MATH2027 Rings and Polynomials

Cheatsheet

2022/23

This document collects together the important definitions and results presented throughout the lecture notes. The numbering used throughout will be consistent with that in the lecture notes.

Contents

1	Introduction	2
2	Ideals and Factor Rings	6
3	Homomorphisms	10
4	Fields and Integral Domains	13
5	Classes of Integral Domains	16
6	Elements in Integral Domains	19
7	Prime and Irreducible Elements	22
8	Irreducible Polynomials	27

1 Introduction

Definition 1.1 Let A and B be sets. The Cartesian product of A and B is the set of all pairs of elements the first of which is from A and the second of which is from B, that is

 $A \times B \coloneqq \{(a, b) : a \in A \text{ and } b \in B\}.$

Definition 1.2 Let G be a set. A binary operation on G is a function $G \times G \to G$.

Note: In other words, it is a function taking two elements of a set and spitting out another element which also lives inside the same set. We do **not** assume it is associative (see below).

Definition 1.4 A group (G, *) is a pair consisting of a non-empty set G and a binary operation $*: G \times G \to G$ on G which satisfying the following axioms:

(G1) For all $g, h \in G$, we have $g * h \in G$.(Closed)(G2) For all $g, h, k \in G$, we have (g * h) * k = g * (h * k).(Associativity)(G3) There exists $e \in G$ such that g * e = g = e * g for all $g \in G$.(Identity)(G4) For all $g \in G$, we have $h \in G$ such that g * h = e = h * g.(Existence of Inverses)

Remark By stipulating the operation * is binary, we automatically get that $g * h \in G$ for all $g, h \in G$. The only reason we write out the closure rule is to make us remember to check that the operation is indeed a binary operation (i.e. a valid function whose output lives in the set G).

Note: Often, we refer to a group by the underlying set G and don't explicitly mention *.

Lemma Let G be a group. Then, the identity is unique.

Proof: Suppose $e, f \in G$ are two identities. Then, we have the following:

(i) e * f = e, because f is an identity.

(ii) e * f = f, because e is an identity.

But clearly, e * f = e * f, so it follows that e = f.

Lemma Let G be a group. Then, the inverse of $g \in G$ is unique.

Proof: Suppose $h, k \in G$ are two inverses of the element g. Then, we have the following:

(i) g * h = e = h * g, by definition.

(ii) g * k = e = k * g, by definition.

Therefore, we see that h = h * e = h * (g * k) = (h * g) * k = e * k = k by associativity.

Note: Per this lemma, we henceforth denote the inverse of $g \in G$ by the symbol g^{-1} .

Definition A group G is Abelian if the operation * is commutative, that is for all $g, h \in G$,

$$g * h = h * g.$$

Remark 1.6 Addition is clearly Abelian. Therefore, we use this notation for any Abelian group:

- (i) The operation * is denoted +.
- (ii) The identity e is denoted 0.
- (iii) The inverse g^{-1} is denoted -g.

Remark 1.8 For the sake of nicer notation, we often write $rs \coloneqq r \times s$ and $r - s \coloneqq r + (-s)$.

Definition Let R be a ring. A multiplicative identity is some $1_R \in R$ where for all $r \in R$,

 $1_R \times r = r = r \times 1_R.$

Note: We do **not** assume that every ring has a multiplicative identity (note there is no mention of this in Definition 1.7). However, those that do we herein call rings with one.

Lemma Let R be a ring. If it exists, the multiplicative identity 1_R is unique.

Sketch of Proof: This is the same proof as the uniqueness of the identity of a group.

Proposition Let R be any ring. Then, the following are also rings:

- (i) The matrix ring $M_n(R)$ of $n \times n$ matrices with entries in R.
- (ii) The polynomial ring R[x] of polynomials in one variable x with coefficients in R.
- (iii) The polynomial ring $R[x_1, ..., x_k]$ of polynomials in k variables with coefficients in R.
- (iv) The Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Lemma 1.11 Let R be a ring and $r, s, t \in R$ be any elements. Then, the following are true:

- (i) The additive identity 0_R is unique.
- (ii) The additive inverse -r of r is unique.
- (iii) If r + t = s + t, then r = s.
- (iii) H + r = s + c, then r = s. (iv) We have -(r + s) = (-r) + (-s). (v) We have -(-r) = r. (vi) We have $r0_R = 0_R = 0_R r$. (vii) We have (-r)s = -(rs) = r(-s).

Proof: By Axiom (R1), we know (R, +) is a group. So we've already proved (i) and (ii) earlier.

(iii) Suppose r + t = s + t. Because $t \in R$ and R is a group, it is closed under forming inverses, that is there exists an element $-t \in R$ such that $t + (-t) = 0_R$. Thus, adding this element to both sides of the equation tells us that r + t + (-t) = s + t + (-t), but this is nothing other than $r + 0_R = s + 0_R$ which is the same as r = s.

(iv) Well, we can see that

$$((-r) + (-s)) + (r+s) = ((-s) + (-r)) + (r+s),$$
as + is commutative,

$$= (-s) + ((-r) + (r+s)),$$
as + is associative,

$$= (-s) + (((-r) + r) + s),$$
as + is associative,

$$= (-s) + (0_R + s),$$
as -r is the additive inverse of r,

$$= (-s) + s,$$
as 0_R is the additive identity,

$$= 0_R,$$
as -s is the additive inverse of s.

Doing a similar argument, we conclude that $(r+s) + ((-r) + (-s)) = 0_R$. Therefore, we see that the inverse of (r+s) is (-r) + (-s), which is as written in the statement of the lemma; this uses the uniqueness we know from (ii).

- (v) This is immediate from the fact that $(-r) + r = 0_R$; the inverse of (-r) is r.
- (vi) We can write $0_R = 0_R + 0_R$. Thus, we see that

$$r0_R = r(0_R + 0_R)$$

= $(r0_R) + (r0_R)$, as × distributes over +.

But by the existence of additive inverses, we know that there exists $-(r0_R) \in R$. Therefore,

$$r0_R + (-r0_R) = (r0_R + r0_R) + (-r0_R),$$
as additive inverses exist,
$$= r0_R + (r0_R + (-r0_R)),$$
as + is associative.

However, this just tells us that $0_R = r0_R + 0_R$, so we conclude that $r0_R = 0_R$. We can proceed similarly in the other order to get the result.

(vii) Continuing on from (vi), we see that $0_R = 0_R s = ((-r) + r) s = (-r)s + rs$ by distributivity of multiplication over addition. Therefore, adding -(rs) to both sides gives the result. Similarly, one can do it the other way around. **Remark 1.12** Since addition + is associative, it is common to not write brackets, e.g. r + s + t.

Definition 1.13 A ring R is commutative if the operation \times is commutative: for all $r, s \in R$,

rs = sr.

Definition 1.14 Let R be a ring. A subring is a subset $S \subseteq R$ where the following hold: (S1) It contains the additive identity, that is $0_R \in S$.

(S2) For all $r \in S$, we have $-r \in S$.

(S3) For all $r, s \in S$, we have $r + s \in S$.

(S4) For all $r, s \in S$, we have $rs \in S$.

Note: A subring $S \subseteq R$ is a ring in its own right, whose operations are the same as those for R but restricted onto S and whose additive identity $0_S = 0_R$.

Proposition Let R be any ring. Then, $\{0_R\} \subseteq R$ and $R \subseteq R$ are subrings automatically.

Sketch of Proof: Simply show that each of the axioms in Definition 1.14 is satisfied.

2 Ideals and Factor Rings

Reminder: Let G be a group. We call the subgroup $N \leq G$ a normal subgroup if for all $n \in N$ and $g \in G$, we have $gng^{-1} \in N$. This is then denoted $N \trianglelefteq G$. For a normal subgroup, we can define the quotient group $G/N = \{gN : g \in G\}$ under coset addition and multiplication; a coset is the set $gH := \{gh : h \in H\}$ for **any** subgroup $H \leq G$.

Definition 2.1 Let R be a ring. An ideal (of R) is a subset $I \subseteq R$ satisfying the following: (I1) It contains the additive identity, that is $0_R \in I$. (I2) For all $x \in I$, we have $-x \in I$. (Closed under Negation) (I3) For all $x, y \in I$, we have $x + y \in I$. (Closed under Addition)

(I4) For all $x \in I$ and $r \in R$, we have $rx \in I$ and $xr \in I$.

(Absorbing Property)

Note: An ideal of a ring is automatically a subring of said ring; compare (I4) with (S4).

Lemma 2.3 Let R be a commutative ring and $a \in R$. Then, the ideal generated by a

 $(a) \coloneqq \{ar : r \in R\}$

is indeed an ideal of R.

Proof: One need only verify the axioms of an ideal written in Definition 2.1.

- Clearly, $0_R = a 0_R$ which means that $0_R \in (a)$.
- Suppose $x \in I$, that is x = ar for some $r \in R$. Then, the inverse $-x = -(ar) = a(-r) \in (a)$ because $-r \in R$ since R is a ring and it is closed under additive inverses.
- Suppose $x, y \in I$, that is x = ar and y = as for some $r, s \in R$. Then, their sum is $x + y = ar + as = a(r + s) \in (a)$ because $r + s \in R$ since R is a ring and it is closed under addition.
- Suppose $x \in I$, that is x = as for some $s \in R$, and $r \in R$. Then, $xr = asr = a(sr) \in (a)$ because $sr \in R$ since R is a ring and it is closed under multiplication.

Note: An ideal (a) generated by a **single** element $a \in R$ is called a principal ideal of R.

Lemma 2.4 Let R be a commutative ring with $1_R \in R$ and $a \in R$. Then, $a \in (a)$ and any ideal of R that contains the element a also contains the entire ideal (a).

Proof: Well, $a = a_{1R} \in (a)$ is pretty clear. Next, let $I \subseteq R$ be an ideal with $a \in I$ by Axiom (I4), we know that $ar \in I$ for any $r \in R$. Consequently, $\{ar : r \in R\} = (a) \subseteq I$. **Definition 2.5** Let R be a ring and $I, J \subseteq R$ be ideals. Then, the sum of ideals is

 $I + J \coloneqq \{x + y : x \in I \text{ and } y \in J\}.$

Lemma 2.6 Let R be a ring and $I, J \subseteq R$ be ideals. Then, we have the following:

- (i) The set I + J is an ideal of R.
- (ii) The set $I \cap J$ is an ideal of R.

Proof: (i) This very much hinges on the fact that I and J are ideals.

- Clearly, $0_R = 0_R + 0_R \in I + J$ since $0_R \in I$ and $0_R \in J$.
- Now then, let $a \in I + J$, which means that a = x + y where $x \in I$ and $y \in J$. Then, $-a = -(x + y) = (-x) + (-y) \in I + J$ because $-x \in I$ and $-y \in J$.
- Let $a, b \in I + J$, which means a = x + y and b = s + t for $x, s \in I$ and $y, t \in J$. Then, $a + b = (x + y) + (s + t) = (x + s) + (y + t) \in I + J$ because addition is associative and commutative and $x + s \in I$ and $y + t \in J$.
- Finally, let $a \in I + J$, which means a = x + y for $x \in I$ and $y \in J$, and $r \in R$. Then, $ar = (x + y)r = (xr) + (yr) \in I + J$ because $xr \in I$ and $yr \in J$.

