MATH2027 Rings and Polynomials

Cheatsheet
2023/24

Abstract

This document collects together the important definitions and results presented throughout the lecture notes. The numbering used throughout will be consistent with that in the lecture notes.

Contents

1 Introduction 2
2 Ideals and Factor Rings 6
3 Homomorphisms 10
4 Fields and Integral Domains 13
5 Classes of Integral Domains 16
6 Elements in Integral Domains 19
7 Prime and Irreducible Elements 22
8 Irreducible Polynomials 27

1 Introduction

Definition 1.1 Let A and B be sets. The Cartesian product of A and B is the set of all pairs of elements the first of which is from A and the second of which is from B, that is

$$
A \times B:=\{(a, b): a \in A \text { and } b \in B\}
$$

Definition 1.2 Let G be a set. A binary operation on G is a function $G \times G \rightarrow G$.

Note: In other words, it is a function taking two elements of a set and spitting out another element which also lives inside the same set. We do not assume it is associative (see below).

Definition 1.4 A group $(G, *)$ is a pair consisting of a non-empty set G and a binary operation $*: G \times G \rightarrow G$ on G which satisfying the following axioms:
(G1) For all $g, h \in G$, we have $g * h \in G$.
(Closed)
(G2) For all $g, h, k \in G$, we have $(g * h) * k=g *(h * k)$.
(Associativity)
(G3) There exists $e \in G$ such that $g * e=g=e * g$ for all $g \in G$.
(Identity)
(G4) For all $g \in G$, we have $h \in G$ such that $g * h=e=h * g$. (Existence of Inverses)

Remark By stipulating the operation $*$ is binary, we automatically get that $g * h \in G$ for all $g, h \in G$. The only reason we write out the closure rule is to make us remember to check that the operation is indeed a binary operation (i.e. a valid function whose output lives in the set G).

Note: Often, we refer to a group by the underlying set G and don't explicitly mention *.

Lemma Let G be a group. Then, the identity is unique.

Proof: Suppose $e, f \in G$ are two identities. Then, we have the following:
(i) $e * f=e$, because f is an identity.
(ii) $e * f=f$, because e is an identity.

But clearly, $e * f=e * f$, so it follows that $e=f$.

Lemma Let G be a group. Then, the inverse of $g \in G$ is unique.

Proof: Suppose $h, k \in G$ are two inverses of the element g. Then, we have the following:
(i) $g * h=e=h * g$, by definition.
(ii) $g * k=e=k * g$, by definition.

Therefore, we see that $h=h * e=h *(g * k)=(h * g) * k=e * k=k$ by associativity.

Note: Per this lemma, we henceforth denote the inverse of $g \in G$ by the symbol g^{-1}.

Definition A group G is Abelian if the operation $*$ is commutative, that is for all $g, h \in G$,

$$
g * h=h * g .
$$

Remark 1.6 Addition is clearly Abelian. Therefore, we use this notation for any Abelian group:
(i) The operation $*$ is denoted + .
(ii) The identity e is denoted 0 .
(iii) The inverse g^{-1} is denoted $-g$.

Definition 1.7 A ring $(R,+, \times)$ is a triple consisting of a non-empty set R and two binary operations $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ satisfying the following axioms:
(R1) The pair $(R,+)$ is an Abelian group.
(R2) For all $r, s \in R$, we have $r \times s \in R$.
(Closure of \times)
(R3) For all $r, s, t \in R$, we have $(r \times s) \times t=r \times(s \times t)$.
(Associativity of \times)
(R4) For all $r, s, t \in R$, we have each of these: (Distributivity of \times over +)
(i) $r \times(s+t)=(r \times s)+(r \times t)$.
(ii) $(r+s) \times t=(r \times t)+(s \times t)$.

Remark 1.8 For the sake of nicer notation, we often write $r s:=r \times s$ and $r-s:=r+(-s)$.
Definition Let R be a ring. A multiplicative identity is some $1_{R} \in R$ where for all $r \in R$,

$$
1_{R} \times r=r=r \times 1_{R} .
$$

Note: We do not assume that every ring has a multiplicative identity (note there is no mention of this in Definition 1.7). However, those that do we herein call rings with one.

Lemma Let R be a ring. If it exists, the multiplicative identity 1_{R} is unique.

Sketch of Proof: This is the same proof as the uniqueness of the identity of a group.

Proposition Let R be any ring. Then, the following are also rings:
(i) The matrix ring $M_{n}(R)$ of $n \times n$ matrices with entries in R.
(ii) The polynomial ring $R[x]$ of polynomials in one variable x with coefficients in R.
(iii) The polynomial ring $R\left[x_{1}, \ldots, x_{k}\right]$ of polynomials in k variables with coefficients in R.
(iv) The Gaussian integers $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Lemma 1.11 Let R be a ring and $r, s, t \in R$ be any elements. Then, the following are true:
(i) The additive identity 0_{R} is unique.
(ii) The additive inverse $-r$ of r is unique.
(iii) If $r+t=s+t$, then $r=s$.
(iv) We have $-(r+s)=(-r)+(-s)$.
(v) We have $-(-r)=r$.
(vi) We have $r 0_{R}=0_{R}=0_{R} r$.
(vii) We have $(-r) s=-(r s)=r(-s)$.

Proof: By Axiom (R1), we know $(R,+$) is a group. So we've already proved (i) and (ii) earlier.
(iii) Suppose $r+t=s+t$. Because $t \in R$ and R is a group, it is closed under forming inverses, that is there exists an element $-t \in R$ such that $t+(-t)=0_{R}$. Thus, adding this element to both sides of the equation tells us that $r+t+(-t)=s+t+(-t)$, but this is nothing other than $r+0_{R}=s+0_{R}$ which is the same as $r=s$.
(iv) Well, we can see that

$$
\begin{array}{rlrl}
((-r)+(-s))+(r+s) & =((-s)+(-r))+(r+s), & & \text { as }+ \text { is commutative, } \\
& =(-s)+((-r)+(r+s)), & & \text { as }+ \text { is associative, } \\
& =(-s)+(((-r)+r)+s), \\
& =(-s)+\left(0_{R}+s\right), & & \text { as }+ \text { is associative, } \\
& =(-s)+s, & & \text { as }-r \text { is the additive inverse of } r, \\
& =0_{R}, & & \text { as } 0_{R} \text { is the additive identity, } \\
\text { as }-s \text { is the additive inverse of } s .
\end{array}
$$

Doing a similar argument, we conclude that $(r+s)+((-r)+(-s))=0_{R}$. Therefore, we see that the inverse of $(r+s)$ is $(-r)+(-s)$, which is as written in the statement of the lemma; this uses the uniqueness we know from (ii).
(v) This is immediate from the fact that $(-r)+r=0_{R}$; the inverse of $(-r)$ is r.
(vi) We can write $0_{R}=0_{R}+0_{R}$. Thus, we see that

$$
\begin{aligned}
r 0_{R} & =r\left(0_{R}+0_{R}\right) \\
& =\left(r 0_{R}\right)+\left(r 0_{R}\right), \quad \text { as } \times \text { distributes over }+.
\end{aligned}
$$

But by the existence of additive inverses, we know that there exists $-\left(r 0_{R}\right) \in R$. Therefore,

$$
\begin{aligned}
r 0_{R}+\left(-r 0_{R}\right) & =\left(r 0_{R}+r 0_{R}\right)+\left(-r 0_{R}\right), & & \text { as additive inverses exist, } \\
& =r 0_{R}+\left(r 0_{R}+\left(-r 0_{R}\right)\right), & & \text { as }+ \text { is associative. }
\end{aligned}
$$

However, this just tells us that $0_{R}=r 0_{R}+0_{R}$, so we conclude that $r 0_{R}=0_{R}$. We can proceed similarly in the other order to get the result.
(vii) Continuing on from (vi), we see that $0_{R}=0_{R} s=((-r)+r) s=(-r) s+r s$ by distributivity of multiplication over addition. Therefore, adding $-(r s)$ to both sides gives the result. Similarly, one can do it the other way around.

Remark 1.12 Since addition + is associative, it is common to not write brackets, e.g. $r+s+t$.
Definition 1.13 A ring R is commutative if the operation \times is commutative: for all $r, s \in R$,

$$
r s=s r .
$$

Definition 1.14 Let R be a ring. A subring is a subset $S \subseteq R$ where the following hold:
(S1) It contains the additive identity, that is $0_{R} \in S$.
(S2) For all $r \in S$, we have $-r \in S$.
(S3) For all $r, s \in S$, we have $r+s \in S$.
(S4) For all $r, s \in S$, we have $r s \in S$.

Note: A subring $S \subseteq R$ is a ring in its own right, whose operations are the same as those for R but restricted onto S and whose additive identity $0_{S}=0_{R}$.

Proposition Let R be any ring. Then, $\left\{0_{R}\right\} \subseteq R$ and $R \subseteq R$ are subrings automatically.

Sketch of Proof: Simply show that each of the axioms in Definition 1.14 is satisfied.

2 Ideals and Factor Rings

Reminder: Let G be a group. We call the subgroup $N \leq G$ a normal subgroup if for all $n \in N$ and $g \in G$, we have $g n g^{-1} \in N$. This is then denoted $N \unlhd G$. For a normal subgroup, we can define the quotient group $G / N=\{g N: g \in G\}$ under coset addition and multiplication; a coset is the set $g H:=\{g h: h \in H\}$ for any subgroup $H \leq G$.

Definition 2.1 Let R be a ring. An ideal (of R) is a subset $I \subseteq R$ satisfying the following:
(I1) It contains the additive identity, that is $0_{R} \in I$.
(I2) For all $x \in I$, we have $-x \in I$.
(Closed under Negation)
(I3) For all $x, y \in I$, we have $x+y \in I$. (Closed under Addition)
(I4) For all $x \in I$ and $r \in R$, we have $r x \in I$ and $x r \in I$.
(Absorbing Property)

Note: An ideal of a ring is automatically a subring of said ring; compare (I4) with (S4).

Lemma 2.3 Let R be a commutative ring and $a \in R$. Then, the ideal generated by a

$$
(a):=\{a r: r \in R\}
$$

is indeed an ideal of R.

Proof: One need only verify the axioms of an ideal written in Definition 2.1.

- Clearly, $0_{R}=a 0_{R}$ which means that $0_{R} \in(a)$.
- Suppose $x \in I$, that is $x=a r$ for some $r \in R$. Then, the inverse $-x=-(a r)=a(-r) \in(a)$ because $-r \in R$ since R is a ring and it is closed under additive inverses.
- Suppose $x, y \in I$, that is $x=a r$ and $y=a s$ for some $r, s \in R$. Then, their sum is $x+y=a r+a s=a(r+s) \in(a)$ because $r+s \in R$ since R is a ring and it is closed under addition.
- Suppose $x \in I$, that is $x=a s$ for some $s \in R$, and $r \in R$. Then, $x r=a s r=a(s r) \in(a)$ because $s r \in R$ since R is a ring and it is closed under multiplication.

Note: An ideal (a) generated by a single element $a \in R$ is called a principal ideal of R.

Lemma 2.4 Let R be a commutative ring with $1_{R} \in R$ and $a \in R$. Then, $a \in(a)$ and any ideal of R that contains the element a also contains the entire ideal (a).

Proof: Well, $a=a 1_{R} \in(a)$ is pretty clear. Next, let $I \subseteq R$ be an ideal with $a \in I$ by Axiom (I4), we know that $a r \in I$ for any $r \in R$. Consequently, $\{a r: r \in R\}=(a) \subseteq I$.

