒ y =
3
√
x2 + 2 = 3.

41



9.3 Eisenstein Integers

Definition 9.3.1 The ring of Eisenstein integers is Z[ω] := {a+ bω : a, b ∈ Z}, where

ω :=
−1 +

√
−3

2
= e2πi/3.

Note: The complex number ω satisfies the following quadratic equation: ω2 + ω + 1 = 0.

Definition The norm of an Eisenstein integer α = a+ bω ∈ Z[ω] is defined as

N(α) = a2 − ab+ b2 = |a+ bω|2 = (a+ bω)(a+ bω2).

Proposition Let α, β ∈ Z[ω]. Then, we have the following:
(i) The norm N(αβ) = N(α)N(β).
(ii) The norm N(α) = 0 if and only if α = 0.
(iii) The norm N(α) = 1 if and only if α is a unit.

Proof : Omitted (pretty much the same as those for Z[i] from Lemmata 8.2.2 and 8.2.3).

Lemma The set of units in Z[ω] are {±1,±ω,±ω2}.

Proof : Let α = a+ bω ∈ Z[ω] be a unit. Since N(α) = 1, this is equivalent to a2 − ab+ b2 = 1.
Using the fact that a2+ b2 ≥ 2|ab|, we see that either ab = 0 or ab = ±1. Since a, b ∈ Z, we have

(a, b) = (±1, 0) or (0,±1) or (1, 1) or (−1,−1).

These imply that α ∈ {±1,±ω,±(1 + ω)}, but using the quadratic equation in the above note,
we see that ±(1 + ω) = ∓ω2 so we have the result.

Theorem 9.3.3 (Division Algorithm for Z[ω]) Let α, β ∈ Z[ω] with β ̸= 0. Then, there exist
q, r ∈ Z[ω] with 0 ≤ N(r) < N(β) such that α = qβ + r.

Proof : First, we write α/β = A+Bω for some A,B ∈ R. Let q ∈ Z[ω] be as close as possible to
α/β in this sense: set q := a+ bω where a, b ∈ Z such that

|a−A| ≤ 1

2
and |b−B| ≤ 1

2
.

Let r := α− qβ ∈ Z[ω]. We see that α = qβ + r is satisfied. As for the inequality condition,

N(r) = N(α− qβ) = N

(
α

β
− q

)
N(β) ≤ 3

4
N(β) < N(β).
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Theorem Any two Eisenstein integers α, β ∈ Z[ω] have a greatest common divisor γ.
Moreover, there exist s, t ∈ Z[ω] such that

γ = sα+ tβ.

Proof : Omitted (similar to Theorem 8.3.5).

Theorem 9.3.4 There are no integer solutions to x3 + y3 + z3 = 0 with xyz ̸= 0, so there
are no non-trivial integer solutions to x3 + y3 = z3 (Fermat’s Last Theorem with n = 3).

Proof : (Non-examinable) Omitted.

9.4 Units in Z[
√
d] and Pell’s Equation

Definition Let d ∈ Z+ not be a perfect square. Then, Pell’s equation is x2 − dy2 = 1.

We view this as a Diophantine equation, meaning we are interested in integer solutions x, y ∈ Z.

Note: The units of Z[
√
d] are elements a + b

√
d with a2 − db2 = ±1. Consequently, the

set of elements where this equality is +1 correspond to solutions of Pell’s equation.

Lemma Given two solutions to Pell’s equation, the product of the corresponding units in
Z[
√
d] gives another solution to Pell’s equation. Furthermore, taking powers of a unit

produces solutions to Pell’s equation.

Proof : This essentially boils down to the fact units are closed under products and inverses.

Definition Let a1, a2, ..., an ∈ Z+ be a collection of positive integers and a0 ∈ Z possibly
negative. The finite continued fraction they generate is an expression of the form

a0 +
1

a1 +
1

a2 + .. .
+

1

an−1 +
1

an

.

Notation For shorthand, we denote the above finite continued fraction by [a0; a1, a2, ..., an].
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Definition Let a1, a2, a3, ... ∈ Z+ be a sequence of positive integers and a0 ∈ Z possibly
negative. The infinite continued fraction they generate is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + .. .

.

Notation For shorthand, we denote the above infinite continued fraction by [a0; a1, a2, a3, ...].

Theorem Consider a real number x ∈ R.
(i) If x ∈ Q, then it admits a finite continued fraction expression.
(ii) If x /∈ Q, then it admits a unique infinite continued fraction expression.

Definition The kth convergent to the infinite continued fraction [a0; a1, a2, ...] is the finite

Ck := [a0; a1, a2, ..., ak].

Proposition 9.4.1 We have the formula Ck = pk/qk for the kth convergent, where we have
the recurrence relations defining the pk and qk as follows for all k ≥ 0:

pk = akpk−1 + pk−2, where p−2 = 0 and p−1 = 1,

qk = akqk−1 + qk−2, where q−2 = 1 and q−1 = 0.

Reminder: The floor function ⌊x⌋ gives us the integer value of x ∈ R (it rounds it down).

Method – Continued Fraction of
√
d: Suppose d > 1 is not a square. We use ai ∈ Z to

denote the continued fraction integers and we define the numbers bi ∈ R via ai = ⌊bi⌋.
(i) Set a0 =

⌊√
d
⌋
, meaning that b0 =

√
d.

(ii) Set a1 =
⌊

1√
d−a0

⌋
, meaning that b1 =

1√
d−a0

.

(iii) Set a2 =
⌊

1
b1−a1

⌋
, meaning that b2 =

1
1√

d−a0
−a1

.

(iv) Set ak+1 =
⌊

1
bk−ak

⌋
for general k ≥ 0.

(v) Continue this until entries start to repeat.

Note: The continued fraction
√
d = [a0; a1, ..., am] repeats itself after we reach am = 2a0.
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Theorem 9.4.2 If d > 1 ia not a perfect square, there always exist solutions to Pell’s
equation with x, y > 0. Moreover, they all arise as (x, y) = (pk, qk) for convergents to

√
d.

Proof : Omitted.

Method – Solving Pell’s Equation: We wish to solve x2− dy2 = 1 for d > 1 not a square.
(i) Find the continued fraction expression of

√
d using the previous method.

(ii) Create a so-called magic table recording k, ak, pk, qk and p2k − dq2k.
(iii) Whenever p2k − dq2k = 1, we have a solution (x, y) = (pk, qk).
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