(ii) This again rests on the fact that I and J are ideals.

- Clearly, $0_R \in I \cap J$ because $0_R \in I$ and $0_R \in J$.
- Now, let $a \in I \cap J$, meaning that $a \in I$ and $a \in J$. Because I and J are ideals, it follows that $-a \in I$ and $-a \in J$, which is to say that $-a \in I \cap J$.
- Let $a, b \in I \cap J$, meaning that $a, b \in I$ and $a, b \in J$. Because I and J are ideals, we know $a + b \in I$ and $a + b \in J$, which therefore means $a + b \in I \cap J$.
- Last, let $a \in I \cap J$, meaning that $a \in I$ and $a \in J$, and $r \in R$. Because I and J are ideals, we conclude $ar \in I$ and $ar \in J$; it immediately follows that $ar \in I \cap J$.

Note: Because (R, +) is an Abelian group and Axioms (I1), (I2) and (I3) imply that $I \leq R$ is a subgroup, we know that $I \leq R$ is normal (true of any subgroup of an Abelian group).

Definition 2.7 Let R be a ring and $I \subseteq R$ an ideal. A coset of I is a subset of the form

$$r + I \coloneqq \{r + x : x \in I\} \subseteq R.$$

Lemma 2.8 Let R be a ring and $I \subseteq R$ an ideal, with $r, s \in R$. Then, r + I = s + I if and only if $r - s \in I$.

Proof: (\Rightarrow) Suppose r + I = s + I. Then, $r + 0_R \in r + I = s + I$, because ideals contain zero. Therefore, $r + 0_R = s + x$ for some element $x \in I$, but the left-hand side is just r. Therefore, this rearranges to say that $r - s = x \in I$.

(\Leftarrow) Suppose $r - s \in I$ and define $x \coloneqq r - s$ (which means that r = x + s and s = r - x). We show the cosets r + I and s + I are equal by demonstrating that they are subsets of one another.

- Let $a \in r + I$, which means that a = r + y for some $y \in I$. Therefore, we see that $a = (x + s) + y = s + (x + y) \in s + I$ because ideals are closed under addition and so $x + y \in I$. Because any element of r + I also appears in s + I, we know that $r + I \subseteq s + I$.
- Let $b \in s + I$, which means that b = s + z for some $z \in I$. Therefore, we see that $b = (r x) + z = r + (z x) \in r + I$ because ideals are closed under addition and negation and so $z x \in I$. Because any element of s + I also appears in r + I, we get $s + I \subseteq r + I$.

Therefore, having both subset inclusions implies that r + I = s + I.

Lemma 2.10 Let R be a ring and $I \subseteq R$ an ideal. If $X_1 = a_1 + I, ..., X_n = a_n + I$ are cosets of I in R whose union $\bigcup_{i=1}^n X_i = R$, then every coset of I is equal to some X_i .

Proof: Let $r \in R$, meaning $r \in X_i = a_i + I$ for some *i* since *R* is the union of the X_i . Therefore, $r - a_i \in I$ which is equivalent to saying that $r + I = a_i + I = X_i$ by Lemma 2.8.

Definition Let R be a ring and $I \subseteq R$ an ideal. The set of cosets of I in R is

 $R/I \coloneqq \{r+I : r \in R\}.$

Reminder: An operation is well-defined if it doesn't depend on the representative taken.

Lemma 2.12 The following binary operations defined on R/I are well-defined:

(i) The coset addition operation (r+I) + (s+I) := (r+s) + I.

(ii) The coset multiplication operation $(r+I)(s+I) \coloneqq rs+I$.

Proof: (i) To show that coset addition is well-defined, suppose $r_1, r_2, s_1, s_2 \in R$ are such that $r_1+I = r_2+I$ and $s_1+I = s_2+I$. By Lemma 2.8, this means $r_1-r_2 \in I$ and $s_1-s_2 \in I$. Hence, we see that $(r_1+s_1)-(r_2+s_2) = (r_1-r_2)+(s_1-s_2) \in I$ because ideals are closed under addition and negation. Therefore, again applying Lemma 2.8, we conclude that $(r_1+s_1)+I = (r_2+s_2)+I$. Thus, picking different representatives for the left-hand side of the coset addition operation doesn't change what we get in the output, so it is well-defined.

(ii) To show that coset multiplication is well-defined, suppose $r_1, r_2, s_1, s_2 \in R$ are such that $r_1 + I = r_2 + I$ and $s_1 + I = s_2 + I$. By Lemma 2.8, this means $r_1 - r_2 \in I$ and $s_1 - s_2 \in I$. Hence, we see that $r_1s_1 - r_2s_2 = (r_1 - r_2)s_1 + r_2(s_1 - s_2) \in I$ because ideals are closed under addition and negation. Therefore, again applying Lemma 2.8, we conclude that $r_1s_1 + I = r_2s_2 + I$. \Box

Theorem 2.13 Let R be a ring and $I \subseteq R$ an ideal. Then, R/I together with the coset addition and multiplication operations from Lemma 2.12 is a ring with additive identity $0_R + I$. We call R/I a quotient ring or factor ring. Moreover, if R is a ring with one whose multiplicative identity is 1_R , then so too is R/I, with multiplicative identity $1_R + I$.

Proof: One need only show that the axioms in Definition 1.7 are satisfied.

- Closure under coset addition is immediate from its definition. Now, $0_R + I$ is the additive identity: $(r + I) + (0_R + I) = (r + 0_R) + I = r + I$. Finally, if we continue to assume that $r + I \in R/I$, then $(-r) + I \in R/I$ is the additive inverse. Indeed, we see that $(r+I) + ((-r) + I) = (r + (-r)) + I = 0_R + I$. Hence, R/I is closed under taking additive inverses. This shows that (R/I, +) is an Abelian group.
- Closure under coset multiplication is immediate from its definition.
- Let r + I, s + I, $t + I \in R/I$. Then, we see that

$$((r+I)(s+I)) (t+I) = (rs+I)(t+I) = (rs)t + I = r(st) + I = (r+I)(st+I) = (r+I) ((s+I)(t+I)),$$

which demonstrates associativity of coset multiplication.

• Let r + I, s + I, $t + I \in R/I$. Then, we see that

$$(r+I) ((s+I) + (t+I)) = (r+I) ((s+t) + I)$$

= $r(s+t) + I$
= $(rs+rt) + I$
= $(rs+I) + (rt+I)$
= $(r+I)(s+I) + (r+I)(t+I)$

and

$$\begin{split} \left((r+I) + (s+I) \right) (t+I) &= \left((r+s) + I \right) (t+I) \\ &= (r+s)t + I \\ &= (rt+st) + I \\ &= (rt+I) + (st+I) \\ &= (r+I)(t+I) + (s+I)(t+I), \end{split}$$

which demonstrates distributivity of coset multiplication over coset addition.

3 Homomorphisms

Definition 3.1 A ring homomorphism is a map $\varphi : R \to S$ between rings satisfying these: (H1) For all $r_1, r_2 \in R$, we have $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$. (H2) For all $r_1, r_2 \in R$, we have $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$.

Note: If φ is a bijective ring homomorphism, we call it a ring isomorphism and write $R \cong S$.

Remark 3.3 We always have the following for any ring homomorphism $\varphi : R \to S$:

- (i) $\varphi(0_R) = 0_S$. Indeed, $0_S + \varphi(0_R) = \varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$ by Axiom (H1). But now, Lemma 1.11(iii) means we cancel one of the $\varphi(0_R)$ to get that $0_S = \varphi(0_R)$.
- (ii) $\varphi(-r) = -\varphi(r)$ for all $r \in R$. Indeed, $\varphi(-r) + \varphi(r) = \varphi(-r+r) = \varphi(0_R) = 0_S$ by Axiom (H1) and by (i) above. This shows the inverse of $\varphi(r)$ is $\varphi(-r)$, exactly what we wanted.

Definition 3.4 Let R and S be rings and $\varphi : R \to S$ be a ring homomorphism.

- (i) The kernel of φ is ker $(\varphi) \coloneqq \{r \in R : \varphi(r) = 0_S\}$.
- (ii) The image of φ is $\operatorname{im}(\varphi) \coloneqq \{\varphi(r) : r \in R\}$.

Proposition 3.6 Let R and S be rings and $\varphi : R \to S$ be a ring homomorphism.

- (i) The kernel $\ker(\varphi) \subseteq R$ is an ideal of R.
- (ii) The image $\operatorname{im}(\varphi) \subseteq S$ is a subring of S.

Note: Be aware of the fact that the kernel is an ideal but the image is only a subring.

Proof: (i) We show the axioms from Definition 2.1.

- Per Remark 3.3, we see that $\varphi(0_R) = 0_S$, so $0_R \in \ker(\varphi)$.
- Let $x \in \ker(\varphi)$. Then, again by Remark 3.3, $\varphi(-x) = -\varphi(x) = -0_S = 0_S$, so $-x \in \ker(\varphi)$.
- Let $x, y \in \ker(\varphi)$. Then, $\varphi(x+y) = \varphi(x) + \varphi(y) = 0_S + 0_S = 0_S$, so $x+y \in \ker(\varphi)$.
- Let $x \in \ker(\varphi)$ and $r \in R$. Then, $\varphi(xr) = \varphi(x)\varphi(r) = 0_S\varphi(r) = 0_S$, so $xr \in \ker(\varphi)$.

(ii) We show the axioms from Definition 1.14.

- Per Remark 3.3, we see that $\varphi(0_R) = 0_S$, so $0_S \in im(\varphi)$.
- Let $s \in im(\varphi)$, meaning $s = \varphi(r)$ for some $r \in R$. Again by Remark 3.3, we see that $-s = -\varphi(r) = \varphi(-r)$, so $-s \in im(\varphi)$.
- Let $s_1, s_2 \in \operatorname{im}(\varphi)$, meaning $s_1 = \varphi(r_1)$ and $s_2 = \varphi(r_2)$ for some $r_1, r_2 \in R$. Then, $s_1 + s_2 = \varphi(r_1) + \varphi(r_2) = \varphi(r_1 + r_2)$, so $s_1 + s_2 \in \operatorname{im}(\varphi)$.
- Let $s_1, s_2 \in \operatorname{im}(\varphi)$, meaning $s_1 = \varphi(r_1)$ and $s_2 = \varphi(r_2)$ for some $r_1, r_2 \in R$. Then, $s_1 s_2 = \varphi(r_1)\varphi(r_2) = \varphi(r_1 r_2)$, so $s_1 s_2 \in \operatorname{im}(\varphi)$.