Definition 2.5 Let R be a ring and $I, J \subseteq R$ be ideals. Then, the sum of ideals is

$$
I+J:=\{x+y: x \in I \text { and } y \in J\} .
$$

Lemma 2.6 Let R be a ring and $I, J \subseteq R$ be ideals. Then, we have the following:
(i) The set $I+J$ is an ideal of R.
(ii) The set $I \cap J$ is an ideal of R.

Proof: (i) This very much hinges on the fact that I and J are ideals.

- Clearly, $0_{R}=0_{R}+0_{R} \in I+J$ since $0_{R} \in I$ and $0_{R} \in J$.
- Now then, let $a \in I+J$, which means that $a=x+y$ where $x \in I$ and $y \in J$. Then, $-a=-(x+y)=(-x)+(-y) \in I+J$ because $-x \in I$ and $-y \in J$.
- Let $a, b \in I+J$, which means $a=x+y$ and $b=s+t$ for $x, s \in I$ and $y, t \in J$. Then, $a+b=(x+y)+(s+t)=(x+s)+(y+t) \in I+J$ because addition is associative and commutative and $x+s \in I$ and $y+t \in J$.
- Finally, let $a \in I+J$, which means $a=x+y$ for $x \in I$ and $y \in J$, and $r \in R$. Then, $a r=(x+y) r=(x r)+(y r) \in I+J$ because $x r \in I$ and $y r \in J$.
(ii) This again rests on the fact that I and J are ideals.
- Clearly, $0_{R} \in I \cap J$ because $0_{R} \in I$ and $0_{R} \in J$.
- Now, let $a \in I \cap J$, meaning that $a \in I$ and $a \in J$. Because I and J are ideals, it follows that $-a \in I$ and $-a \in J$, which is to say that $-a \in I \cap J$.
- Let $a, b \in I \cap J$, meaning that $a, b \in I$ and $a, b \in J$. Because I and J are ideals, we know $a+b \in I$ and $a+b \in J$, which therefore means $a+b \in I \cap J$.
- Last, let $a \in I \cap J$, meaning that $a \in I$ and $a \in J$, and $r \in R$. Because I and J are ideals, we conclude $a r \in I$ and $a r \in J$; it immediately follows that $a r \in I \cap J$.

Note: Because $(R,+)$ is an Abelian group and Axioms (I1), (I2) and (I3) imply that $I \leq R$ is a subgroup, we know that $I \unlhd R$ is normal (true of any subgroup of an Abelian group).

Definition 2.7 Let R be a ring and $I \subseteq R$ an ideal. A coset of I is a subset of the form

$$
r+I:=\{r+x: x \in I\} \subseteq R .
$$

Lemma 2.8 Let R be a ring and $I \subseteq R$ an ideal, with $r, s \in R$. Then, $r+I=s+I$ if and only if $r-s \in I$.

Proof: (\Rightarrow) Suppose $r+I=s+I$. Then, $r+0_{R} \in r+I=s+I$, because ideals contain zero. Therefore, $r+0_{R}=s+x$ for some element $x \in I$, but the left-hand side is just r. Therefore, this rearranges to say that $r-s=x \in I$.
(\Leftarrow) Suppose $r-s \in I$ and define $x:=r-s$ (which means that $r=x+s$ and $s=r-x$). We show the cosets $r+I$ and $s+I$ are equal by demonstrating that they are subsets of one another.

- Let $a \in r+I$, which means that $a=r+y$ for some $y \in I$. Therefore, we see that $a=(x+s)+y=s+(x+y) \in s+I$ because ideals are closed under addition and so $x+y \in I$. Because any element of $r+I$ also appears in $s+I$, we know that $r+I \subseteq s+I$.
- Let $b \in s+I$, which means that $b=s+z$ for some $z \in I$. Therefore, we see that $b=(r-x)+z=r+(z-x) \in r+I$ because ideals are closed under addition and negation and so $z-x \in I$. Because any element of $s+I$ also appears in $r+I$, we get $s+I \subseteq r+I$.

Therefore, having both subset inclusions implies that $r+I=s+I$.

Lemma 2.10 Let R be a ring and $I \subseteq R$ an ideal. If $X_{1}=a_{1}+I, \ldots, X_{n}=a_{n}+I$ are cosets of I in R whose union $\bigcup_{i=1}^{n} X_{i}=R$, then every coset of I is equal to some X_{i}.

Proof: Let $r \in R$, meaning $r \in X_{i}=a_{i}+I$ for some i since R is the union of the X_{i}. Therefore, $r-a_{i} \in I$ which is equivalent to saying that $r+I=a_{i}+I=X_{i}$ by Lemma 2.8.

Definition Let R be a ring and $I \subseteq R$ an ideal. The set of cosets of I in R is

$$
R / I:=\{r+I: r \in R\} .
$$

Reminder: An operation is well-defined if it doesn't depend on the representative taken.

Lemma 2.12 The following binary operations defined on R / I are well-defined:
(i) The coset addition operation $(r+I)+(s+I):=(r+s)+I$.
(ii) The coset multiplication operation $(r+I)(s+I):=r s+I$.

Proof: (i) To show that coset addition is well-defined, suppose $r_{1}, r_{2}, s_{1}, s_{2} \in R$ are such that $r_{1}+I=r_{2}+I$ and $s_{1}+I=s_{2}+I$. By Lemma 2.8, this means $r_{1}-r_{2} \in I$ and $s_{1}-s_{2} \in I$. Hence, we see that $\left(r_{1}+s_{1}\right)-\left(r_{2}+s_{2}\right)=\left(r_{1}-r_{2}\right)+\left(s_{1}-s_{2}\right) \in I$ because ideals are closed under addition and negation. Therefore, again applying Lemma 2.8, we conclude that $\left(r_{1}+s_{1}\right)+I=\left(r_{2}+s_{2}\right)+I$. Thus, picking different representatives for the left-hand side of the coset addition operation doesn't change what we get in the output, so it is well-defined.
(ii) To show that coset multiplication is well-defined, suppose $r_{1}, r_{2}, s_{1}, s_{2} \in R$ are such that $r_{1}+I=r_{2}+I$ and $s_{1}+I=s_{2}+I$. By Lemma 2.8, this means $r_{1}-r_{2} \in I$ and $s_{1}-s_{2} \in I$. Hence, we see that $r_{1} s_{1}-r_{2} s_{2}=\left(r_{1}-r_{2}\right) s_{1}+r_{2}\left(s_{1}-s_{2}\right) \in I$ because ideals are closed under addition and negation. Therefore, again applying Lemma 2.8, we conclude that $r_{1} s_{1}+I=r_{2} s_{2}+I$.

Theorem 2.13 Let R be a ring and $I \subseteq R$ an ideal. Then, R / I together with the coset addition and multiplication operations from Lemma 2.12 is a ring with additive identity $0_{R}+I$. We call R / I a quotient ring or factor ring. Moreover, if R is a ring with one whose multiplicative identity is 1_{R}, then so too is R / I, with multiplicative identity $1_{R}+I$.

Proof: One need only show that the axioms in Definition 1.7 are satisfied.

- Closure under coset addition is immediate from its definition. Now, $0_{R}+I$ is the additive identity: $(r+I)+\left(0_{R}+I\right)=\left(r+0_{R}\right)+I=r+I$. Finally, if we continue to assume that $r+I \in R / I$, then $(-r)+I \in R / I$ is the additive inverse. Indeed, we see that $(r+I)+((-r)+I)=(r+(-r))+I=0_{R}+I$. Hence, R / I is closed under taking additive inverses. This shows that $(R / I,+)$ is an Abelian group.
- Closure under coset multiplication is immediate from its definition.
- Let $r+I, s+I, t+I \in R / I$. Then, we see that

$$
\begin{aligned}
((r+I)(s+I))(t+I) & =(r s+I)(t+I) \\
& =(r s) t+I \\
& =r(s t)+I \\
& =(r+I)(s t+I) \\
& =(r+I)((s+I)(t+I))
\end{aligned}
$$

which demonstrates associativity of coset multiplication.

- Let $r+I, s+I, t+I \in R / I$. Then, we see that

$$
\begin{aligned}
(r+I)((s+I)+(t+I)) & =(r+I)((s+t)+I) \\
& =r(s+t)+I \\
& =(r s+r t)+I \\
& =(r s+I)+(r t+I) \\
& =(r+I)(s+I)+(r+I)(t+I)
\end{aligned}
$$

and

$$
\begin{aligned}
((r+I)+(s+I))(t+I) & =((r+s)+I)(t+I) \\
& =(r+s) t+I \\
& =(r t+s t)+I \\
& =(r t+I)+(s t+I) \\
& =(r+I)(t+I)+(s+I)(t+I)
\end{aligned}
$$

which demonstrates distributivity of coset multiplication over coset addition.

3 Homomorphisms

Definition 3.1 A ring homomorphism is a map $\varphi: R \rightarrow S$ between rings satisfying these:
(H1) For all $r_{1}, r_{2} \in R$, we have $\varphi\left(r_{1}+r_{2}\right)=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)$.
(H2) For all $r_{1}, r_{2} \in R$, we have $\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$.

Note: If φ is a bijective ring homomorphism, we call it a ring isomorphism and write $R \cong S$.
Remark 3.3 We always have the following for any ring homomorphism $\varphi: R \rightarrow S$:
(i) $\varphi\left(0_{R}\right)=0_{S}$. Indeed, $0_{S}+\varphi\left(0_{R}\right)=\varphi\left(0_{R}\right)=\varphi\left(0_{R}+0_{R}\right)=\varphi\left(0_{R}\right)+\varphi\left(0_{R}\right)$ by Axiom (H1). But now, Lemma 1.11(iii) means we cancel one of the $\varphi\left(0_{R}\right)$ to get that $0_{S}=\varphi\left(0_{R}\right)$.
(ii) $\varphi(-r)=-\varphi(r)$ for all $r \in R$. Indeed, $\varphi(-r)+\varphi(r)=\varphi(-r+r)=\varphi\left(0_{R}\right)=0_{S}$ by Axiom (H1) and by (i) above. This shows the inverse of $\varphi(r)$ is $\varphi(-r)$, exactly what we wanted.

Definition 3.4 Let R and S be rings and $\varphi: R \rightarrow S$ be a ring homomorphism.
(i) The kernel of φ is $\operatorname{ker}(\varphi):=\left\{r \in R: \varphi(r)=0_{S}\right\}$.
(ii) The image of φ is $\operatorname{im}(\varphi):=\{\varphi(r): r \in R\}$.

Proposition 3.6 Let R and S be rings and $\varphi: R \rightarrow S$ be a ring homomorphism.
(i) The kernel $\operatorname{ker}(\varphi) \subseteq R$ is an ideal of R.
(ii) The image $\operatorname{im}(\varphi) \subseteq S$ is a subring of S.

Note: Be aware of the fact that the kernel is an ideal but the image is only a subring.

Proof: (i) We show the axioms from Definition 2.1.

- Per Remark 3.3, we see that $\varphi\left(0_{R}\right)=0_{S}$, so $0_{R} \in \operatorname{ker}(\varphi)$.
- Let $x \in \operatorname{ker}(\varphi)$. Then, again by Remark $3.3, \varphi(-x)=-\varphi(x)=-0_{S}=0_{S}$, so $-x \in \operatorname{ker}(\varphi)$.
- Let $x, y \in \operatorname{ker}(\varphi)$. Then, $\varphi(x+y)=\varphi(x)+\varphi(y)=0_{S}+0_{S}=0_{S}$, so $x+y \in \operatorname{ker}(\varphi)$.
- Let $x \in \operatorname{ker}(\varphi)$ and $r \in R$. Then, $\varphi(x r)=\varphi(x) \varphi(r)=0_{S} \varphi(r)=0_{S}$, so $x r \in \operatorname{ker}(\varphi)$.
(ii) We show the axioms from Definition 1.14.
- Per Remark 3.3, we see that $\varphi\left(0_{R}\right)=0_{S}$, so $0_{S} \in \operatorname{im}(\varphi)$.
- Let $s \in \operatorname{im}(\varphi)$, meaning $s=\varphi(r)$ for some $r \in R$. Again by Remark 3.3, we see that $-s=-\varphi(r)=\varphi(-r)$, so $-s \in \operatorname{im}(\varphi)$.
- Let $s_{1}, s_{2} \in \operatorname{im}(\varphi)$, meaning $s_{1}=\varphi\left(r_{1}\right)$ and $s_{2}=\varphi\left(r_{2}\right)$ for some $r_{1}, r_{2} \in R$. Then, $s_{1}+s_{2}=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)=\varphi\left(r_{1}+r_{2}\right)$, so $s_{1}+s_{2} \in \operatorname{im}(\varphi)$.
- Let $s_{1}, s_{2} \in \operatorname{im}(\varphi)$, meaning $s_{1}=\varphi\left(r_{1}\right)$ and $s_{2}=\varphi\left(r_{2}\right)$ for some $r_{1}, r_{2} \in R$. Then, $s_{1} s_{2}=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=\varphi\left(r_{1} r_{2}\right)$, so $s_{1} s_{2} \in \operatorname{im}(\varphi)$.

Reminder: Let $f: A \rightarrow B$ be an arbitrary function.
(i) f is injective (or one-to-one) if for every $a_{1}, a_{2} \in A, f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$.
(ii) f is surjective (or onto) if for every $b \in B$, there exists $a \in A$ such that $f(a)=b$.

Lemma 3.7 A ring homomorphism $\varphi: R \rightarrow S$ is injective if and only if $\operatorname{ker}(\varphi)=\left\{0_{R}\right\}$.

Proof: (\Rightarrow) Let φ be injective. We know that $0_{R} \in \operatorname{ker}(\varphi)$ from Remark 3.3, so the kernel is non-empty. Suppose $x \in \operatorname{ker}(\varphi)$. Then, $\varphi(x)=0_{S}=\varphi\left(0_{R}\right)$. But injectivity then allows us to conclude that $x=0_{R}$, so in fact the kernel consists only of the zero of R.
(\Leftarrow) Let $\operatorname{ker}(\varphi)=\left\{0_{R}\right\}$ and assume $x, y \in R$ with $\varphi(x)=\varphi(y)$. We conclude from Axiom (H1) that $\varphi(x-y)=\varphi(x)-\varphi(y)=0_{S}$, so it follows that $x-y \in \operatorname{ker}(\varphi)$. But this means that $x-y=0_{R}$, which is to say $x=y$.

Theorem 3.9 Let R be a ring and $I \subseteq R$ an ideal. Then, the quotient map $\varphi: R \rightarrow R / I$ given by $\varphi(r)=r+I$ is a ring homomorphism. Furthermore, $\operatorname{ker}(\varphi)=I$ and $\operatorname{im}(\varphi)=R / I$.

Proof: The first part of the proof concerns showing the axioms in Definition 3.1.

- Let $r_{1}, r_{2} \in R$. Then, $\varphi\left(r_{1}+r_{2}\right)=\left(r_{1}+r_{2}\right)+I=\left(r_{1}+I\right)+\left(r_{2}+I\right)=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)$.
- Let $r_{1}, r_{2} \in R$. Then, $\varphi\left(r_{1} r_{2}\right)=r_{1} r_{2}+I=\left(r_{1}+I\right)\left(r_{2}+I\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$.

Furthermore, we see that

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\left\{r \in R: \varphi(r)=0_{R / I}\right\} \\
& =\left\{r \in R: r+I=0_{R}+I\right\} \\
& =\left\{r \in R: r-0_{R} \in I\right\} \\
& =\{r \in R: r \in I\} \\
& =I
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{im}(\varphi) & =\{\varphi(r): r \in R\} \\
& =\{r+I: r \in R\} \\
& =R / I .
\end{aligned}
$$

Note: The quotient map in Theorem 3.9 is surjective as its image is the whole codomain.

Theorem 3.10 (First Isomorphism Theorem) Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then, there exists an induced ring isomorphism $\bar{\varphi}: R / \operatorname{ker}(\varphi) \rightarrow \operatorname{im}(\varphi)$ given by

$$
\bar{\varphi}(r+\operatorname{ker}(\varphi))=\varphi(r)
$$

Proof: There are a few things to prove about the induced map $\bar{\varphi}$, namely that it is well-defined, it is a ring homomorphism and that it is bijective (i.e. has trivial kernel and has full image).

- Let $r_{1}+\operatorname{ker}(\varphi)=r_{2}+\operatorname{ker}(\varphi)$ for $r_{1}, r_{2} \in R$. By Lemma 2.8, we know that $r_{1}-r_{2} \in \operatorname{ker}(\varphi)$. But this is to say $\varphi\left(r_{1}-r_{2}\right)=0_{S}$; applying Axiom (H1) to the left-hand side results in $\varphi\left(r_{1}\right)-\varphi\left(r_{2}\right)=0_{S}$, which is equivalent to $\varphi\left(r_{1}\right)=\varphi\left(r_{2}\right)$. Therefore, $\bar{\varphi}$ is well-defined.
- Let $r+\operatorname{ker}(\varphi), s+\operatorname{ker}(\varphi) \in R / \operatorname{ker}(\varphi)$. Then, we see that

$$
\begin{aligned}
\bar{\varphi}((r+\operatorname{ker}(\varphi))+(s+\operatorname{ker}(\varphi))) & =\bar{\varphi}((r+s)+\operatorname{ker}(\varphi)) \\
& =\varphi(r+s) \\
& =\varphi(r)+\varphi(s) \\
& =\bar{\varphi}(r+\operatorname{ker}(\varphi))+\bar{\varphi}(s+\operatorname{ker}(\varphi))
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\varphi}((r+\operatorname{ker}(\varphi))(s+\operatorname{ker}(\varphi))) & =\bar{\varphi}(r s+\operatorname{ker}(\varphi)) \\
& =\varphi(r s) \\
& =\varphi(r) \varphi(s) \\
& =\bar{\varphi}(r+\operatorname{ker}(\varphi)) \bar{\varphi}(s+\operatorname{ker}(\varphi))
\end{aligned}
$$

Hence, we know that $\bar{\varphi}$ is a ring homomorphism.

- To show that $\bar{\varphi}$ is injective, we will use Lemma 3.7. Indeed, let $r+\operatorname{ker}(\varphi) \in \operatorname{ker}(\bar{\varphi})$, which means that $\bar{\varphi}(r+\operatorname{ker}(\varphi))=0_{S}$. By the definition of $\bar{\varphi}$, this is equivalent to $\varphi(r)=0_{S}$, meaning $r \in \operatorname{ker}(\varphi)$. Therefore, Lemma 2.8 tells us that $r+\operatorname{ker}(\varphi)=0_{R}+\operatorname{ker}(\varphi)=0_{R / I}$. In other words, anything in the kernel is always $0_{R / I}$, so we indeed get injectivity.
- Finally, to show that $\bar{\varphi}$ is surjective, suppose that $s \in \operatorname{im}(\varphi)$, meaning that $s=\varphi(r)$ for some $r \in R$. But by definition of $\bar{\varphi}$, this means that $s=\bar{\varphi}(r+\operatorname{ker}(\varphi))$, so we indeed get surjectivity.

Definition 3.12 Let R and S be rings. The direct product of these rings is defined as

$$
R \times S:=\{(r, s): r \in R \text { and } s \in S\}
$$

Proposition Let R and S be rings. Then, $R \times S$ is a ring with the following operations:
(i) The pointwise addition operation $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right):=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$.
(ii) The pointwise multiplication operation $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right):=\left(r_{1} r_{2}, s_{1} s_{2}\right)$.

Sketch of Proof: Simply show that each of the axioms in Definition 1.7 is satisfied.

4 Fields and Integral Domains

Definition 4.1 Let R be a ring with one. An element $a \in R$ is called a unit (or invertible) if there exists an element $b \in R$ such that $a b=1_{R}=b a$. The set of units is denoted $U(R)$.

Reminder: We call two integers $a, b \in \mathbb{Z}$ coprime (or relatively prime) if $\operatorname{gcd}(a, b)=1$.

Definition 4.2 A ring R is called a field if it satisfies the following axioms:
(F1) R is a ring with one, namely 1_{R}.
(F2) The identities are distinct, that is $1_{R} \neq 0_{R}$.
(F3) R is commutative.
(F4) Every non-zero element of R is a unit, that is $U(R)=R \backslash\left\{0_{R}\right\}$.
Henceforth, we use the blackboard font to denote arbitrary fields, in particular \mathbb{K}.
Definition 4.3 Let \mathbb{K} be a field. A subfield is a subset $\mathbb{F} \subseteq \mathbb{K}$ where the following hold:
(SF1) It contains the identities, that is $0_{\mathbb{K}}, 1_{\mathbb{K}} \in \mathbb{F}$.
(SF2) For all $r \in \mathbb{F}$, we have $-r \in \mathbb{F}$.
(SF3) For all $r, s \in \mathbb{F}$, we have $r+s \in \mathbb{F}$ and $r s \in \mathbb{F}$.
(SF4) For all $r \in \mathbb{F} \backslash\left\{0_{\mathbb{K}}\right\}$, we have $r^{-1} \in \mathbb{F}$.

Note: Much like a subring, a subfield is a field in its own right. Also, a subfield is simply a subring containing the multiplicative identity and whose non-zero elements are units.

Reminder: Let \mathbb{K} be a field. A \mathbb{K}-vector space is a set V satisfying the following axioms:
(V1) V is an Abelian group under addition.
(V2) For all $v \in V$ and $k_{1}, k_{2} \in \mathbb{K}$, we have $k_{1}\left(k_{2} v\right)=\left(k_{1} k_{2}\right) v$.
(V3) For all $v \in V$, we have $1_{\mathbb{K}} v=v$.
(V4) For all $v \in V$ and $k_{1}, k_{2} \in \mathbb{K}$, we have $\left(k_{1}+k_{2}\right) v=k_{1} v+k_{2} v$.
(V5) For all $v_{1}, v_{2} \in V$ and $k \in \mathbb{K}$, we have $k\left(v_{1}+v_{2}\right)=k v_{1}+k v_{2}$.

Theorem 4.5 Let \mathbb{K} be a field and $\mathbb{F} \subseteq \mathbb{K}$ a subfield. Then, \mathbb{K} is an \mathbb{F}-vector space with addition being the usual addition on \mathbb{K} and scalar multiplication defined by $\lambda \cdot r:=\lambda r$, where $\lambda \in \mathbb{F}$ and $r \in \mathbb{K}$ and the right-hand side is the usual multiplication in \mathbb{K}.

Sketch of Proof: Simply check the vector space axioms written above.

Definition 4.6 Let R be a ring and $r \in R$. For $n \in \mathbb{Z}$, we define the product notation

$$
n r:= \begin{cases}\overbrace{r+\cdots+r}^{n \text { copies }} & \text { if } n>0 \\ 0 & \text { if } n=0 \\ \underbrace{(-r)+\cdots+(-r)}_{n \text { copies }} & \text { if } n<0\end{cases}
$$

Note: In general, $n \notin R$ so $n r$ as defined above is not just multiplication in the ring R.

Remark In fact, the ring R is behaving analogously to a vector space where \mathbb{Z} is acting as the scalars. However, a vector space uses a field as scalars and \mathbb{Z} is not a field. What we are touching on here is a slight generalisation of the notion of a vector space over a field, that being a so-called module over a ring (more on this in MATH3195/5195M).