Reminder: Let $f : A \to B$ be an arbitrary function.

- (i) f is injective (or one-to-one) if for every $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- (ii) f is surjective (or onto) if for every $b \in B$, there exists $a \in A$ such that f(a) = b.

Lemma 3.7 A ring homomorphism $\varphi : R \to S$ is injective if and only if ker $(\varphi) = \{0_R\}$.

Proof: (\Rightarrow) Let φ be injective. We know that $0_R \in \ker(\varphi)$ from Remark 3.3, so the kernel is non-empty. Suppose $x \in \ker(\varphi)$. Then, $\varphi(x) = 0_S = \varphi(0_R)$. But injectivity then allows us to conclude that $x = 0_R$, so in fact the kernel consists only of the zero of R.

(\Leftarrow) Let ker(φ) = {0_R} and assume $x, y \in R$ with $\varphi(x) = \varphi(y)$. We conclude from Axiom (H1) that $\varphi(x - y) = \varphi(x) - \varphi(y) = 0_S$, so it follows that $x - y \in \text{ker}(\varphi)$. But this means that $x - y = 0_R$, which is to say x = y.

Theorem 3.9 Let R be a ring and $I \subseteq R$ an ideal. Then, the quotient map $\varphi : R \to R/I$ given by $\varphi(r) = r+I$ is a ring homomorphism. Furthermore, $\ker(\varphi) = I$ and $\operatorname{im}(\varphi) = R/I$.

Proof: The first part of the proof concerns showing the axioms in Definition 3.1.

- Let $r_1, r_2 \in R$. Then, $\varphi(r_1 + r_2) = (r_1 + r_2) + I = (r_1 + I) + (r_2 + I) = \varphi(r_1) + \varphi(r_2)$.
- Let $r_1, r_2 \in R$. Then, $\varphi(r_1r_2) = r_1r_2 + I = (r_1 + I)(r_2 + I) = \varphi(r_1)\varphi(r_2)$.

Furthermore, we see that

$$\ker(\varphi) = \{r \in R : \varphi(r) = 0_{R/I}\}$$
$$= \{r \in R : r + I = 0_R + I\}$$
$$= \{r \in R : r - 0_R \in I\}$$
$$= \{r \in R : r \in I\}$$
$$= I$$

and

$$im(\varphi) = \{\varphi(r) : r \in R\}$$
$$= \{r + I : r \in R\}$$
$$= R/I.$$

Note: The quotient map in Theorem 3.9 is surjective as its image is the whole codomain.

Theorem 3.10 (First Isomorphism Theorem) Let $\varphi : R \to S$ be a ring homomorphism. Then, there exists an induced ring isomorphism $\overline{\varphi} : R/\ker(\varphi) \to \operatorname{im}(\varphi)$ given by

$$\overline{\varphi}\left(r + \ker(\varphi)\right) = \varphi(r).$$

Proof: There are a few things to prove about the induced map $\overline{\varphi}$, namely that it is well-defined, it is a ring homomorphism and that it is bijective (i.e. has trivial kernel and has full image).

- Let $r_1 + \ker(\varphi) = r_2 + \ker(\varphi)$ for $r_1, r_2 \in R$. By Lemma 2.8, we know that $r_1 r_2 \in \ker(\varphi)$. But this is to say $\varphi(r_1 - r_2) = 0_S$; applying Axiom (H1) to the left-hand side results in $\varphi(r_1) - \varphi(r_2) = 0_S$, which is equivalent to $\varphi(r_1) = \varphi(r_2)$. Therefore, $\overline{\varphi}$ is well-defined.
- Let $r + \ker(\varphi), s + \ker(\varphi) \in R/\ker(\varphi)$. Then, we see that

$$\overline{\varphi} \left((r + \ker(\varphi)) + (s + \ker(\varphi)) \right) = \overline{\varphi} \left((r + s) + \ker(\varphi) \right)$$
$$= \varphi(r + s)$$
$$= \varphi(r) + \varphi(s)$$
$$= \overline{\varphi}(r + \ker(\varphi)) + \overline{\varphi}(s + \ker(\varphi))$$

and

$$\begin{split} \overline{\varphi} \left((r + \ker(\varphi))(s + \ker(\varphi)) \right) &= \overline{\varphi}(rs + \ker(\varphi)) \\ &= \varphi(rs) \\ &= \varphi(r)\varphi(s) \\ &= \overline{\varphi}(r + \ker(\varphi))\overline{\varphi}(s + \ker(\varphi)). \end{split}$$

Hence, we know that $\overline{\varphi}$ is a ring homomorphism.

- To show that $\overline{\varphi}$ is injective, we will use Lemma 3.7. Indeed, let $r + \ker(\varphi) \in \ker(\overline{\varphi})$, which means that $\overline{\varphi}(r + \ker(\varphi)) = 0_S$. By the definition of $\overline{\varphi}$, this is equivalent to $\varphi(r) = 0_S$, meaning $r \in \ker(\varphi)$. Therefore, Lemma 2.8 tells us that $r + \ker(\varphi) = 0_R + \ker(\varphi) = 0_{R/I}$. In other words, anything in the kernel is always $0_{R/I}$, so we indeed get injectivity.
- Finally, to show that $\overline{\varphi}$ is surjective, suppose that $s \in \operatorname{im}(\varphi)$, meaning that $s = \varphi(r)$ for some $r \in R$. But by definition of $\overline{\varphi}$, this means that $s = \overline{\varphi}(r + \ker(\varphi))$, so we indeed get surjectivity.

Definition 3.12 Let R and S be rings. The direct product of these rings is defined as

$$R \times S \coloneqq \{(r, s) : r \in R \text{ and } s \in S\}.$$

Proposition Let R and S be rings. Then, $R \times S$ is a ring with the following operations:

- (i) The pointwise addition operation $(r_1, s_1) + (r_2, s_2) \coloneqq (r_1 + r_2, s_1 + s_2)$.
- (ii) The pointwise multiplication operation $(r_1, s_1)(r_2, s_2) \coloneqq (r_1r_2, s_1s_2)$.

Sketch of Proof: Simply show that each of the axioms in Definition 1.7 is satisfied. \Box

4 Fields and Integral Domains

Definition 4.1 Let R be a ring with one. An element $a \in R$ is called a unit (or invertible) if there exists an element $b \in R$ such that $ab = 1_R = ba$. The set of units is denoted U(R).

Reminder: We call two integers $a, b \in \mathbb{Z}$ coprime (or relatively prime) if gcd(a, b) = 1.

Definition 4.2 A ring R is called a field if it satisfies the following axioms:

(F1) R is a ring with one, namely 1_R .

(F2) The identities are distinct, that is $1_R \neq 0_R$.

(F3) R is commutative.

(F4) Every non-zero element of R is a unit, that is $U(R) = R \setminus \{0_R\}$.

Henceforth, we use the blackboard font to denote arbitrary fields, in particular K.

Definition 4.3 Let \mathbb{K} be a field. A subfield is a subset $\mathbb{F} \subseteq \mathbb{K}$ where the following hold: (SF1) It contains the identities, that is $0_{\mathbb{K}}, 1_{\mathbb{K}} \in \mathbb{F}$. (SF2) For all $r \in \mathbb{F}$, we have $-r \in \mathbb{F}$. (SF3) For all $r, s \in \mathbb{F}$, we have $r + s \in \mathbb{F}$ and $rs \in \mathbb{F}$. (SF4) For all $r \in \mathbb{F} \setminus \{0_{\mathbb{K}}\}$, we have $r^{-1} \in \mathbb{F}$.

Note: Much like a subring, a subfield is a field in its own right. Also, a subfield is simply a subring containing the multiplicative identity and whose non-zero elements are units.

Reminder: Let \mathbb{K} be a field. A \mathbb{K} -vector space is a set V satisfying the following axioms: (V1) V is an Abelian group under addition.

(V2) For all $v \in V$ and $k_1, k_2 \in \mathbb{K}$, we have $k_1(k_2v) = (k_1k_2)v$.

(V3) For all $v \in V$, we have $1_{\mathbb{K}}v = v$.

(V4) For all $v \in V$ and $k_1, k_2 \in \mathbb{K}$, we have $(k_1 + k_2)v = k_1v + k_2v$.

(V5) For all $v_1, v_2 \in V$ and $k \in \mathbb{K}$, we have $k(v_1 + v_2) = kv_1 + kv_2$.

Theorem 4.5 Let \mathbb{K} be a field and $\mathbb{F} \subseteq \mathbb{K}$ a subfield. Then, \mathbb{K} is an \mathbb{F} -vector space with addition being the usual addition on \mathbb{K} and scalar multiplication defined by $\lambda \cdot r \coloneqq \lambda r$, where $\lambda \in \mathbb{F}$ and $r \in \mathbb{K}$ and the right-hand side is the usual multiplication in \mathbb{K} .

Sketch of Proof: Simply check the vector space axioms written above.

Definition 4.6 Let R be a ring and $r \in R$. For $n \in \mathbb{Z}$, we define the product notation

$$nr \coloneqq \begin{cases} \overbrace{r + \dots + r}^{n \text{ copies}} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ \underbrace{(-r) + \dots + (-r)}_{n \text{ copies}} & \text{if } n < 0 \end{cases}$$

Note: In general, $n \notin R$ so nr as defined above is **not** just multiplication in the ring R.

Remark In fact, the ring R is behaving analogously to a vector space where \mathbb{Z} is acting as the scalars. However, a vector space uses a field as scalars and \mathbb{Z} is **not** a field. What we are touching on here is a slight generalisation of the notion of a vector space over a field, that being a so-called *module* over a ring (more on this in MATH3195/5195M).

Lemma 4.7 Let R be a ring with $r, s \in R$ and $n, m \in \mathbb{Z}$. Then, we have the following: (i) mr + nr = (m + n)r. (ii) (-n)r = -(nr). (iii) n(-r) = -(nr). (iv) m(r + s) = mr + ms. (v) m(nr) = (mn)r. (vi) (mr)(ns) = (mn)rs = (nr)(ms).

Proof: This is an exercise in using Definition 4.6 in conjunction with previously-seen axioms. \Box

Definition 4.8 Let \mathbb{K} be a field. The characteristic of \mathbb{K} is the least positive integer $n \in \mathbb{Z}^+$ such that $n_{1_{\mathbb{K}}} = 0_{\mathbb{K}}$ (if such *n* exists, otherwise we define it to be zero), denoted char(\mathbb{K}).

Lemma 4.9 Let \mathbb{K} be a field. Then, char(\mathbb{K}) is either zero or a prime number.

Proof: Assume that $\operatorname{char}(\mathbb{K}) = n \neq 0$. Suppose for a contradiction that n = ab where $a, b \in \mathbb{Z}^+$ such that 1 < a, b < n. Then, we see that

$$0_{\mathbb{K}} = n1_{\mathbb{K}} = (ab)1_{\mathbb{K}} = (a1_{\mathbb{K}})(b1_{\mathbb{K}}).$$

Since 1 < a, b < n, we must have that $a1_{\mathbb{K}} \neq 0$ and $b1_{\mathbb{K}} \neq 0$ (because Definition 4.8 defines the characteristic to be the **least** positive integer and we are assuming this to be n, so anything less than it cannot multiply $1_{\mathbb{K}}$ to get $0_{\mathbb{K}}$). Note that these are non-zero elements of a field, so their inverses exist. As such, multiplying the above equation on the left by $(a1_{\mathbb{K}})^{-1}$ tells us that $b1_{\mathbb{K}} = 0$, a contradiction. Therefore, we cannot write n = ab with 1 < a, b < n so it must be that n is prime. **Definition 4.11** Let R be a commutative ring. We call a non-zero element $r \in R \setminus \{0_R\}$ a non-zero zero divisor if there exists an element $s \in R \setminus \{0_R\}$ such that $rs = 0_R$.

Remark Most people simply call them *zero divisors*, omitting the "non-zero" for brevity.

Definition 4.11 Let R be a ring. It is an integral domain (ID) if it satisfies the following:

- (ID1) R is a ring with one, namely 1_R .
- (ID2) The identities are distinct, that is $1_R \neq 0_R$.
- (ID3) R is commutative.
- (ID4) R has **no** non-zero zero divisors.

Note: We can restate Axiom (ID4) in the following alternative-yet-equivalent ways:

- (i) For all $r, s \in R \setminus \{0_R\}$, we have $rs \neq 0_R$.
- (ii) For all $r, s \in R$, $rs = 0_R$ implies that $r = 0_R$ or $s = 0_R$.

Lemma 4.12 Every field is an integral domain.

Proof: Let K be a field. Compare Definitions 4.2 and 4.11 to see Axioms (ID1), (ID2) and (ID3) hold automatically. It only remains to show the final integral domain axiom. Indeed, let $r, s \in \mathbb{K}$ and suppose that $rs = 0_{\mathbb{K}}$. If $r \neq 0_{\mathbb{K}}$, then $r^{-1} \in \mathbb{K}$ exists and we can consider $r^{-1}rs = s = 0_{\mathbb{K}}$, so $s = 0_{\mathbb{K}}$. So, $rs = 0_{\mathbb{K}}$ implies that $r = 0_{\mathbb{K}}$ or $s = 0_{\mathbb{K}}$, which is the alternative form of (ID4). \Box

Definition 4.13 Let R be a ring and $f \in R[x]$ be a non-zero polynomial. Then, we write $f(x) = a_0 + a_1x + \cdots + a_nx^n$ where $n \in \mathbb{N}$ and each $a_i \in R$ with $a_n \neq 0_R$.

- (i) The degree of f is the integer n, denoted deg(f).
- (ii) The leading term of f is the term $a_n x^n$.
- (iii) The leading coefficient of f is the element a_n .

Proposition 4.14 Let R be an integral domain. Then, R[x] is also an integral domain.

Proof: We just need to show the integral domain axioms.

- R[x] is a ring with one where $1_{R[x]} = 1_R$, regarded as a constant polynomial.
- Because R is an integral domain, $1_{R[x]} = 1_R \neq 0_R = 0_{R[x]}$.
- Because R is commutative, so too is R[x].
- Let $f, g \in \mathbb{R}[x] \setminus \{0_{R[x]}\}$ where $f = a_0 + a_1x + \dots + a_nx^n$ and $g = b_0 + b_1x + \dots + b_mx^m$ where $a_n, b_m \neq 0_R$. Then, their product is $fg = a_nb_mx^nx^m + \dots = a_nb_mx^{n+m} + \dots$. Since R is an integral domain, we know that $a_nb_m \neq 0$, which means that $fg \neq 0$.

Remark 4.15 We have actually also shown $\deg(fg) = \deg(f) + \deg(g)$ for $f, g \in R[x] \setminus \{0_{R[x]}\}$.

5 Classes of Integral Domains

Theorem 5.1 (Division Algorithm for \mathbb{Z}) For every $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ such that $0 \leq r < |b|$ and a = qb + r.

Proof: Omitted.

Theorem 5.2 Every ideal of \mathbb{Z} is principal, that is generated by a single element.

Proof: Let $I \subseteq \mathbb{Z}$ be an ideal. If $I = \{0\}$, we are done since $\{0\} = (0)$, so we henceforth assume that $I \neq \{0\}$ is a non-zero ideal. By Axiom (I2), we know that I contains positive elements (since both $\pm x \in I$ for any $x \in I$). As such, let $a \in I$ be the smallest positive element and take some $x \in I$. By the Division Algorithm for \mathbb{Z} , we can write x = qa + r for $q, r \in \mathbb{Z}$ and $0 \leq r < |a| = a$. By Axiom (I4), the absorbing property, we know that $qa \in I$. Therefore, since ideals are closed under addition and negation, $r = x - qa \in I$. Now, r > 0 contradicts the minimality of a, so we must have that r = 0. In other words, $x = qa \in (a)$. This shows the inclusion $I \subseteq (a)$. Conversely, we assumed that $a \in I$ so we immediately have $(a) \subseteq I$ from Lemma 2.4. Consequently, I = (a).

Definition 5.3 A principal ideal domain (PID) is an integral domain in which every ideal is principal. In other words, for each ideal, there exists a single element generating it.

Lemma 5.4 Every field is a principal ideal domain.

Proof: Let \mathbb{K} be a field. Per Lemma 4.12, we know that \mathbb{K} is an integral domain. Suppose that $I \subseteq \mathbb{K}$ is an ideal. If it is zero, it is principal, so assume $I \neq \{0_{\mathbb{K}}\}$. Thus, it contains a non-zero element $a \in I$. But if $x \in \mathbb{K}$, we can write $x = (xa^{-1})a \in I$ by Axiom (I4). Thus, $I = \mathbb{K}$, so we can write $I = (1_{\mathbb{K}})$.

Note: The proof of Lemma 5.4 shows the only ideals of a field K are $\{0_{\mathbb{K}}\}$ and K itself.

Definition 5.5 A Euclidean domain is an integral domain R with a map $V : R \setminus \{0_R\} \to \mathbb{N}$ called the valuation satisfying the following axioms:

(ED1) For all $a, b \in R \setminus \{0_R\}$, we have $V(a) \leq V(ab)$.

(ED2) For every $a, b \in R$ with $b \neq 0_R$, there exist $q, r \in R$ such that a = qb + r and **one** of the following occurs: (i) $r = 0_R$ or (ii) $r \neq 0_R$ and V(r) < V(b).

Remark 5.6 Comparing Definition 5.5 to the Division Algorithm for \mathbb{Z} , notice (ED2) is almost the same **except** we don't insist that $q, r \in R$ are unique which we did do for \mathbb{Z} . Furthermore, we see that the valuation isn't defined on 0_R .

Note: It is enough to have (ED2) only. Indeed, if R is an integral domain with a valuation \mathcal{V} satisfying only (ED2), we can define a new valuation V which satisfies (ED1) and (ED2):

$$V: R \setminus \{0_R\} \to \mathbb{N}, \qquad V(a) = \min\{\mathcal{V}(ra): r \in R \setminus \{0_R\}\}.$$

In words, V(a) is the minimum value attained by \mathcal{V} on non-zero elements of the ideal (a).

Lemma Every field is a Euclidean domain.

Proof: Let K be a field. Per Lemma 4.12, we know that K is an integral domain; it remains to define a valuation map. Indeed, let $V : \mathbb{K} \setminus \{0_{\mathbb{K}}\} \to \mathbb{N}$ be given by V(a) = 1, that is it always outputs the integer one. The fact that Axiom (ED1) holds is trivial. Next, let $a, b \in \mathbb{K}$ with $b \neq 0_{\mathbb{K}}$. Then, we can always write $a = ab^{-1}b + 0_{\mathbb{K}}$, that is $q \coloneqq ab^{-1}$ and $r = 0_{\mathbb{K}}$. This shows that Axiom (ED2) is satisfied.

Theorem 5.8 Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with valuation map V and let $I \subseteq R$ be an ideal. Again, I being the zero ideal is nothing special because we know it is generated by 0_R and we are done; assume therefore that $I \neq \{0_R\}$. As such, we can choose a non-zero element $a \in I \setminus \{0_R\}$ for which V(a) is minimal. The goal is to establish I = (a) by showing each inclusion.

- If $x \in (a)$, then x = ra for some $r \in R$. By Axiom (I4), since a is an element of the ideal, absorption means that $x \in I$. This shows that $(a) \subseteq I$.
- If $x \in I$, then we can write x = qa + r where either (i) r = 0 or (ii) $r \neq 0$ but V(r) < V(a) by Axiom (ED2). But if (ii) is true, then $r = x qa \in I$ but this contradicts the minimality of V(a). The only situation that can occur is (i), so x = qa and thus $x \in (a)$. This shows that $I \subseteq (a)$.

Remark 5.9 The converse of Theorem 5.8 is **not** true; there exist principal ideal domains that are not Euclidean domains, e.g. the (sub)ring $\{a + b\sqrt{-19} : a, b \in \mathbb{Z} \text{ with } a \equiv b \pmod{2}\} \subseteq \mathbb{C}$.

Proposition 5.10 (Division Algorithm for $\mathbb{K}[x]$) Let \mathbb{K} be a field. For every $f, g \in \mathbb{K}[x]$ with $g \neq 0$, there exist unique $q, r \in \mathbb{K}[x]$ such that f = qg + r and either (i) r = 0 or (ii) $r \neq 0$ and $\deg(r) < \deg(g)$.

Proof: Omitted.

Corollary 5.12 For \mathbb{K} a field, $\mathbb{K}[x]$ is a Euclidean domain, and a principal ideal domain.

Proof: Combining Lemma 4.12 and Proposition 4.14, $\mathbb{K}[x]$ is an integral domain. It remains to exhibit a valuation map satisfying the axioms in Definition 5.5. Indeed, let $V : \mathbb{K}[x] \setminus \{0_{\mathbb{K}[x]}\} \to \mathbb{N}$ be given by $V(f) = \deg(f)$. If $f, g \in \mathbb{K}[x] \setminus \{0_{\mathbb{K}[x]}\}$, then $V(fg) = \deg(fg) = \deg(f) + \deg(g)$ by Remark 4.15. Because $\deg(g) \ge 0$, this tells us that $V(f) \le V(fg)$, so Axiom (ED1) is satisfied. Finally, Axiom (ED2) is an immediate consequence of the Division Algorithm for $\mathbb{K}[x]$.

Reminder: The Gaussian integers is the ring $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$, a subring of \mathbb{C} .

Lemma 5.13 The ring $\mathbb{Z}[i]$ is an integral domain.

Proof: As usual, it suffices to show each of the axioms in Definition 4.11.