Lemma 4.7 Let R be a ring with $r, s \in R$ and $n, m \in \mathbb{Z}$. Then, we have the following:
(i) $m r+n r=(m+n) r$.
(ii) $(-n) r=-(n r)$.
(iii) $n(-r)=-(n r)$.
(iv) $m(r+s)=m r+m s$.
(v) $m(n r)=(m n) r$.
(vi) $(m r)(n s)=(m n) r s=(n r)(m s)$.

Proof: This is an exercise in using Definition 4.6 in conjunction with previously-seen axioms.

Definition 4.8 Let \mathbb{K} be a field. The characteristic of \mathbb{K} is the least positive integer $n \in \mathbb{Z}^{+}$ such that $n 1_{\mathbb{K}}=0_{\mathbb{K}}$ (if such n exists, otherwise we define it to be zero), denoted char(\mathbb{K}).

Lemma 4.9 Let \mathbb{K} be a field. Then, char (\mathbb{K}) is either zero or a prime number.

Proof: Assume that $\operatorname{char}(\mathbb{K})=n \neq 0$. Suppose for a contradiction that $n=a b$ where $a, b \in \mathbb{Z}^{+}$ such that $1<a, b<n$. Then, we see that

$$
0_{\mathbb{K}}=n 1_{\mathbb{K}}=(a b) 1_{\mathbb{K}}=\left(a 1_{\mathbb{K}}\right)\left(b 1_{\mathbb{K}}\right) .
$$

Since $1<a, b<n$, we must have that $a 1_{\mathbb{K}} \neq 0$ and $b 1_{\mathbb{K}} \neq 0$ (because Definition 4.8 defines the characteristic to be the least positive integer and we are assuming this to be n, so anything less than it cannot multiply $1_{\mathbb{K}}$ to get $\left.0_{\mathbb{K}}\right)$. Note that these are non-zero elements of a field, so their inverses exist. As such, multiplying the above equation on the left by $\left(a 1_{\mathbb{K}}\right)^{-1}$ tells us that $b 1_{\mathbb{K}}=0$, a contradiction. Therefore, we cannot write $n=a b$ with $1<a, b<n$ so it must be that n is prime.

Definition 4.11 Let R be a commutative ring. We call a non-zero element $r \in R \backslash\left\{0_{R}\right\}$ a non-zero zero divisor if there exists an element $s \in R \backslash\left\{0_{R}\right\}$ such that $r s=0_{R}$.

Remark Most people simply call them zero divisors, omitting the "non-zero" for brevity.
Definition 4.11 Let R be a ring. It is an integral domain (ID) if it satisfies the following:
(ID1) R is a ring with one, namely 1_{R}.
(ID2) The identities are distinct, that is $1_{R} \neq 0_{R}$.
(ID3) R is commutative.
(ID4) R has no non-zero zero divisors.

Note: We can restate Axiom (ID4) in the following alternative-yet-equivalent ways:
(i) For all $r, s \in R \backslash\left\{0_{R}\right\}$, we have $r s \neq 0_{R}$.
(ii) For all $r, s \in R$, rs $=0_{R}$ implies that $r=0_{R}$ or $s=0_{R}$.

Lemma 4.12 Every field is an integral domain.

Proof: Let \mathbb{K} be a field. Compare Definitions 4.2 and 4.11 to see Axioms (ID1), (ID2) and (ID3) hold automatically. It only remains to show the final integral domain axiom. Indeed, let $r, s \in \mathbb{K}$ and suppose that $r s=0_{\mathbb{K}}$. If $r \neq 0_{\mathbb{K}}$, then $r^{-1} \in \mathbb{K}$ exists and we can consider $r^{-1} r s=s=0_{\mathbb{K}}$, so $s=0_{\mathbb{K}}$. So, $r s=0_{\mathbb{K}}$ implies that $r=0_{\mathbb{K}}$ or $s=0_{\mathbb{K}}$, which is the alternative form of (ID4).

Definition 4.13 Let R be a ring and $f \in R[x]$ be a non-zero polynomial. Then, we write $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $n \in \mathbb{N}$ and each $a_{i} \in R$ with $a_{n} \neq 0_{R}$.
(i) The degree of f is the integer n, denoted $\operatorname{deg}(f)$.
(ii) The leading term of f is the term $a_{n} x^{n}$.
(iii) The leading coefficient of f is the element a_{n}.

Proposition 4.14 Let R be an integral domain. Then, $R[x]$ is also an integral domain.

Proof: We just need to show the integral domain axioms.

- $R[x]$ is a ring with one where $1_{R[x]}=1_{R}$, regarded as a constant polynomial.
- Because R is an integral domain, $1_{R[x]}=1_{R} \neq 0_{R}=0_{R[x]}$.
- Because R is commutative, so too is $R[x]$.
- Let $f, g \in \mathbb{R}[x] \backslash\left\{0_{R[x]}\right\}$ where $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ where $a_{n}, b_{m} \neq 0_{R}$. Then, their product is $f g=a_{n} b_{m} x^{n} x^{m}+\cdots=a_{n} b_{m} x^{n+m}+\cdots$. Since R is an integral domain, we know that $a_{n} b_{m} \neq 0$, which means that $f g \neq 0$.

Remark 4.15 We have actually also shown $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for $f, g \in R[x] \backslash\left\{0_{R[x]}\right\}$.

5 Classes of Integral Domains

Theorem 5.1 (Division Algorithm for \mathbb{Z}) For every $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ such that $0 \leq r<|b|$ and $a=q b+r$.

Proof: Omitted.

Theorem 5.2 Every ideal of \mathbb{Z} is principal, that is generated by a single element.

Proof: Let $I \subseteq \mathbb{Z}$ be an ideal. If $I=\{0\}$, we are done since $\{0\}=(0)$, so we henceforth assume that $I \neq\{0\}$ is a non-zero ideal. By Axiom (I2), we know that I contains positive elements (since both $\pm x \in I$ for any $x \in I$). As such, let $a \in I$ be the smallest positive element and take some $x \in I$. By the Division Algorithm for \mathbb{Z}, we can write $x=q a+r$ for $q, r \in \mathbb{Z}$ and $0 \leq r<|a|=a$. By Axiom (I4), the absorbing property, we know that $q a \in I$. Therefore, since ideals are closed under addition and negation, $r=x-q a \in I$. Now, $r>0$ contradicts the minimality of a, so we must have that $r=0$. In other words, $x=q a \in(a)$. This shows the inclusion $I \subseteq(a)$. Conversely, we assumed that $a \in I$ so we immediately have $(a) \subseteq I$ from Lemma 2.4. Consequently, $I=(a)$.

Definition 5.3 A principal ideal domain (PID) is an integral domain in which every ideal is principal. In other words, for each ideal, there exists a single element generating it.

Lemma 5.4 Every field is a principal ideal domain.

Proof: Let \mathbb{K} be a field. Per Lemma 4.12, we know that \mathbb{K} is an integral domain. Suppose that $I \subseteq \mathbb{K}$ is an ideal. If it is zero, it is principal, so assume $I \neq\left\{0_{\mathbb{K}}\right\}$. Thus, it contains a non-zero element $a \in I$. But if $x \in \mathbb{K}$, we can write $x=\left(x a^{-1}\right) a \in I$ by Axiom (I4). Thus, $I=\mathbb{K}$, so we can write $I=\left(1_{\mathbb{K}}\right)$.

Note: The proof of Lemma 5.4 shows the only ideals of a field \mathbb{K} are $\left\{0_{\mathbb{K}}\right\}$ and \mathbb{K} itself.

Definition 5.5 A Euclidean domain is an integral domain R with a map $V: R \backslash\left\{0_{R}\right\} \rightarrow \mathbb{N}$ called the valuation satisfying the following axioms:
(ED1) For all $a, b \in R \backslash\left\{0_{R}\right\}$, we have $V(a) \leq V(a b)$.
(ED2) For every $a, b \in R$ with $b \neq 0_{R}$, there exist $q, r \in R$ such that $a=q b+r$ and one of the following occurs: (i) $r=0_{R}$ or (ii) $r \neq 0_{R}$ and $V(r)<V(b)$.

Remark 5.6 Comparing Definition 5.5 to the Division Algorithm for \mathbb{Z}, notice (ED2) is almost the same except we don't insist that $q, r \in R$ are unique which we did do for \mathbb{Z}. Furthermore, we see that the valuation isn't defined on 0_{R}.

Note: It is enough to have (ED2) only. Indeed, if R is an integral domain with a valuation \mathcal{V} satisfying only (ED2), we can define a new valuation V which satisfies (ED1) and (ED2):

$$
V: R \backslash\left\{0_{R}\right\} \rightarrow \mathbb{N}, \quad V(a)=\min \left\{\mathcal{V}(r a): r \in R \backslash\left\{0_{R}\right\}\right\} .
$$

In words, $V(a)$ is the minimum value attained by \mathcal{V} on non-zero elements of the ideal (a).

Lemma Every field is a Euclidean domain.

Proof: Let \mathbb{K} be a field. Per Lemma 4.12, we know that \mathbb{K} is an integral domain; it remains to define a valuation map. Indeed, let $V: \mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\} \rightarrow \mathbb{N}$ be given by $V(a)=1$, that is it always outputs the integer one. The fact that Axiom (ED1) holds is trivial. Next, let $a, b \in \mathbb{K}$ with $b \neq 0_{\mathbb{K}}$. Then, we can always write $a=a b^{-1} b+0_{\mathbb{K}}$, that is $q:=a b^{-1}$ and $r=0_{\mathbb{K}}$. This shows that Axiom (ED2) is satisfied.

Theorem 5.8 Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with valuation map V and let $I \subseteq R$ be an ideal. Again, I being the zero ideal is nothing special because we know it is generated by 0_{R} and we are done; assume therefore that $I \neq\left\{0_{R}\right\}$. As such, we can choose a non-zero element $a \in I \backslash\left\{0_{R}\right\}$ for which $V(a)$ is minimal. The goal is to establish $I=(a)$ by showing each inclusion.

- If $x \in(a)$, then $x=r a$ for some $r \in R$. By Axiom (I4), since a is an element of the ideal, absorption means that $x \in I$. This shows that $(a) \subseteq I$.
- If $x \in I$, then we can write $x=q a+r$ where either (i) $r=0$ or (ii) $r \neq 0$ but $V(r)<V(a)$ by Axiom (ED2). But if (ii) is true, then $r=x-q a \in I$ but this contradicts the minimality of $V(a)$. The only situation that can occur is (i), so $x=q a$ and thus $x \in(a)$. This shows that $I \subseteq(a)$.

Remark 5.9 The converse of Theorem 5.8 is not true; there exist principal ideal domains that are not Euclidean domains, e.g. the (sub)ring $\{a+b \sqrt{-19}: a, b \in \mathbb{Z}$ with $a \equiv b(\bmod 2)\} \subseteq \mathbb{C}$.

Proposition 5.10 (Division Algorithm for $\mathbb{K}[x])$ Let \mathbb{K} be a field. For every $f, g \in \mathbb{K}[x]$ with $g \neq 0$, there exist unique $q, r \in \mathbb{K}[x]$ such that $f=q g+r$ and either (i) $r=0$ or (ii) $r \neq 0$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Proof: Omitted.

Corollary 5.12 For \mathbb{K} a field, $\mathbb{K}[x]$ is a Euclidean domain, and a principal ideal domain.

Proof: Combining Lemma 4.12 and Proposition $4.14, \mathbb{K}[x]$ is an integral domain. It remains to exhibit a valuation map satisfying the axioms in Definition 5.5. Indeed, let $V: \mathbb{K}[x] \backslash\left\{0_{\mathbb{K}[x]}\right\} \rightarrow \mathbb{N}$ be given by $V(f)=\operatorname{deg}(f)$. If $f, g \in \mathbb{K}[x] \backslash\left\{0_{\mathbb{K}[x]}\right\}$, then $V(f g)=\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ by Remark 4.15. Because $\operatorname{deg}(g) \geq 0$, this tells us that $V(f) \leq V(f g)$, so Axiom (ED1) is satisfied. Finally, Axiom (ED2) is an immediate consequence of the Division Algorithm for $\mathbb{K}[x]$.

Reminder: The Gaussian integers is the ring $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$, a subring of \mathbb{C}.

Lemma 5.13 The ring $\mathbb{Z}[i]$ is an integral domain.

Proof: As usual, it suffices to show each of the axioms in Definition 4.11.

- It is certainly a ring with multiplicative identity $1_{\mathbb{Z}[i]}=1_{\mathbb{C}}=1$.
- Clearly, $1_{\mathbb{Z}[i]}=1 \neq 0=0_{\mathbb{Z}[i]}$.
- Because \mathbb{C} is commutative, so too is $\mathbb{Z}[i]$.
- Let $a, b \in \mathbb{Z}[i]$ with $a b=0$. If $a \neq 0$, then $b=a^{-1} a b=a^{-1} 0=0$; either $a=0$ or $b=0$.

Definition 5.14 The norm on $\mathbb{Z}[i]$ is $N: \mathbb{Z}[i] \backslash\{0\} \rightarrow \mathbb{N}$ with $N(a+b i)=|a+b i|^{2}=a^{2}+b^{2}$.

Proposition 5.15 The ring $\mathbb{Z}[i]$ is a Euclidean domain, and a principal ideal domain.

Proof: We know from Lemma 5.13 that $\mathbb{Z}[i]$ is an integral domain. It remains to show that there exists a valuation satisfying the relevant axioms. Indeed, we claim that the norm N is such a map. We first notice that $N(x) \geq 1$ for all $x \in \mathbb{Z}[i] \backslash\{0\}$, from which it follows that $N(x y)=|x y|^{2}=|x|^{2}|y|^{2} \geq|x|^{2}=N(a)$, so Axiom (ED1) is satisfied.

As for Axiom (ED2), consider $x, y \in \mathbb{Z}[i]$ with $y \neq 0$ and write them as $x=s+t i$ and $y=u+v i$ for $s, t, u, v \in \mathbb{Z}$. We can form the quotient $\frac{a}{b}=l+m i \in \mathbb{C}$ where $l, m \in \mathbb{R}$. However, for (ED2) to be satisfied, we want to use this $l+m i$ to define some $L+M i$ where now $L, M \in \mathbb{Z}$. Indeed, let $L, M \in \mathbb{Z}$ be such that $|l-L| \leq \frac{1}{2}$ and $|m-M| \leq \frac{1}{2}$. Then, we can write

$$
\frac{a}{b}=L+M i+(l-L)+(m-M) i \quad \Rightarrow \quad a=(L+M i) b+((l-L)+(m-M) i) b
$$

Because $a-(L+M i) b \in \mathbb{Z}[i]$, the term $((l-L)+(m-M) i) b \in \mathbb{Z}[i]$ also. If this is zero, we are done. Hence, assume $((l-L)+(m-M) i) b \neq 0$, in particular $(l-L)+(m-M) i \neq 0$ since we already assume $b \neq 0$. Thus, we use the Triangle Inequality to see that the norm satisfies

$$
N(((l-L)+(m-M) i) b)=|(l-L)+(m-M) i|^{2}|b|^{2} \leq\left(\frac{1}{4}+\frac{1}{4}\right)|b|^{2}=\frac{1}{2} N(b)<N(b)
$$

For $q=L+M i$ and $r=((l-L)+(m-M) i) b$, we conclude that Axiom (ED2) is satisfied.

6 Elements in Integral Domains

Definition 6.1 Let R be an integral domain and $a, b \in R$. We say that a divides b (or a is a divisor of b) if there exists $d \in R$ with $d a=b$; we write $a \mid b$. Otherwise, we write $a \nmid b$.

Definition 6.3 Let R be an integral domain and $a, b \in R$. Then, b is an associate of a if there exists a unit $u \in U(R)$ such that $u a=b$.

Note: The notion of being associate is symmetric: if b is an associate of a, then $u a=b$ for some $u \in U(R)$. But because $u^{-1} \in U(R)$ automatically, we can also write that $u^{-1} b=a$, so a is an associate of b. Consequently, we may just say that they are associates in R.

Remark Recall that units are invertible elements (Definition 4.1) and that a field is a commutative ring where every non-zero element is invertible (Definition 4.2). Therefore, for \mathbb{K} a field, we have $U(\mathbb{K})=\mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$ - this is Axiom (F4) - and thus all non-zero elements are associates.

Lemma 6.5 Let R be an integral domain and $a, b \in R$. Then, a and b are associates in R if and only if both $a \mid b$ and $b \mid a$.

Proof: (\Rightarrow) Let a and b be associates. Then, $u a=b$ for some $u \in U(R)$, which is precisely to say that $a \mid b$. But we can equally write $u^{-1} b=a$, which is precisely to say that $b \mid a$.
(\Leftarrow) Suppose $a \mid b$ and $b \mid a$. Per Definition 6.1, this means there exist $d, e \in R$ such that $d a=b$ and $e b=a$. Therefore, we can substitute the first into the second to get $a=e b=e d a$, which is equivalent to $\left(1_{R}-e d\right) a=0$. Because R is an integral domain, there are no non-zero zero divisors, so either $a=0$ or $1_{R}-e d=0$.

- If $a=0$, then $b=0$ and they are trivially associates.
- If $1_{R}-e d=0$, then $1_{R}=e d=d e$, so $d, e \in U(R)$ because they are inverse to each other. Therefore, a and b are associates once again.

Proposition 6.7 Let R be an integral domain and $a, b \in R$. Then, a and b are associates in R if and only if $(a)=(b)$.

Proof: (\Rightarrow) Let a and b be associates. Then, $u a=b$ and $v b=a$ for some $u, v \in U(R)$. We now show both inclusions of the ideals each of the associate elements generate.

- If $x \in(a)$, then $a=r a=r v b$ for some $r \in R$, so $x \in(b)$. Consequently, $(a) \subseteq(b)$.
- If $y \in(b)$, then $y=s b=s u a$ for some $s \in R$, so $y \in(a)$. Consequently, $(b) \subseteq(a)$.
(\Leftarrow) Suppose $(a)=(b)$. Clearly, $a=1_{R} a \in(a)$ which means $a \in(b)$, that is $a=r b$ for some $r \in R$. This is to say that $b \mid a$. Similarly, $b=1_{R} b \in(b)$ which means $b \in(a)$, that is $b=s a$ for some $s \in R$. This is to say that $a \mid b$. By Lemma 6.5, we know that a and b are associates.

Definition 6.9 Let R be an integral domain and $a, b \in R$ not both zero. Then, an element $d \in R$ is a greatest common divisor (GCD) of a and b, denoted $d=\operatorname{gcd}(a, b)$, if these hold:
(i) Both $d \mid a$ and $d \mid b$.
(ii) If $c \in R$ such that $c \mid a$ and $c \mid b$, then $c \mid d$.

Note: A greatest common divisor is not unique, but any two are related; see Lemma 6.12.
Remark 6.11 Let R be an integral domain with $a \in R \backslash\left\{0_{R}\right\}$. Then, $\operatorname{gcd}(a, 0)=\operatorname{gcd}(0, a)=a$.
Lemma 6.12 Let R be an integral domain and $a, b \in R$ not both zero. If d_{1} and d_{2} are greatest common divisors of a and b, then d_{1} and d_{2} are associates.

Proof: By Definition 6.9(i), we know that $d_{1} \mid a$ and $d_{2} \mid b$. But using the fact that d_{2} is also a greatest common divisor (in particular that it divides both a and b), Definition 6.9(ii) tells us that $d_{1} \mid d_{2}$. However, we can exchange the roles of d_{1} and d_{2} above and run the same logic to conclude that $d_{2} \mid d_{1}$. Therefore, Lemma 6.5 tells us that d_{1} and d_{2} are associates.

Remark 6.13 Let R be an integral domain and $a, b \in R$ not both zero. If d is a greatest common divisor of a and b, then so too is any associate of d. Indeed, let $d=\operatorname{gcd}(a, b)$ have an associate $\delta=u d$ for some $u \in U(R)$. We now show that Definition 6.9 is satisfied by the element δ.
(i) Because $d \mid a$ and $d \mid b$, we see that $a=r d$ and $b=s d$ for some $r, s \in R$. But using the fact that $d=u^{-1} \delta$, this tells us $a=r u^{-1} \delta$ and $b=s u^{-1} \delta$; we therefore have $\delta \mid a$ and $\delta \mid b$.
(ii) Let $c \in R$ such that $c \mid a$ and $c \mid b$. As d is a greatest common divisor, $c \mid d$ which means $d=t c$ for some $t \in R$. Again, this tells us $u^{-1} \delta=t c \Leftrightarrow \delta=u t c$; we therefore have $c \mid \delta$.

Reminder: The Euclidean Algorithm in \mathbb{Z} is a method for computing a greatest common divisor of two integers. Indeed, let $a, b \in \mathbb{Z}$ with $b \neq 0$. We proceed as follows for $q_{i}, r_{i} \in \mathbb{Z}$:

$$
\begin{aligned}
a & =q_{1} b+r_{1}, & & \text { for } 0 \leq r_{1}<\left|b_{1}\right|, \\
b & =q_{2} r_{1}+r_{2}, & & \text { for } 0 \leq r_{2}<r_{1}, \\
r_{1} & =q_{3} r_{2}+r_{3}, & & \text { for } 0 \leq r_{3}<r_{2}, \\
& \vdots & & \\
r_{k-3} & =q_{k-1} r_{k-2}+r_{k-1}, & & \text { for } 0 \leq r_{k-1}<r_{k-2}, \\
r_{k-2} & =q_{k} r_{k-1}+0 . & &
\end{aligned}
$$

The algorithm terminates when $r_{k}=0$ for some $k \in \mathbb{Z}^{+}$and we obtain $\operatorname{gcd}(a, b)=r_{k-1}$.

Note: In general, the greatest common divisor does not exist in integral domains (that is, being an ID isn't sufficient to guarantee GCDs are well-defined). An example is $\mathbb{Z}[\sqrt{-3}]$; this is an integral domain but $2+2 \sqrt{-3}$ and 4 do not have a greatest common divisor.

Theorem 6.16 Let R be a principal ideal domain and $a, b \in R$ not both zero. Then, a and b have a greatest common divisor d. Moreover, there exist $s, t \in R$ such that $s a+t b=d$.

Proof: Let $I:=\{u a+v b: u, v \in R\}$; this is an ideal of R (one can prove this by showing the usual axioms are satisfied). Because R is a principal ideal domain, there exists an element that generates this ideal, say $d \in R$ where $I=(d)$. In particular, we have $d \in I$ so there exist $s, t \in R$ with $d=s a+t b$. It remains to show that d is a greatest common divisor of a and b.
(i) Because $a, b \in I=(d)$, we have $a=x d$ and $b=y d$ for $x, y \in R$; this says $d \mid a$ and $d \mid b$.
(ii) Let $c \in R$ such that $c \mid a$ and $c \mid b$. This means that $a=m c$ and $b=n c$ for some $m, n \in R$. Substituting, we see that $d=s a+t b=s m c+t n c=(s m+t n) c$ so $c \mid d$.

Note: Writing a greatest common divisor in the form $s a+t b$ is called Bézout's Lemma.