- It is certainly a ring with multiplicative identity $1_{\mathbb{Z}[i]} = 1_{\mathbb{C}} = 1$.
- Clearly, $1_{\mathbb{Z}[i]} = 1 \neq 0 = 0_{\mathbb{Z}[i]}$.
- Because \mathbb{C} is commutative, so too is $\mathbb{Z}[i]$.
- Let $a, b \in \mathbb{Z}[i]$ with ab = 0. If $a \neq 0$, then $b = a^{-1}ab = a^{-1}0 = 0$; either a = 0 or b = 0. \Box

Definition 5.14 The norm on $\mathbb{Z}[i]$ is $N : \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}$ with $N(a+bi) = |a+bi|^2 = a^2 + b^2$.

Proposition 5.15 The ring $\mathbb{Z}[i]$ is a Euclidean domain, and a principal ideal domain.

Proof: We know from Lemma 5.13 that $\mathbb{Z}[i]$ is an integral domain. It remains to show that there exists a valuation satisfying the relevant axioms. Indeed, we claim that the norm N is such a map. We first notice that $N(x) \ge 1$ for all $x \in \mathbb{Z}[i] \setminus \{0\}$, from which it follows that $N(xy) = |xy|^2 = |x|^2 |y|^2 \ge |x|^2 = N(a)$, so Axiom (ED1) is satisfied.

As for Axiom (ED2), consider $x, y \in \mathbb{Z}[i]$ with $y \neq 0$ and write them as x = s + ti and y = u + vi for $s, t, u, v \in \mathbb{Z}$. We can form the quotient $\frac{a}{b} = l + mi \in \mathbb{C}$ where $l, m \in \mathbb{R}$. However, for (ED2) to be satisfied, we want to use m + ni to define L + Mi where now $L, M \in \mathbb{Z}$. Indeed, let $L, M \in \mathbb{Z}$ be such that $|l - L| \leq \frac{1}{2}$ and $|m - M| \leq \frac{1}{2}$. Then, we can write

$$\frac{a}{b} = L + Mi + (l - L) + (m - M)i \qquad \Rightarrow \qquad a = (L + Mi)b + ((l - L) + (m - M)i)b..$$

Because $a - (L + Mi)b \in \mathbb{Z}[i]$, the term $((l - L) + (m - M)i)b \in \mathbb{Z}[i]$ also. If this is zero, we are done. Hence, assume $((l - L) + (m - M)i)b \neq 0$, in particular $(l - L) + (m - M)i \neq 0$ since we already assume $b \neq 0$. Thus, we use the Triangle Inequality to see that the norm satisfies

$$N\left(\left((l-L) + (m-M)i\right)b\right) = \left|(l-L) + (m-M)i\right|^2 |b|^2 \le \left(\frac{1}{4} + \frac{1}{4}\right)|b|^2 = \frac{1}{2}N(b) < N(b).$$

For q = L + Mi and r = ((l - L) + (m - M)i)b, we conclude that Axiom (ED2) is satisfied. \Box

6 Elements in Integral Domains

Definition 6.1 Let R be an integral domain and $a, b \in R$. We say that a divides b (or a is a divisor of b) if there exists $d \in R$ with da = b; we write $a \mid b$. Otherwise, we write $a \nmid b$.

Definition 6.3 Let R be an integral domain and $a, b \in R$. Then, b is an associate of a if there exists a unit $u \in U(R)$ such that ua = b.

Note: The notion of being associate is symmetric: if b is an associate of a, then ua = b for some $u \in U(R)$. But because $u^{-1} \in U(R)$ automatically, we can also write that $u^{-1}b = a$, so a is an associate of b. Consequently, we may just say that they are associates in R.

Remark Recall that units are invertible elements (Definition 4.1) and that a field is a commutative ring where every non-zero element is invertible (Definition 4.2). Therefore, for \mathbb{K} a field, we have $U(\mathbb{K}) = \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ – this is Axiom (F4) – and thus all non-zero elements are associates.

Lemma 6.5 Let R be an integral domain and $a, b \in R$. Then, a and b are associates in R if and only if both $a \mid b$ and $b \mid a$.

Proof: (\Rightarrow) Let a and b be associates. Then, ua = b for some $u \in U(R)$, which is precisely to say that $a \mid b$. But we can equally write $u^{-1}b = a$, which is precisely to say that $b \mid a$.

(\Leftarrow) Suppose $a \mid b$ and $b \mid a$. Per Definition 6.1, this means there exist $d, e \in R$ such that da = b and eb = a. Therefore, we can substitute the first into the second to get a = eb = eda, which is equivalent to $(1_R - ed)a = 0$. Because R is an integral domain, there are no non-zero zero divisors, so either a = 0 or $1_R - ed = 0$.

- If a = 0, then b = 0 and they are trivially associates.
- If $1_R ed = 0$, then $1_R = ed = de$, so $d, e \in U(R)$ because they are inverse to each other. Therefore, a and b are associates once again.

Proposition 6.7 Let R be an integral domain and $a, b \in R$. Then, a and b are associates in R if and only if (a) = (b).

Proof: (\Rightarrow) Let a and b be associates. Then, ua = b and vb = a for some $u, v \in U(R)$. We now show both inclusions of the ideals each of the associate elements generate.

- If $x \in (a)$, then a = ra = rvb for some $r \in R$, so $x \in (b)$. Consequently, $(a) \subseteq (b)$.
- If $y \in (b)$, then y = sb = sua for some $s \in R$, so $y \in (a)$. Consequently, $(b) \subseteq (a)$.

(\Leftarrow) Suppose (a) = (b). Clearly, $a = 1_R a \in (a)$ which means $a \in (b)$, that is a = rb for some $r \in R$. This is to say that $b \mid a$. Similarly, $b = 1_R b \in (b)$ which means $b \in (a)$, that is b = sa for some $s \in R$. This is to say that $a \mid b$. By Lemma 6.5, we know that a and b are associates. \Box

Definition 6.9 Let R be an integral domain and $a, b \in R$ **not both** zero. Then, an element $d \in R$ is a greatest common divisor (GCD) of a and b, denoted d = gcd(a, b), if these hold: (i) Both $d \mid a$ and $d \mid b$.

(ii) If $c \in R$ such that $c \mid a$ and $c \mid b$, then $c \mid d$.

Note: A greatest common divisor is **not** unique, but any two are related; see Lemma 6.12.

Remark 6.11 Let R be an integral domain with $a \in R \setminus \{0_R\}$. Then, gcd(a, 0) = gcd(0, a) = a.

Lemma 6.12 Let R be an integral domain and $a, b \in R$ not both zero. If d_1 and d_2 are greatest common divisors of a and b, then d_1 and d_2 are associates.

Proof: By Definition 6.9(i), we know that $d_1 \mid a$ and $d_2 \mid b$. But using the fact that d_2 is also a greatest common divisor (in particular that it divides both a and b), Definition 6.9(ii) tells us that $d_1 \mid d_2$. However, we can exchange the roles of d_1 and d_2 above and run the same logic to conclude that $d_2 \mid d_1$. Therefore, Lemma 6.5 tells us that d_1 and d_2 are associates.

Remark 6.13 Let *R* be an integral domain and $a, b \in R$ **not both** zero. If *d* is a greatest common divisor of *a* and *b*, then so too is any associate of *d*. Indeed, let d = gcd(a, b) have an associate $\delta = ud$ for some $u \in U(R)$. We now show that Definition 6.9 is satisfied by the element δ .

- (i) Because $d \mid a$ and $d \mid b$, we see that a = rd and b = sd for some $r, s \in R$. But using the fact that $d = u^{-1}\delta$, this tells us $a = ru^{-1}\delta$ and $b = su^{-1}\delta$; we therefore have $\delta \mid a$ and $\delta \mid b$.
- (ii) Let $c \in R$ such that $c \mid a$ and $c \mid b$. As d is a greatest common divisor, $c \mid d$ which means d = tc for some $t \in R$. Again, this tells us $u^{-1}\delta = tc \Leftrightarrow \delta = utc$; we therefore have $c \mid \delta$.

Reminder: The Euclidean Algorithm in \mathbb{Z} is a method for computing a greatest common divisor of two integers. Indeed, let $a, b \in \mathbb{Z}$ with $b \neq 0$. We proceed as follows for $q_i, r_i \in \mathbb{Z}$:

 $\begin{aligned} a &= q_1 b + r_1, & \text{for } 0 \leq r_1 < |b_1|, \\ b &= q_2 r_1 + r_2, & \text{for } 0 \leq r_2 < r_1, \\ r_1 &= q_3 r_2 + r_3, & \text{for } 0 \leq r_3 < r_2, \\ \vdots \\ r_{k-3} &= q_{k-1} r_{k-2} + r_{k-1}, & \text{for } 0 \leq r_{k-1} < r_{k-2}, \\ r_{k-2} &= q_k r_{k-1} + 0. \end{aligned}$

The algorithm terminates when $r_k = 0$ for some $k \in \mathbb{Z}^+$ and we obtain $gcd(a, b) = r_{k-1}$.

Note: In general, the greatest common divisor does **not** exist in integral domains (that is, being an ID isn't sufficient to guarantee GCDs are well-defined). An example is $\mathbb{Z}[\sqrt{-3}]$; this is an integral domain but $2 + 2\sqrt{-3}$ and 4 do not have a greatest common divisor.

Theorem 6.16 Let R be a principal ideal domain and $a, b \in R$ not both zero. Then, a and b have a greatest common divisor d. Moreover, there exist $s, t \in R$ such that sa + tb = d.

Proof: Let $I := \{ua + vb : u, v \in R\}$; this is an ideal of R (one can prove this by showing the usual axioms are satisfied). Because R is a principal ideal domain, there exists an element that generates this ideal, say $d \in R$ where I = (d). In particular, we have $d \in I$ so there exist $s, t \in R$ with d = sa + tb. It remains to show that d is a greatest common divisor of a and b.

- (i) Because $a, b \in I = (d)$, we have a = xd and b = yd for $x, y \in R$; this says $d \mid a$ and $d \mid b$.
- (ii) Let $c \in R$ such that $c \mid a$ and $c \mid b$. This means that a = mc and b = nc for some $m, n \in R$. Substituting, we see that d = sa + tb = smc + tnc = (sm + tn)c so $c \mid d$.

Note: Writing a greatest common divisor in the form sa + tb is called Bézout's Lemma.

Remark 6.17 Recall that any Euclidean domain is automatically a principal ideal domain by Theorem 5.8. Hence, Theorem 6.16 implies that Euclidean domains also have greatest common divisors. In fact, we can use a corresponding Euclidean Algorithm to compute greatest common divisors (it will be a slight adaptation of the Euclidean Algorithm for \mathbb{Z} in the previous reminder).

Definition 6.19 Let R be an integral domain and $a, b \in R$ not both zero. We say that a and b are coprime (or relatively prime) if $gcd(a, b) = 1_R$.