Remark 6.17 Recall that any Euclidean domain is automatically a principal ideal domain by Theorem 5.8. Hence, Theorem 6.16 implies that Euclidean domains also have greatest common divisors. In fact, we can use a corresponding Euclidean Algorithm to compute greatest common divisors (it will be a slight adaptation of the Euclidean Algorithm for \mathbb{Z} in the previous reminder).

Definition 6.19 Let R be an integral domain and $a, b \in R$ not both zero. We say that a and b are coprime (or relatively prime) if $\operatorname{gcd}(a, b)=1_{R}$.

Note: In the case of coprime elements, the greatest common divisors are precisely $U(R)$; this is a consequence of Lemma 6.12 and Remark 6.13. In particular, if a and b do not have a greatest common divisor, then they are not coprime with each other.

Remark 6.18 Recall that the Fibonacci numbers are the sequence defined by $F_{0}=F_{1}=1$ and

$$
F_{n}=F_{n-1}+F_{n-2}
$$

If we apply the Euclidean Algorithm to consecutive Fibonacci numbers, we should see that they are coprime. Indeed, let F_{n+1} and F_{n+2} be two consecutive Fibonacci numbers. Then, we have

$$
\begin{aligned}
F_{n+2} & =1 F_{n+1}+F_{n} \\
F_{n+1} & =1 F_{n}+F_{n-1} \\
F_{n} & =1 F_{n-1}+F_{n-2} \\
& \vdots \\
F_{4} & =1 F_{3}+F_{2} \\
F_{3} & =2 F_{2}+0
\end{aligned}
$$

The algorithm terminates and we can read from it that $\operatorname{gcd}\left(F_{n+1}, F_{n+2}\right)=F_{2}=1$.

7 Prime and Irreducible Elements

Reminder: An integer $p \in \mathbb{Z}$ is prime if it has two distinct positive divisors, namely 1 and p itself (the fact that we declare these to be distinct excludes calling the number 1 a prime number, which is the normal thing to do). An important property of a prime p is this:

$$
p \mid a b \text { implies that } p \mid a \text { or } p \mid b .
$$

Definition 7.1 Let R be an integral domain and $a \in R$.
(a) We call $a \in R$ prime if these hold:
(i) Both $a \neq 0_{R}$ and $a \notin U(R)$.
(ii) For all $b, c \in R$, we have $a \mid b c$ implies either $a \mid b$ or $a \mid c$.
(b) We call $a \in R$ irreducible if these hold:
(i) Both $a \neq 0_{R}$ and $a \notin U(R)$.
(ii) If $a=b c$ for some $b, c \in R$, then $b \in U(R)$ or $c \in U(R)$.

Note: Any associate of a prime/irreducible element is itself a prime/irreducible element.

Proposition 7.3 Let R be an integral domain. Then, any prime element is irreducible.

Proof: Let $a \in R$ be prime. By Definition 7.1(a)(i), we know that $a \neq 0_{R}$ and that a is not a unit. This automatically satisfies Definition 7.1(b)(i), so it remains to show Definition 7.1(b)(ii). Indeed, let $a=b c$ for some $b, c \in R$. This clearly tells us that $a \mid b c$. By Definition 7.1(a)(ii), we know therefore that either $a \mid b$ or $a \mid c$.

- If $a \mid b$, then $b=d a$ for some $d \in R$. Therefore, $a=b c=d a c=a d c$, the last equality coming from Axiom (ID3) which says R is commutative. We can re-write this equation as $a\left(1_{R}-d c\right)=0_{R}$. We already know that $a \neq 0_{R}$, so it must follow that $1_{R}-d c=0_{R}$ because Axiom (ID4) tells us R has no non-zero zero divisors. But this equation is the same as $d c=1_{R}$ so c is a unit.
- If $a \mid c$, a near-identical argument works to imply that b is a unit.

Note: The converse is not true in general, but it is in some broad cases; see Theorem 7.4.

Theorem 7.4 Let R be a principal ideal domain. Then, any irreducible element is prime.

Proof: Let $a \in R$ be irreducible. By Definition 7.1(b)(i), we know that $a \neq 0_{R}$ and that a is not a unit. This automatically satisfies Definition 7.1(a)(i), so it remains to show Definition 7.1(a)(ii). Indeed, let $a \mid b c$ for some $b, c \in R$. Per Theorem 6.16, there exists a greatest common
divisor, d say, of a and b. We know therefore that $d \mid a$ and $d \mid b$. In particular, $a=e d$ for some $e \in R$. By Definition 7.1(b)(ii), we know e is a unit or d is a unit.

- If e is a unit, then $e^{-1} a=d$ which tells us that $a \mid d$. But because $d \mid b$, transitivity of division implies $a \mid b$.
- If d is a unit, then d is associate to 1_{R}. Consequently, Remark 6.13 implies $\operatorname{gcd}(a, b)=1_{R}$. We can use a result from Question Sheet 4 to conclude straight away that $a \mid c$.

Corollary 7.5 Let R be a principal ideal domain. Then, primes and irreducibles coincide.

Proof: This is a direct application of Proposition 7.3 and Theorem 7.4.
The goal is that we want to write any element as a product of irreducibles; this mimics how any integer can be written as a product of prime numbers. The idea is that any $r \in R$ is either irreducible (so we are done) or it is not, and we can factorise it; we then repeat this with the factors until the process terminates. Said process does terminate if R is a PID, but also if it is another class of rings that we next introduce.

Definition 7.7 Let R be an integral domain. It is a unique factorisation domain (UFD) if it satisfies the following, where $a \in R \backslash\left\{0_{R}\right\}$ is not a unit:
(UFD1) We can write $a=p_{1} \cdots p_{n}$ where each $p_{i} \in R$ is irreducible.
(UFD2) If $a=p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$ where the $p_{i}, q_{j} \in R$ are irreducible, then $n=m$ and p_{i} is associate with q_{i} (after reordering if necessary).

Theorem 7.8 Every principal ideal domain is a unique factorisation domain.

Proof: Omitted.

Note: The converse to Theorem 7.8 is not true, e.g. the ring $\mathbb{Q}[x, y]$ of polynomials in two indeterminates with rational coefficients is a unique factorisation domain but is not a principal ideal domain since the ideal (x, y) cannot be generated by a single element.

Corollary Every Euclidean domain is a unique factorisation domain.

Proof: This is an immediate consequence of the fact that every Euclidean domain is a principal ideal domain (Theorem 5.8) in conjunction with Theorem 7.8.

Definition 7.10 Let $d \in \mathbb{Z}$. The ring of square root-adjoined integers is a ring on the set $\mathbb{Z}[\sqrt{d}]:=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$, where \sqrt{d} is as usual for $d \geq 0$ and $\sqrt{d}=i \sqrt{-d}$ for $d<0$.

Lemma 7.11 For $d \in \mathbb{Z}$, the ring $\mathbb{Z}[\sqrt{d}]$ is an integral domain.

Sketch of Proof: One can show $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{C}$ is a subring in a similar way as for the Gaussian integers in Question Sheet 1. Showing the integral domain axioms is similar to Lemma 5.13.

Definition 7.12 A non-zero $d \in \mathbb{Z} \backslash\{0\}$ is called square-free if it has no repeated prime factors, that is $a^{2} \mid d$ for some $a \in \mathbb{Z}$ implies that $a^{2}=1$.

Lemma 7.13 If $d \in \mathbb{Z} \backslash\{0,1\}$ is square-free, then the square root $\sqrt{d} \notin \mathbb{Q}$.

Proof: If $d<0$, then $\sqrt{d}=i \sqrt{-d} \notin \mathbb{Q}$ because it isn't even in the real numbers. It remains to consider $d>1$. Assume to the contrary that $\sqrt{d} \in \mathbb{Q}$, so there exist integers $a, b \in \mathbb{Z}$ with $b \neq 0$ such that $\sqrt{d}=a / b$. Without loss of generality, suppose $\operatorname{gcd}(a, b)=1$. This equation implies that $a^{2}=d b^{2}$. If p is a prime factor of a, then $p^{2} \mid a^{2}$, which implies that $p^{2} \mid d b^{2}$. Because $\operatorname{gcd}(p, b)=1$, it follows that $\operatorname{gcd}\left(p^{2}, b^{2}\right)=1$ also. Therefore, $p^{2} \mid d$ by a result from Question Sheet 4, but this contradicts the fact that d is square-free. Therefore, p is not a prime factor of a, so $a= \pm 1$. However, because $d \mid a$, this means that $d= \pm 1$, which is again a contradiction.

Corollary 7.14 If $d \in \mathbb{Z} \backslash\{0,1\}$ is square-free, then $a+b \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is zero if and only if $a=b=0$.

Proof: If $a=b=0, a+b \sqrt{d}=0$. Conversely, let $a+b \sqrt{d}=0$. If $b \neq 0$, then $\sqrt{d}=-a / b \in \mathbb{Q}$, contradicting Lemma 7.13. Hence, $b=0$ and $a=0$ follows immediately.

Definition 7.15 Let $d \in \mathbb{Z} \backslash\{0,1\}$. The norm on $\mathbb{Z}[\sqrt{d}]$ is the map $N: \mathbb{Z}[\sqrt{d}] \rightarrow \mathbb{N}$ where

$$
N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right| .
$$

Note: In other words, then above norm N is such that $a+b \sqrt{d} \mapsto|(a+b \sqrt{d})(a-b \sqrt{d})|$.

Lemma The norm N in Definition 7.15 is well-defined.

Proof: Suppose that $a+b \sqrt{d}=s+t \sqrt{d}$. Then, we see that $(a-s)+(b-t) \sqrt{d}=0$. By Corollary 7.14, this is true if and only if $a-s=0$ and $b-t=0$; this means that $a=s$ and $b=t$. In particular, $N(a+b \sqrt{d})=N(s+t \sqrt{d})$ which is to say that N is well-defined.

Lemma 7.16 Let $d \in \mathbb{Z} \backslash\{0,1\}$ be square-free. The norm satisfies the following:
(i) For $x, y \in \mathbb{Z}[\sqrt{d}] \backslash\{0\}$, we have $N(x y)=N(x) N(y)$.
(ii) For $x \in \mathbb{Z}[\sqrt{d}], x$ is a unit if and only if $N(x)=1$.

Proof: (i) Let $x=a+b \sqrt{d}$ and $y=s+t \sqrt{d}$ be non-zero where $a, b, s, t \in \mathbb{Z}$. Then,

$$
\begin{aligned}
N(x y) & =N((a+b \sqrt{d})(s+t \sqrt{d})) \\
& =N(a s+b t d+(a t+b s) \sqrt{d}) \\
& =\left|(a s+b t d)^{2}-d(a t+b s)^{2}\right| \\
& =\left|a^{2} s^{2}+2 a s b t d+b^{2} t^{2} d^{2}-d a^{2} t^{2}-2 a s b t d-d b^{2} s^{2}\right| \\
& =\left|a^{2} s^{2}+b^{2} t^{2} d^{2}-d a^{2} t^{2}-d b^{2} s^{2}\right| \\
& =\left|\left(a^{2}-d b^{2}\right)\left(s^{2}-d t^{2}\right)\right| \\
& =N(x) N(y) .
\end{aligned}
$$

(ii) Let $x \in \mathbb{Z}[\sqrt{d}]$ be a unit. Then, there exists $y \in \mathbb{Z}[\sqrt{d}]$ such that $x y=y x=1$. Clearly we have that $x \neq 0$ and $y \neq 0$. Thus, we conclude from (i) above that $1=N(x y)=N(x) N(y)$. Because $N(x)$ and $N(y)$ are non-negative integers, it must be that $N(x)=1$ and $N(y)=1$. Conversely, suppose that $x=a+b \sqrt{d} \neq 0$ and that $N(x)=1$. This means that

$$
(a+b \sqrt{d})(a-b \sqrt{d})=a^{2}-d b^{2}= \pm 1,
$$

from which we conclude that either $a-b \sqrt{d}$ or $-(a-b \sqrt{d})$ is an inverse for $x=a+b \sqrt{d}$. This is equivalent to saying that $x \in U(\mathbb{Z}[\sqrt{d}])$.

Lemma 7.18 Let $d \in \mathbb{Z} \backslash\{0,1\}$ be square-free and $x \in \mathbb{Z}[\sqrt{d}] \backslash\{0\}$ such that $N(x)$ is prime. Then, x is an irreducible element of $\mathbb{Z}[\sqrt{d}]$.

Proof: We know that $x \neq 0$ and since $N(x) \neq 1$, we know that x is not a unit via Lemma 7.16(ii). Suppose $x=y z$ where $y, z \in \mathbb{Z}[\sqrt{d}]$. Taking norms tells us that $N(x)=N(y z)=N(y) N(z)$. However, we are assuming that $N(x)$ is prime so one of $N(y)=1$ and $N(z)=1$ is true. Thus, either y is a unit or z is a unit. Hence, the irreducibility conditions are satisfied.

Theorem 7.21 Let R be a principal ideal domain and $p \in R$ be irreducible. Then, the quotient ring $R /(p)$ is a field.

Proof: This amounts to showing the field axioms from Definition 4.2.

- Because R is a principal ideal domain, it has a one; Theorem 2.13 tells us that the quotient ring also has a one, namely $1_{R /(p)}=1_{R}+(p)$.
- If $1_{R /(p)}=0_{R /(p)}$, then we would have $1_{R}+(p)=0_{R}+(p)$, which implies that $1_{R} \in(p)$ by Lemma 2.8. Hence, $1_{R}=r p$ for some $r \in R$, so p is a unit; this is a contradiction. Therefore, we must have $1_{R /(p)} \neq 0_{R /(p)}$.
- Because R is commutative, so too is $R /(p)$.
- Let $r \in R$ and suppose that $r+(p) \neq 0_{R /(p)}$. The aim is to show that this is a unit. Well, Lemma 2.8 again applies to reveal that $r \notin(p)$. Since $r \neq 0_{R}$, it follows from Theorem 6.16 that $d:=\operatorname{gcd}(r, p)$ exists. In particular, $d \mid p$ which means $p=c d$ for some $c \in R$. Because p is assumed irreducible, it must be that c is a unit or d is a unit. Note that c being a unit means $c^{-1} p=d$, so $p \mid d$. But because $d \mid r$, transitivity implies that $p \mid r$, which contradicts $r \notin(p)$. Thus, c is not a unit but d is a unit. By Theorem 6.16, specifically Bézout's Lemma, we can find $s, t \in R$ such that $d=s r+t p$. This implies that $1_{R}=d^{-1} s r+d^{-1} t p$. Consequently, $1-d^{-1} s r \in(p)$ and we again use Lemma 2.8 to conclude that $1_{R}+(p)=d^{-1} s r+(p)$; this final equation can be re-written as $1_{R /(p)}=\left(d^{-1} s+(p)\right)(r+(p))$ using coset multiplication. But this tells us that $r+(p)$ has an inverse, so it is a unit.

Note: We have this chain of class inclusions for the different types of rings we encountered:

fields.

8 Irreducible Polynomials

Definition Let R be a ring. We call $f \in R[x]$ a constant polynomial if $\operatorname{deg}(f)=0$.

Lemma 8.1 Let R be an integral domain. Then, $U(R[x])=U(R)$.

Proof: We show both inclusions. Indeed, if $f \in U(R)$, then we regard it as a constant polynomial (a polynomial of degree zero). Because f is a unit of R, there exists an inverse $g \in R$ which is also a constant polynomial. Therefore, $f \in U(R[x])$; this shows $U(R) \subseteq U(R[x])$. Conversely, if $f \in U(R[x])$, then there exists $g \in R[x]$ such that $f g=1_{R[x]}=1_{R}$ (regarded as the constant polynomial). In particular, we know that f and g are non-zero. Remark 4.15 readily implies that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}\left(1_{R}\right)=0$. Because the degree is non-negative, it must be that $\operatorname{deg}(f)=\operatorname{deg}(g)=0$, so they are both constant polynomials. In particular, $f \in U(R)$; this shows $U(R[x]) \subseteq U(R)$.

Note: If R is not an integral domain, Lemma 8.1 can fail, e.g. $U\left(\mathbb{Z}_{4}\right) \not \supset 1+2 x \in U\left(\mathbb{Z}_{4}[x]\right)$.

Lemma 8.3 An element $f \in \mathbb{Z}[x] \backslash\{0\}$ is irreducible in $\mathbb{Z}[x]$ if and only if
(i) $f \neq \pm 1$; and
(ii) $f=g h$ where $g, h \in \mathbb{Z} \backslash\{0\}$ implies that $g= \pm 1$ or $h= \pm 1$.

Proof: Clear from Definition $7.1(\mathrm{~b})$ and Lemma 8.1, which says $U(\mathbb{Z}[x])=U(\mathbb{Z})=\{ \pm 1\}$.

Lemma 8.4 For \mathbb{K} a field, an element $f \in \mathbb{K}[x] \backslash\left\{0_{\mathbb{K}}\right\}$ is irreducible in $\mathbb{K}[x]$ if and only if
(i) f is not a constant polynomial; and
(ii) $f=g h$ where $g, h \in \mathbb{K}[x] \backslash\left\{0_{\mathbb{K}}\right\}$ implies that $g \in \mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$ or $h \in \mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$.

Proof: Clear from Definition $7.1(\mathrm{~b})$ and Lemma 8.1, which says $U(\mathbb{K}[x])=U(\mathbb{K})=\mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$.

Note: Condition (ii) in Lemma 8.4 can be altered to the following similar statement:
(ii) $f=g h$ where $g, h \in \mathbb{K}[x] \backslash\left\{0_{\mathbb{K}}\right\}$ implies that $g \in \mathbb{K}$ or $h \in \mathbb{K}$.

This is because we assume that f is non-zero, so automatically g and h must be non-zero.

Lemma 8.5 Let \mathbb{K} be a field. Any degree one polynomial in $\mathbb{K}[x]$ is irreducible.

Proof: Let $f \in \mathbb{K}[x]$ have degree one; so f is non-constant. Assume $f=g h$ for some non-zero $g, h \in \mathbb{K}[x]$. Then, Remark 4.15 tells us $\operatorname{deg}(g)+\operatorname{deg}(h)=\operatorname{deg}(f)=1$. Hence, either $\operatorname{deg}(g)=0$ or $\operatorname{deg}(h)=0$, which is to say $g \in \mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$ or $h \in \mathbb{K} \backslash\left\{0_{\mathbb{K}}\right\}$; this demonstrates irreducibility.

Note: Recall Corollary 5.12 says $\mathbb{K}[x]$ is a principal ideal domain, so Theorem 7.8 implies any non-constant polynomial in $\mathbb{K}[x]$ can be uniquely written as a product of irreducible polynomials, up to reordering and multiplication by non-zero scalars (i.e. the units).

Reminder: A root of a polynomial $f \in \mathbb{K}[x]$ is an element $a \in \mathbb{K}$ such that $f(a)=0$.

Lemma 8.6 Let \mathbb{K} be a field and $f \in \mathbb{K}[x]$. Then, $a \in \mathbb{K}$ is a root if and only if $(x-a) \mid f$.

Proof: (\Rightarrow) Assume $f(a)=0$, i.e. a is a root of f. Then, the Division Algorithm for $\mathbb{K}[x]$ (Proposition 5.10) allows us to write $f=q(x-a)+r$, where (i) $r=0_{\mathbb{K}}$ or (ii) $\operatorname{deg}(r)<\operatorname{deg}(x-a)$, but $\operatorname{deg}(x-a)=1$ so this forces $\operatorname{deg}(r)=0$. Either way, we see that r is a constant polynomial. Because $f(a)=0$, this necessarily means that $r=0_{\mathbb{K}}$ and so $(x-a) \mid f$.
(\Leftarrow) Assume $(x-a) \mid f$. Then, $f=(x-a) g$ for some $f \in \mathbb{K}[x]$. But clearly $f(a)=0$.

Corollary 8.7 Let \mathbb{K} be a field. Any polynomial in $\mathbb{K}[x]$ with degree at least two that also has a root in \mathbb{K} is not irreducible.

Proof: By Lemma 8.6, such a polynomial f has a degree one factor, so $f=g h$ where $\operatorname{deg}(g)=1$ and $\operatorname{deg}(h) \geq 1$; this means neither g nor h is constant and thus f is not irreducible.

Method - Non-Irreducibility: Suppose we have a polynomial $f \in \mathbb{K}[x]$ where $\operatorname{deg}(f) \geq 2$. Then, we can immediately show that it is not irreducible by finding a root $a \in \mathbb{K}$.

Corollary 8.8 Let \mathbb{K} be a field. Any polynomial in $\mathbb{K}[x]$ with degree two or three that has no root in \mathbb{K} is irreducible.

Proof: Let f be such a polynomial; in particular, it is non-constant. Furthermore, Lemma 8.6 implies that it has no degree one factor, so any factorisation $f=g h$ must be such that $\operatorname{deg}(g)$ and $\operatorname{deg}(h)$ are not one and sum to either two or three; at least one has to be zero degree.

Theorem 8.9 (Fundamental Theorem of Algebra) Any non-constant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C}.

Proof: Omitted.

Proposition 8.10 Let \mathbb{K} be a field and consider the polynomial ring $\mathbb{K}[x]$.
(i) If $\mathbb{K}=\mathbb{C}$, the irreducible polynomials are the linear polynomials.
(ii) If $\mathbb{K}=\mathbb{R}$, the irreducible polynomials are the linear polynomials and the quadratic polynomials with no real roots.

Proof: (i) Lemma 8.5 says precisely that linear polynomials are irreducible. Next, let $f \in \mathbb{C}[x]$ with $\operatorname{deg}(f)>1$; the Fundamental Theorem of Algebra implies f has a root in \mathbb{C}, so Corollary 8.7 tells us f is not irreducible. In other words, linear polynomials are the only irreducibles.
(ii) Omitted.

Theorem 8.11 (Rational Root Test) Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$. If $a \in \mathbb{Q}$ is a rational root of f of the form $a=p / q$ with $q \neq 0$ and $\operatorname{gcd}(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$.

Proof: Let $a=p / q \in \mathbb{Q}$ with $q \neq 0$ and $\operatorname{gcd}(p, q)=1$ (in particular, if $a=0$, take $p=0$ and $q=1$). Because a is a root of f, we know that $f(a)=0$; this can be written fully as

$$
a_{0}+a_{1}\left(\frac{p}{q}\right)+a_{2}\left(\frac{p}{q}\right)^{2}+\cdots+a_{n}\left(\frac{p}{q}\right)^{n}=0
$$

Multiplying both sides by q^{n} tells us that

$$
a_{0} q^{n}+a_{1} p q^{n-1}+a_{2} p^{2} q^{n-2}+\cdots+a_{n} p^{n}=0 .
$$

In other words, we have

$$
a_{0} q^{n}=-p\left(a_{1} q^{n-1}+a_{2} p q^{n-2}+\cdots+a_{n} p^{n-1}\right),
$$

so we conclude $p \mid a_{0} q^{n}$. Because $\operatorname{gcd}(p, q)=1$, it follows also that $\operatorname{gcd}\left(p, q^{n}\right)=1$ and thus $p \mid a_{0}$. On the other hand, we could rewrite the root equation as

$$
a_{n} p^{n}=-q\left(a_{0} q^{n-1}+a_{1} p q^{n-2}+\cdots+a_{n-1} p^{n-1}\right)
$$

from which we conclude $q \mid a_{n} p^{n}$. A similar argument to the above means we also have $q \mid a_{n}$.