Note: In the case of coprime elements, the greatest common divisors are precisely U(R); this is a consequence of Lemma 6.12 and Remark 6.13. In particular, if a and b do **not** have a greatest common divisor, then they are not coprime with each other.

Remark 6.18 Recall that the Fibonacci numbers are the sequence defined by $F_0 = F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}.$$

If we apply the Euclidean Algorithm to consecutive Fibonacci numbers, we should see that they are coprime. Indeed, let F_{n+1} and F_{n+2} be two consecutive Fibonacci numbers. Then, we have

$$F_{n+2} = 1F_{n+1} + F_n,$$

$$F_{n+1} = 1F_n + F_{n-1},$$

$$F_n = 1F_{n-1} + F_{n-2}$$

$$\vdots$$

$$F_4 = 1F_3 + F_2$$

$$F_3 = 2F_2 + 0.$$

The algorithm terminates and we can read from it that $gcd(F_{n+1}, F_{n+2}) = F_2 = 1$.

7 Prime and Irreducible Elements

Reminder: An integer $p \in \mathbb{Z}$ is prime if it has two distinct positive divisors, namely 1 and p itself (the fact that we declare these to be distinct excludes calling the number 1 a prime number, which is the normal thing to do). An important property of a prime p is this:

 $p \mid ab$ implies that $p \mid a$ or $p \mid b$.

Definition 7.1 Let R be an integral domain and $a \in R$.

- (a) We call $a \in R$ prime if these hold:
 - (i) Both $a \neq 0_R$ and $a \notin U(R)$.
 - (ii) For all $b, c \in R$, we have $a \mid bc$ implies either $a \mid b$ or $a \mid c$.
- (b) We call $a \in R$ irreducible if these hold:
 - (i) Both $a \neq 0_R$ and $a \notin U(R)$.
 - (ii) If a = bc for some $b, c \in R$, then $b \in U(R)$ or $c \in U(R)$.

Note: Any associate of a prime/irreducible element is itself a prime/irreducible element.

Proposition 7.3 Let R be an integral domain. Then, any prime element is irreducible.

Proof: Let $a \in R$ be prime. By Definition 7.1(a)(i), we know that $a \neq 0_R$ and that a is **not** a unit. This automatically satisfies Definition 7.1(b)(i), so it remains to show Definition 7.1(b)(ii). Indeed, let a = bc for some $b, c \in R$. This clearly tells us that $a \mid bc$. By Definition 7.1(a)(ii), we know therefore that either $a \mid b$ or $a \mid c$.

- If $a \mid b$, then b = da for some $d \in R$. Therefore, a = bc = dac = adc, the last equality coming from Axiom (ID3) which says R is commutative. We can re-write this equation as $a(1_R dc) = 0_R$. We already know that $a \neq 0_R$, so it must follow that $1_R dc = 0_R$ because Axiom (ID4) tells us R has **no** non-zero zero divisors. But this equation is the same as $dc = 1_R$ so c is a unit.
- If $a \mid c$, a near-identical argument works to imply that b is a unit.

Note: The converse is **not** true in general, but it is in some broad cases; see Theorem 7.4.

Theorem 7.4 Let R be a principal ideal domain. Then, any irreducible element is prime.

Proof: Let $a \in R$ be irreducible. By Definition 7.1(b)(i), we know that $a \neq 0_R$ and that a is **not** a unit. This automatically satisfies Definition 7.1(a)(i), so it remains to show Definition 7.1(a)(ii). Indeed, let $a \mid bc$ for some $b, c \in R$. Per Theorem 6.16, there exists a greatest common

divisor, d say, of a and b. We know therefore that $d \mid a$ and $d \mid b$. In particular, a = ed for some $e \in R$. By Definition 7.1(b)(ii), we know e is a unit or d is a unit.

- If e is a unit, then $e^{-1}a = d$ which tells us that $a \mid d$. But because $d \mid b$, transitivity of division implies $a \mid b$.
- If d is a unit, then d is associate to 1_R . Consequently, Remark 6.13 implies $gcd(a, b) = 1_R$. We can use a result from Question Sheet 4 to conclude straight away that $a \mid c$.

Corollary 7.5 Let R be a principal ideal domain. Then, primes and irreducibles coincide.

Proof: This is a direct application of Proposition 7.3 and Theorem 7.4.

The goal is that we want to write any element as a product of irreducibles; this mimics how any integer can be written as a product of prime numbers. The idea is that any $r \in R$ is either irreducible (so we are done) or it is not, and we can factorise it; we then repeat this with the factors until the process terminates. Said process does terminate if R is a PID, but also if it is another class of rings that we next introduce.

Definition 7.7 Let R be an integral domain. It is a unique factorisation domain (UFD) if it satisfies the following, where a ∈ R \ {0_R} is not a unit:
(UFD1) We can write a = p₁ · · · p_n where each p_i ∈ R is irreducible.
(UFD2) If a = p₁ · · · p_n = q₁ · · · q_m where the p_i, q_j ∈ R are irreducible, then n = m and p_i is associate with q_i (after reordering if necessary).

Theorem 7.8 Every principal ideal domain is a unique factorisation domain.

Proof: Omitted.

Note: The converse to Theorem 7.8 is not true, e.g. the ring $\mathbb{Q}[x, y]$ of polynomials in two indeterminates with rational coefficients is a unique factorisation domain but is **not** a principal ideal domain since the ideal (x, y) cannot be generated by a single element.

Corollary Every Euclidean domain is a unique factorisation domain.

Proof: This is an immediate consequence of the fact that every Euclidean domain is a principal ideal domain (Theorem 5.8) in conjunction with Theorem 7.8. \Box

Definition 7.10 Let $d \in \mathbb{Z}$. The ring of square root-adjoined integers is a ring on the set $\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$, where \sqrt{d} is as usual for $d \ge 0$ and $\sqrt{d} = i\sqrt{-d}$ for d < 0.

Lemma 7.11 For $d \in \mathbb{Z}$, the ring $\mathbb{Z}[\sqrt{d}]$ is an integral domain.

Sketch of Proof: One can show $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{C}$ is a subring in a similar way as for the Gaussian integers in Question Sheet 1. Showing the integral domain axioms is similar to Lemma 5.13. \Box

Definition 7.12 A non-zero $d \in \mathbb{Z} \setminus \{0\}$ is called square-free if it has no repeated prime factors, that is $a^2 \mid d$ for some $a \in \mathbb{Z}$ implies that $a^2 = 1$.

Lemma 7.13 If $d \in \mathbb{Z} \setminus \{0, 1\}$ is square-free, then the square root $\sqrt{d} \notin \mathbb{Q}$.

Proof: If d < 0, then $\sqrt{d} = i\sqrt{-d} \notin \mathbb{Q}$ because it isn't even in the real numbers. It remains to consider d > 1. Assume to the contrary that $\sqrt{d} \in \mathbb{Q}$, so there exist integers $a, b \in \mathbb{Z}$ with $b \neq 0$ such that $\sqrt{d} = a/b$. Without loss of generality, suppose gcd(a, b) = 1. This equation implies that $a^2 = db^2$. If p is a prime factor of a, then $p^2 \mid a^2$, which implies that $p^2 \mid db^2$. Because gcd(p, b) = 1, it follows that $gcd(p^2, b^2) = 1$ also. Therefore, $p^2 \mid d$ by a result from Question Sheet 4, but this contradicts the fact that d is square-free. Therefore, p is **not** a prime factor of a, so $a = \pm 1$. However, because $d \mid a$, this means that $d = \pm 1$, which is again a contradiction. \Box

Corollary 7.14 If $d \in \mathbb{Z} \setminus \{0, 1\}$ is square-free, then $a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is zero if and only if a = b = 0.

Proof: If a = b = 0, $a + b\sqrt{d} = 0$. Conversely, let $a + b\sqrt{d} = 0$. If $b \neq 0$, then $\sqrt{d} = -a/b \in \mathbb{Q}$, contradicting Lemma 7.13. Hence, b = 0 and a = 0 follows immediately.

Definition 7.15 Let $d \in \mathbb{Z} \setminus \{0, 1\}$. The norm on $\mathbb{Z}[\sqrt{d}]$ is the map $N : \mathbb{Z}[\sqrt{d}] \to \mathbb{N}$ where $N(a + b\sqrt{d}) = |a^2 - db^2|.$

Note: In other words, then above norm N is such that $a + b\sqrt{d} \mapsto (a + b\sqrt{d})(a - b\sqrt{d})$.

Lemma The norm N in Definition 7.15 is well-defined.

Proof: Suppose that $a + b\sqrt{d} = s + t\sqrt{d}$. Then, we see that $(a-s) + (b-t)\sqrt{d} = 0$. By Corollary 7.14, this is true if and only if a - s = 0 and b - t = 0; this means that a = s and b = t. In particular, $N(a + b\sqrt{d}) = N(s + t\sqrt{d})$ which is to say that N is well-defined.

Lemma 7.16 Let $d \in \mathbb{Z} \setminus \{0, 1\}$ be square-free. The norm satisfies the following: (i) For $x, y \in \mathbb{Z}[\sqrt{d}] \setminus \{0\}$, we have N(xy) = N(x)N(y). (ii) For $x \in \mathbb{Z}[\sqrt{d}]$, x is a unit if and only if N(x) = 1.

Proof: (i) Let $x = a + b\sqrt{d}$ and $y = s + t\sqrt{d}$ be non-zero where $a, b, s, t \in \mathbb{Z}$. Then,

$$\begin{split} N(xy) &= N\left((a + b\sqrt{d})(s + t\sqrt{d})\right) \\ &= N\left(as + btd + (at + bs)\sqrt{d}\right) \\ &= \left|(as + btd)^2 - d(at + bs)^2\right| \\ &= \left|a^2s^2 + 2asbtd + b^2t^2d^2 - da^2t^2 - 2asbtd - db^2s^2\right| \\ &= \left|a^2s^2 + b^2t^2d^2 - da^2t^2 - db^2s^2\right| \\ &= \left|(a^2 - db^2)(s^2 - dt^2)\right| \\ &= N(x)N(y). \end{split}$$

(ii) Let $x \in \mathbb{Z}[\sqrt{d}]$ be a unit. Then, there exists $y \in \mathbb{Z}[\sqrt{d}]$ such that xy = yx = 1. Clearly we have that $x \neq 0$ and $y \neq 0$. Thus, we conclude from (i) above that 1 = N(xy) = N(x)N(y). Because N(x) and N(y) are non-negative integers, it must be that N(x) = 1 and N(y) = 1. Conversely, suppose that $x = a + b\sqrt{d} \neq 0$ and that N(x) = 1. This means that

$$(a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2 = \pm 1,$$

from which we conclude that either $a - b\sqrt{d}$ or $-(a - b\sqrt{d})$ is an inverse for $x = a + b\sqrt{d}$. This is equivalent to saying that $x \in U(\mathbb{Z}[\sqrt{d}])$.