Method - Rational Root Test: Suppose we have a polynomial f of degree two or three.
(i) Check that the coefficients of f are integers.
(ii) Let $a=p / q \in \mathbb{Q}$ be a root. Write the possible values of p and q using Theorem 8.11.
(iii) Use Step (ii) to find a list of candidates for a.
(iv) Check the values of $f(a)$ for each candidate from Step (iii).

If $f(a) \neq 0$ for each candidate from Step (iii), then Corollary 8.8 tells us f is irreducible.

Definition 8.13 Let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ not all zero. A greatest common divisor of a_{1}, \ldots, a_{n} is an integer $d \in \mathbb{Z}$ such that the following are satisfied:
(i) $d \mid a_{i}$ for all i.
(ii) If $c \in \mathbb{Z}$ such that $c \mid a_{i}$ for all i, then $c \mid d$.

Definition 8.14 A non-zero polynomial $f \in \mathbb{Z}[x]$ is primitive if its coefficients are coprime.

Lemma 8.15 Let $f \in \mathbb{Q}[x] \backslash\{0\}$. Then, f can be written uniquely in the form

$$
f=c_{f} f_{0}
$$

where $c_{f} \in \mathbb{Q}^{+}$is a positive rational, the so-called content of f, and $f_{0} \in \mathbb{Z}[x]$ is primitive. Moreover, if $f \in \mathbb{Z}[x] \backslash\{0\}$, then c_{f} is a positive greatest common divisor of the coefficients.

Proof: Let $b \in \mathbb{Z}^{+}$such that $b f \in \mathbb{Z}[x]$; one way to choose b is to take the absolute value of the product of the denominators of the coefficients of f. Let a be a positive greatest common divisor of the coefficients of $b f$ and let f_{0} be the element of $\mathbb{Q}[x]$ satisfying $b f=a f_{0}$. Such an f_{0} is primitive. Then, we see that

$$
f=\frac{a}{b} f_{0} \quad \Rightarrow \quad c_{f}=\frac{a}{b} .
$$

If $f \in \mathbb{Z}[x]$, we take $b=1$ and this means $c_{f}=a$ as required. Uniqueness is omitted.

Reminder: The map $\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $\varphi_{n}(a)=a(\bmod n)$ is a ring homomorphism.

Definition We can extend φ_{n} from above by defining the map $\psi_{n}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{n}[x]$ as follows:

$$
\psi_{n}\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right)=\varphi_{n}\left(a_{0}\right)+\varphi_{n}\left(a_{1}\right) x+\cdots+\varphi_{n}\left(a_{k}\right) x^{k}
$$

that is we apply the map φ_{n} to the coefficients of the polynomial we input into ψ_{n}.

Lemma 8.17 The map $\psi_{n}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{n}[x]$ from above is a ring homomorphism.

Sketch of Proof: We must show the axioms from Definition 3.1. To this end, let $f, g \in \mathbb{Z}[x]$ be given by $f=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$. Without loss of generality, let $n \leq m$. Therefore, we see that

$$
\begin{aligned}
\psi_{n}(f+g) & =\psi_{n}\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}+b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right) \\
& =\psi_{n}\left(\left(a_{0}+b_{0}\right)+\cdots+\left(a_{n}+b_{n}\right) x^{n}+b_{n+1} x^{n+1}+\cdots+b_{m} x^{m}\right) \\
& =\varphi_{n}\left(a_{0}+b_{0}\right)+\cdots+\varphi_{n}\left(a_{n}+b_{n}\right) x^{n}+\varphi_{n}\left(b_{n+1}\right) x^{n+1}+\cdots+\varphi_{n}\left(b_{m}\right) x^{m} \\
& =\varphi_{n}\left(a_{0}\right)+\varphi_{n}\left(b_{0}\right)+\cdots+\varphi_{n}\left(a_{n}\right) x^{n}+\varphi_{n}\left(b_{n}\right) x^{n}+\varphi_{n}\left(b_{n+1}\right) x^{n+1}+\cdots+\varphi_{n}\left(b_{m}\right) x^{m} \\
& =\left(\varphi_{n}\left(a_{0}\right)+\cdots+\varphi_{n}\left(a_{n}\right) x^{n}\right)+\left(\varphi_{n}\left(b_{0}\right)+\cdots+\varphi_{n}\left(b_{m}\right) x^{m}\right) \\
& =\psi_{n}(f)+\psi_{n}(g) .
\end{aligned}
$$

Similarly, we can show $\psi_{n}(f g)=\psi_{n}(f) \psi_{n}(g)$; this again relies on the fact that ϕ_{n} is itself a ring homomorphism (which we used in the fourth equality above).

Lemma 8.18 (Gauss' Lemma) Let $f, g \in \mathbb{Z}[x]$ be primitive. Then, $f g \in \mathbb{Z}[x]$ is primitive.

Proof: Suppose to the contrary that f and g are primitive but that $f g$ is not. Then, the positive greatest common divisor of the coefficients of $f g$ is more than one (if it was one, they are all coprime and it is primitive). Hence, there is a prime number p which divides every coefficient of $f g$. Therefore, $\psi_{p}(f) \psi_{p}(g)=\psi_{p}(f g)=0 \in \mathbb{Z}_{p}[x]$, using Lemma 8.17 to get the left-hand equality. But \mathbb{Z}_{p} is a field by Theorem 7.21 , so it is an integral domain by Proposition 4.12. But Proposition 4.14 implies that $\mathbb{Z}_{p}[x]$ is therefore also an integral domain. As there are no non-zero zero divisors, we have $\psi_{p}(f)=0$ or $\psi_{p}(g)=0$. We now consider these (identical) cases below:

- If $\psi_{p}(f)=0$, then p divides every coefficient of f, contradicting f being primitive.
- If $\psi_{p}(g)=0$, then p divides every coefficient of g, contradicting g being primitive.

Either way, we achieve a contradiction; it must be that $f g$ is primitive.

Corollary 8.19 Let $f, g \in \mathbb{Z}[x] \backslash\{0\}$. In Lemma 8.15 notation, $c_{f g}=c_{f} c_{g}$ and $(f g)_{0}=f_{0} g_{0}$.

Proof: Let $f, g \in \mathbb{Z}[x]$; we can write $f=c_{f} f_{0}$ and $g=c_{g} g_{0}$ and $f g=c_{f g}(f g)_{0}$ via Lemma 8.15, where the polynomials $f_{0}, g_{0},(f g)_{0} \in \mathbb{Z}[x]$ are primitive and the contents $c_{f}, c_{g}, c_{f g} \in \mathbb{Q}^{+}$are positive rationals. But we can also write the product as

$$
f g=c_{f} c_{g} f_{0} g_{0}
$$

We know from Gauss' Lemma that $f_{0} g_{0}$ is primitive. But Lemma 8.15 also tells us that the expressions are unique, so we must have that $c_{f g}=c_{f} c_{g}$ and $(f g)_{0}=f_{0} g_{0}$.

Theorem 8.20 (Gauss' Theorem) Let $f \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be a non-constant polynomial. If f is not a product of two non-constant polynomials in $\mathbb{Z}[x]$, then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose $f=g h$ where $g, h \in \mathbb{Q}[x] \backslash\{0\}$. By Lemma 8.15, we can write the following:

$$
\begin{array}{ll}
f=c_{f} f_{0}, & \text { with } c_{f} \in \mathbb{Q}^{+} \text {and } f_{0} \text { primitive, } \\
g=c_{g} g_{0}, & \text { with } c_{g} \in \mathbb{Q}^{+} \text {and } g_{0} \text { primitive, } \\
h=c_{h} h_{0}, & \text { with } c_{h} \in \mathbb{Q}^{+} \text {and } h_{0} \text { primitive. }
\end{array}
$$

Because $f=g h$, we must have that $c_{f}=c_{g} c_{h}$ and $f_{0}=g_{0} h_{0}$ by the uniqueness part of Lemma 8.15. Consequently, we see that $f=c_{f} f_{0}=c_{f} g_{0} h_{0}$. Now, $f \in \mathbb{Z}[x]$ which means that $c_{f} \in \mathbb{Z}$ by Corollary 8.19. Therefore, $c_{f} g_{0} \in \mathbb{Z}[x]$ and $h_{0} \in \mathbb{Z}[x]$. But f is not a product of non-constant polynomials by assumption, so either $c_{f} g_{0}$ (and therefore g) is constant or h_{0} (and therefore h) is constant.

Method - Irreducibility via Gauss' Theorem: Let $f \in \mathbb{Q}[x]$ be some polynomial.
(i) Check that $f \in \mathbb{Q}[x] \backslash \mathbb{Z}$.
(ii) Apply the Rational Root Test and Lemma 8.6 to conclude that f has no linear factors in $\mathbb{Q}[x]$, and hence $\mathbb{Z}[x]$.
(iii) Writing f as a product of integer polynomials of degree at least two, show that this is not possible by expanding and comparing coefficients.
(iv) Use Gauss' Theorem to conclude that f is irreducible.

Theorem 8.22 (Eisenstein's Irreducibility Criterion) Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be non-constant and assume there exists a prime $p \in \mathbb{Z}$ satisfying the following:
(i) $p\left|a_{0}, \ldots, p\right| a_{n-1}$.
(ii) $p \nmid a_{n}$.
(iii) $p^{2} \nmid a_{0}$.

Then, f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose $f=g h$ is a product of non-constant polynomials $g, h \in \mathbb{Z}[x] \backslash \mathbb{Z}$ of this form:

$$
f=\left(b_{0}+b_{1} x+\cdots+b_{r} x^{r}\right)\left(c_{0}+c_{1} x+\cdots+c_{s} x^{s}\right),
$$

where $b_{r} \neq 0$ and $c_{s} \neq 0$. Then, $r+s=n$ for $0<r<n$ and $0<s<n$ by comparing degrees. Moreover, we have that the constant part $a_{0}=b_{0} c_{0}$. We also have that $a_{n}=b_{r} c_{s}$. Because $p \mid a_{0}$ and $p^{2} \not \backslash a_{0}$, there are two cases to consider.

- Assume $p \mid b_{0}$ but $p \nmid c_{0}$. Because we also assume $p \nmid a_{n}$, it must be that $p \nmid b_{r}$ and $p \nmid c_{s}$. Suppose that b_{m} is the first coefficient in g such that $p \nmid b_{m}$. Notice that we can write

$$
a_{m}=b_{0} c_{m}+b_{1} c_{m-1}+\cdots+b_{m} c_{0}
$$

with $c_{i}=0$ for all $i>s$. Then, p divides every term in this sum except the last one (because this is the case where $p \nmid c_{0}$). Hence, it follows that $p \nmid a_{m}$. By (i) in the statement of the theorem, this means $m=n$; this is a contradiction as $m \leq r<n$, so we end up with $n<n$.

- Assume $p \nmid b_{0}$ but $p \mid c_{0}$. A near-identical argument will also yield a contradiction

Either way, we have a contradiction so f is not the product of two non-constant polynomials with integer coefficients. Thus, Gauss' Theorem tells us f is irreducible in $\mathbb{Q}[x]$.

Method - Irreducibility via Eisenstein's Criterion: Let $f \in \mathbb{Q}[x]$ be some polynomial.
(i) Check that $f \in \mathbb{Z}[x] \backslash \mathbb{Z}$.
(ii) Find a prime $p \in \mathbb{Z}$ satisfying the conditions of Theorem 8.22.