Lemma 7.18 Let $d \in \mathbb{Z} \setminus \{0, 1\}$ be square-free and $x \in \mathbb{Z}[\sqrt{d}] \setminus \{0\}$ such that N(x) is prime. Then, x is an irreducible element of $\mathbb{Z}[\sqrt{d}]$.

Proof: We know that $x \neq 0$ and since $N(x) \neq 1$, we know that x is not a unit via Lemma 7.16(ii). Suppose x = yz where $y, z \in \mathbb{Z}[\sqrt{d}]$. Taking norms tells us that N(x) = N(yz) = N(y)N(z). However, we are assuming that N(x) is prime so one of N(y) = 1 and N(z) = 1 is true. Thus, either y is a unit or z is a unit. Hence, the irreducibility conditions are satisfied.

Theorem 7.21 Let R be a principal ideal domain and $p \in R$ be irreducible. Then, the quotient ring R/(p) is a field.

Proof: This amounts to showing the field axioms from Definition 4.2.

• Because R is a principal ideal domain, it has a one; Theorem 2.13 tells us that the quotient ring also has a one, namely $1_{R/(p)} = 1_R + (p)$.

- If $1_{R/(p)} = 0_{R/(p)}$, then we would have $1_R + (p) = 0_R + (p)$, which implies that $1_R \in (p)$ by Lemma 2.8. Hence, $1_R = rp$ for some $r \in R$, so p is a unit; this is a contradiction. Therefore, we must have $1_{R/(p)} \neq 0_{R/(p)}$.
- Because R is commutative, so too is R/(p).
- Let $r \in R$ and suppose that $r + (p) \neq 0_{R/(p)}$. The aim is to show that this is a unit. Well, Lemma 2.8 again applies to reveal that $r \notin (p)$. Since $r \neq 0_R$, it follows from Theorem 6.16 that $d := \gcd(r, p)$ exists. In particular, $d \mid p$ which means p = cd for some $c \in R$. Because p is assumed irreducible, it must be that c is a unit or d is a unit. Note that c being a unit means $c^{-1}p = d$, so $p \mid d$. But because $d \mid r$, transitivity implies that $p \mid r$, which contradicts $r \notin (p)$. Thus, c is **not** a unit but d **is** a unit. By Theorem 6.16, specifically Bézout's Lemma, we can find $s, t \in R$ such that d = sr + tp. This implies that $1_R = d^{-1}sr + d^{-1}tp$. Consequently, $1 - d^{-1}sr \in (p)$ and we again use Lemma 2.8 to conclude that $1_R + (p) = d^{-1}sr + (p)$; this final equation can be re-written as $1_{R/(p)} = (d^{-1}s + (p))(r + (p))$ using coset multiplication. But this tells us that r + (p)has an inverse, so it is a unit.

Note: We have this chain of class inclusions for the different types of rings we encountered:

rings \cup I rings with multiplicative identity \cup I commutative rings \cup I integral domains \cup I unique factorisation domains \cup I principal ideal domains \cup I Euclidean domains \cup I Euclidean domains

8 Irreducible Polynomials

Definition Let R be a ring. We call $f \in R[x]$ a constant polynomial if deg(f) = 0.

Lemma 8.1 Let R be an integral domain. Then, U(R[x]) = U(R).

Proof: We show both inclusions. Indeed, if $f \in U(R)$, then we regard it as a constant polynomial (a polynomial of degree zero). Because f is a unit of R, there exists an inverse $g \in R$ which is also a constant polynomial. Therefore, $f \in U(R[x])$; this shows $U(R) \subseteq U(R[x])$. Conversely, if $f \in U(R[x])$, then there exists $g \in R[x]$ such that $fg = 1_{R[x]} = 1_R$ (regarded as the constant polynomial). In particular, we know that f and g are non-zero. Remark 4.15 readily implies that $\deg(fg) = \deg(f) + \deg(g) = \deg(1_R) = 0$. Because the degree is non-negative, it must be that $\deg(f) = \deg(g) = 0$, so they are both constant polynomials. In particular, $f \in U(R)$; this shows $U(R[x]) \subseteq U(R)$.

Note: If R is **not** an integral domain, Lemma 8.1 can fail, e.g. $U(\mathbb{Z}_4) \not\supseteq 1 + 2x \in U(\mathbb{Z}_4[x])$.

Lemma 8.3 An element $f \in \mathbb{Z}[x] \setminus \{0\}$ is irreducible in $\mathbb{Z}[x]$ if and only if (i) $f \neq \pm 1$; and (ii) f = gh where $g, h \in \mathbb{Z} \setminus \{0\}$ implies that $g = \pm 1$ or $h = \pm 1$.

Proof: Clear from Definition 7.1(b) and Lemma 8.1, which says $U(\mathbb{Z}[x]) = U(\mathbb{Z}) = \{\pm 1\}$. \Box

Lemma 8.4 For \mathbb{K} a field, an element $f \in \mathbb{K}[x] \setminus \{0_{\mathbb{K}}\}$ is irreducible in $\mathbb{K}[x]$ if and only if (i) f is **not** a constant polynomial; and (ii) f = gh where $g, h \in \mathbb{K}[x] \setminus \{0_{\mathbb{K}}\}$ implies that $g \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ or $h \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$.

Proof: Clear from Definition 7.1(b) and Lemma 8.1, which says $U(\mathbb{K}[x]) = U(\mathbb{K}) = \mathbb{K} \setminus \{0_{\mathbb{K}}\}$. \Box

Note: Condition (ii) in Lemma 8.4 can be altered to the following similar statement: (ii) f = gh where $g, h \in \mathbb{K}[x] \setminus \{0_{\mathbb{K}}\}$ implies that $g \in \mathbb{K}$ or $h \in \mathbb{K}$. This is because we assume that f is non-zero, so automatically g and h must be non-zero.

Lemma 8.5 Let \mathbb{K} be a field. Any degree one polynomial in $\mathbb{K}[x]$ is irreducible.

Proof: Let $f \in \mathbb{K}[x]$ have degree one; so f is non-constant. Assume f = gh for some non-zero $g, h \in \mathbb{K}[x]$. Then, Remark 4.15 tells us $\deg(g) + \deg(h) = \deg(f) = 1$. Hence, either $\deg(g) = 0$ or $\deg(h) = 0$, which is to say $g \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ or $h \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$; this demonstrates irreducibility. \Box

Note: Recall Corollary 5.12 says $\mathbb{K}[x]$ is a principal ideal domain, so Theorem 7.8 implies any non-constant polynomial in $\mathbb{K}[x]$ can be uniquely written as a product of irreducible polynomials, up to reordering and multiplication by non-zero scalars (i.e. the units).

Reminder: A root of a polynomial $f \in \mathbb{K}[x]$ is an element $a \in \mathbb{K}$ such that f(a) = 0.

Lemma 8.6 Let \mathbb{K} be a field and $f \in \mathbb{K}[x]$. Then, $a \in \mathbb{K}$ is a root if and only if $(x-a) \mid f$.

Proof: (⇒) Assume f(a) = 0, i.e. *a* is a root of *f*. Then, the Division Algorithm for $\mathbb{K}[x]$ (Proposition 5.10) allows us to write f = q(x-a)+r, where (i) $r = 0_{\mathbb{K}}$ or (ii) deg $(r) < \deg(x-a)$, but deg(x-a) = 1 so this forces deg(r) = 0. Either way, we see that *r* is a constant polynomial. Because f(a) = 0, this necessarily means that $r = 0_{\mathbb{K}}$ and so $(x-a) \mid f$.

(⇐) Assume (x - a) | f. Then, f = (x - a)g for some $f \in \mathbb{K}[x]$. But clearly f(a) = 0.

Corollary 8.7 Let \mathbb{K} be a field. Any polynomial in $\mathbb{K}[x]$ with degree at least two that also has a root in \mathbb{K} is **not** irreducible.

Proof: By Lemma 8.6, such a polynomial f has a degree one factor, so f = gh where deg(g) = 1 and deg $(h) \ge 1$; this means neither g nor h is constant and thus f is not irreducible.

Method – Non-Irreducibility: Suppose we have a polynomial $f \in \mathbb{K}[x]$ where deg $(f) \ge 2$. Then, we can immediately show that it is **not** irreducible by finding a root $a \in \mathbb{K}$.

Corollary 8.8 Let \mathbb{K} be a field. Any polynomial in $\mathbb{K}[x]$ with degree two or three that has no root in \mathbb{K} is irreducible.

Proof: Let f be such a polynomial; in particular, it is non-constant. Furthermore, Lemma 8.6 implies that it has no degree one factor, so any factorisation f = gh must be such that $\deg(g)$ and $\deg(h)$ are not one and sum to either two or three; at least one has to be zero degree. \Box

Theorem 8.9 (Fundamental Theorem of Algebra) Any non-constant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C} .

Proof: Omitted.

Proposition 8.10 Let \mathbb{K} be a field and consider the polynomial ring $\mathbb{K}[x]$.

- (i) If $\mathbb{K} = \mathbb{C}$, the irreducible polynomials are the linear polynomials.
- (ii) If $\mathbb{K} = \mathbb{R}$, the irreducible polynomials are the linear polynomials and the quadratic polynomials with **no** real roots.

Proof: (i) Lemma 8.5 says precisely that linear polynomials are irreducible. Next, let $f \in \mathbb{C}[x]$ with deg(f) > 1; the Fundamental Theorem of Algebra implies f has a root in \mathbb{C} , so Corollary 8.7 tells us f is **not** irreducible. In other words, linear polynomials are the only irreducibles.

(ii) Omitted.

Theorem 8.11 (Rational Root Test) Let $f = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$. If $a \in \mathbb{Q}$ is a rational root of f of the form a = p/q with $q \neq 0$ and gcd(p,q) = 1, then $p \mid a_0$ and $q \mid a_n$.

Proof: Let $a = p/q \in \mathbb{Q}$ with $q \neq 0$ and gcd(p,q) = 1 (in particular, if a = 0, take p = 0 and q = 1). Because a is a root of f, we know that f(a) = 0; this can be written fully as

$$a_0 + a_1\left(\frac{p}{q}\right) + a_2\left(\frac{p}{q}\right)^2 + \dots + a_n\left(\frac{p}{q}\right)^n = 0.$$

Multiplying both sides by q^n tells us that

$$a_0q^n + a_1pq^{n-1} + a_2p^2q^{n-2} + \dots + a_np^n = 0.$$

In other words, we have

$$a_0q^n = -p(a_1q^{n-1} + a_2pq^{n-2} + \dots + a_np^{n-1}),$$

so we conclude $p \mid a_0q^n$. Because gcd(p,q) = 1, it follows also that $gcd(p,q^n) = 1$ and thus $p \mid a_0$. On the other hand, we could rewrite the root equation as

$$a_n p^n = -q(a_0 q^{n-1} + a_1 p q^{n-2} + \dots + a_{n-1} p^{n-1})$$

from which we conclude $q \mid a_n p^n$. A similar argument to the above means we also have $q \mid a_n$. \Box

Method – Rational Root Test: Suppose we have a polynomial f of degree two or three.

- (i) Check that the coefficients of f are integers.
- (ii) Let $a = p/q \in \mathbb{Q}$ be a root. Write the possible values of p and q using Theorem 8.11.
- (iii) Use Step (ii) to find a list of candidates for a.

(iv) Check the values of f(a) for each candidate from Step (iii).

If $f(a) \neq 0$ for each candidate from Step (iii), then Corollary 8.8 tells us f is irreducible.

Definition 8.13 Let $a_1, ..., a_n \in \mathbb{Z}$ not all zero. A greatest common divisor of $a_1, ..., a_n$ is an integer $d \in \mathbb{Z}$ such that the following are satisfied:

- (i) $d \mid a_i$ for all i.
- (ii) If $c \in \mathbb{Z}$ such that $c \mid a_i$ for all i, then $c \mid d$.

Definition 8.14 A non-zero polynomial $f \in \mathbb{Z}[x]$ is primitive if its coefficients are coprime.

Lemma 8.15 Let $f \in \mathbb{Q}[x] \setminus \{0\}$. Then, f can be written uniquely in the form

 $f = c_f f_0,$

where $c_f \in \mathbb{Q}^+$ is a positive rational, the so-called content of f, and $f_0 \in \mathbb{Z}[x]$ is primitive. Moreover, if $f \in \mathbb{Z}[x] \setminus \{0\}$, then c_f is a positive greatest common divisor of the coefficients.

Proof: Let $b \in \mathbb{Z}^+$ such that $bf \in \mathbb{Z}[x]$; one way to choose b is to take the absolute value of the product of the denominators of the coefficients of f. Let a be a positive greatest common divisor of the coefficients of bf and let f_0 be the element of $\mathbb{Q}[x]$ satisfying $bf = af_0$. Such an f_0 is primitive. Then, we see that

$$f = \frac{a}{b}f_0 \qquad \Rightarrow \qquad c_f = \frac{a}{b}$$

If $f \in \mathbb{Z}[x]$, we take b = 1 and this means $c_f = a$ as required. Uniqueness is omitted.

Reminder: The map $\varphi_n : \mathbb{Z} \to \mathbb{Z}_n$ given by $\varphi_n(a) = a \pmod{n}$ is a ring homomorphism.

Definition We can extend φ_n from above by defining the map $\psi_n : \mathbb{Z}[x] \to \mathbb{Z}_n[x]$ as follows:

$$\psi_n(a_0 + a_1x + \dots + a_kx^k) = \varphi_n(a_0) + \varphi_n(a_1)x + \dots + \varphi_n(a_k)x^k$$

that is we apply the map φ_n to the coefficients of the polynomial we input into ψ_n .

Lemma 8.17 The map $\psi_n : \mathbb{Z}[x] \to \mathbb{Z}_n[x]$ from above is a ring homomorphism.

Sketch of Proof: We must show the axioms from Definition 3.1. To this end, let $f, g \in \mathbb{Z}[x]$ be given by $f = a_0 + a_1x + \cdots + a_kx^k$ and $g = b_0 + b_1x + \cdots + b_mx^m$. Without loss of generality, let $n \leq m$. Therefore, we see that

$$\begin{split} \psi_n(f+g) &= \psi_n(a_0 + a_1x + \dots + a_kx^k + b_0 + b_1x + \dots + b_mx^m) \\ &= \psi_n\left((a_0 + b_0) + \dots + (a_n + b_n)x^n + b_{n+1}x^{n+1} + \dots + b_mx^m\right) \\ &= \varphi_n(a_0 + b_0) + \dots + \varphi_n(a_n + b_n)x^n + \varphi_n(b_{n+1})x^{n+1} + \dots + \varphi_n(b_m)x^m \\ &= \varphi_n(a_0) + \varphi_n(b_0) + \dots + \varphi_n(a_n)x^n + \varphi_n(b_n)x^n + \varphi_n(b_{n+1})x^{n+1} + \dots + \varphi_n(b_m)x^m \\ &= \left(\varphi_n(a_0) + \dots + \varphi_n(a_n)x^n\right) + \left(\varphi_n(b_0) + \dots + \varphi_n(b_m)x^m\right) \\ &= \psi_n(f) + \psi_n(g). \end{split}$$

Similarly, we can show $\psi_n(fg) = \psi_n(f)\psi_n(g)$; this again relies on the fact that ϕ_n is itself a ring homomorphism (which we used in the fourth equality above).

Lemma 8.18 (Gauss' Lemma) Let $f, g \in \mathbb{Z}[x]$ be primitive. Then, $fg \in \mathbb{Z}[x]$ is primitive.

Proof: Suppose to the contrary that f and g are primitive but that fg is **not**. Then, the positive greatest common divisor of the coefficients of fg is more than one (if it was one, they are all coprime and it is primitive). Hence, there is a prime number p which divides every coefficient of fg. Therefore, $\psi_p(f)\psi_p(g) = \psi_p(fg) = 0 \in \mathbb{Z}_p[x]$, using Lemma 8.17 to get the left-hand equality. But \mathbb{Z}_p is a field by Theorem 7.21, so it is an integral domain by Proposition 4.12. But Proposition 4.14 implies that $\mathbb{Z}_p[x]$ is therefore also an integral domain. As there are no non-zero zero divisors, we have $\psi_p(f) = 0$ or $\psi_p(g) = 0$. We now consider these (identical) cases below:

- If $\psi_p(f) = 0$, then p divides every coefficient of f, contradicting f being primitive.
- If $\psi_p(g) = 0$, then p divides every coefficient of g, contradicting g being primitive.

Either way, we achieve a contradiction; it must be that fg is primitive.

Corollary 8.19 Let $f, g \in \mathbb{Z}[x] \setminus \{0\}$. In Lemma 8.15 notation, $c_{fg} = c_f c_g$ and $(fg)_0 = f_0 g_0$.

Proof: Let $f, g \in \mathbb{Z}[x]$; we can write $f = c_f f_0$ and $g = c_g g_0$ and $fg = c_{fg}(fg)_0$ via Lemma 8.15, where the polynomials $f_0, g_0, (fg)_0 \in \mathbb{Z}[x]$ are primitive and the contents $c_f, c_g, c_{fg} \in \mathbb{Q}^+$ are positive rationals. But we can also write the product as

$$fg = c_f c_g f_0 g_0.$$

We know from Gauss' Lemma that f_0g_0 is primitive. But Lemma 8.15 also tells us that the expressions are unique, so we must have that $c_{fg} = c_f c_g$ and $(fg)_0 = f_0g_0$.

Theorem 8.20 (Gauss' Theorem) Let $f \in \mathbb{Z}[x] \setminus \mathbb{Z}$ be a non-constant polynomial. If f is not a product of two non-constant polynomials in $\mathbb{Z}[x]$, then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose f = gh where $g, h \in \mathbb{Q}[x] \setminus \{0\}$. By Lemma 8.15, we can write the following:

$f = c_f f_0,$	with $c_f \in \mathbb{Q}^+$ and f_0 primitive,
$g = c_g g_0,$	with $c_g \in \mathbb{Q}^+$ and g_0 primitive,
$h = c_h h_0,$	with $c_h \in \mathbb{Q}^+$ and h_0 primitive.

Because f = gh, we must have that $c_f = c_g c_h$ and $f_0 = g_0 h_0$ by the uniqueness part of Lemma 8.15. Consequently, we see that $f = c_f f_0 = c_f g_0 h_0$. Now, $f \in \mathbb{Z}[x]$ which means that $c_f \in \mathbb{Z}$ by Corollary 8.19. Therefore, $c_f g_0 \in \mathbb{Z}[x]$ and $h_0 \in \mathbb{Z}[x]$. But f is **not** a product of non-constant polynomials by assumption, so either $c_f g_0$ (and therefore g) is constant or h_0 (and therefore h) is constant.

Method – Irreducibility via Gauss' Theorem: Let $f \in \mathbb{Q}[x]$ be some polynomial.

- (i) Check that $f \in \mathbb{Q}[x] \setminus \mathbb{Z}$.
- (ii) Apply the Rational Root Test and Lemma 8.6 to conclude that f has **no** linear factors in $\mathbb{Q}[x]$, and hence $\mathbb{Z}[x]$.
- (iii) Writing f as a product of integer polynomials of degree at least two, show that this is not possible by expanding and comparing coefficients.
- (iv) Use Gauss' Theorem to conclude that f is irreducible.

Theorem 8.22 (Eisenstein's Irreducibility Criterion) Let $f = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x] \setminus \mathbb{Z}$ be non-constant and assume there exists a prime $p \in \mathbb{Z}$ satisfying the following:

(i) p | a₀, ..., p | a_{n-1}.
(ii) p ∤ a_n.
(iii) p² ∤ a₀.
Then, f is irreducible in Q[x].

Proof: Suppose f = gh is a product of non-constant polynomials $g, h \in \mathbb{Z}[x] \setminus \mathbb{Z}$ of this form:

$$f = (b_0 + b_1 x + \dots + b_r x^r)(c_0 + c_1 x + \dots + c_s x^s),$$

where $b_r \neq 0$ and $c_s \neq 0$. Then, r + s = n for 0 < r < n and 0 < s < n by comparing degrees. Moreover, we have that the constant part $a_0 = b_0 c_0$. We also have that $a_n = b_r c_s$. Because $p \mid a_0$ and $p^2 \not\mid a_0$, there are two cases to consider.

• Assume $p \mid b_0$ but $p \not\mid c_0$. Because we also assume $p \not\mid a_n$, it must be that $p \not\mid b_r$ and $p \not\mid c_s$. Suppose that b_m is the first coefficient in g such that $p \not\mid b_m$. Notice that we can write

$$a_m = b_0 c_m + b_1 c_{m-1} + \dots + b_m c_0,$$

with $c_i = 0$ for all i > s. Then, p divides every term in this sum **except** the last one (because this is the case where $p \not\mid c_0$). Hence, it follows that $p \not\mid a_m$. By (i) in the statement of the theorem, this means m = n; this is a contradiction as $m \le r < n$, so we end up with n < n.

• Assume $p \not\mid b_0$ but $p \mid c_0$. A near-identical argument will also yield a contradiction

Either way, we have a contradiction so f is **not** the product of two non-constant polynomials with integer coefficients. Thus, Gauss' Theorem tells us f is irreducible in $\mathbb{Q}[x]$.

Method – Irreducibility via Eisenstein's Criterion: Let $f \in \mathbb{Q}[x]$ be some polynomial.

(i) Check that $f \in \mathbb{Z}[x] \setminus \mathbb{Z}$.

(ii) Find a prime $p \in \mathbb{Z}$ satisfying the conditions of Theorem 8.22.