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1 Limits and Continuity

1.1 The Limit of a Convergent Sequence

Reminder: A sequence of real numbers is a function a : Z+ → R, where we denote the
output by an (instead of the usual notation a(n) for functions). A term in the sequence is
denoted by an, whereas the whole sequence is denoted by (an)n∈Z+ , or just (an) for short.

Definition 1.1 A real sequence (an) converges to a real number L ∈ R if, for each ε > 0,
there exists N ∈ Z+ such that, for all n ≥ N , we have |an − L| < ε. In this case, we call L
the limit of (an) and we write either an → L or lim

n→∞
an = L. Here, we call (an) convergent.

Remark Given a sequence (an), we can show that it ‘approaches’ the number L as n ∈ Z+ gets
large by showing that for any positive number (ε > 0), there exists a point in the sequence aN
(there exists N ∈ Z+) for which it and every subsequent term in the sequence (for all n ≥ N)
lies within distance that positive number of the number L (|an − L| < ε). Because this needs
to work for any ε, the idea is that the distance can be as large or as small as you like and we
should still be able to find N ∈ Z+ to make this work. Geometrically, if we plot n against an,
every point for n ≥ N will live inside a rectangle with width 2ε centred on the line an = L.

n

an

L

N

2ε

Figure 1: The geometric interpretation of the convergence of the sequence (an).

Lemma (Triangle Inequality) For all x, y ∈ R, we have |x+ y| ≤ |x|+ |y|.

Proof : By definition, it is clear that x ≤ |x| and y ≤ |y|. Therefore, adding these inequalities
tells us that x+y ≤ |x|+ |y|. Furthermore, we also see that −x ≤ |x| and −y ≤ |y|. Adding these
inequalities produces −(x+ y) ≤ |x|+ |y|. Combining these statements gives what we want:

|x+ y| ≤ |x|+ |y|.

Note: Another useful trick in analysis is to add zero to something in a non-trivial way.
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Proposition 1.4 (Uniqueness of Limits) The limit of a convergent sequence is unique.

Proof : Let (an) be convergent and suppose that an → L and an → K. It is our task to prove
L = K. To this end, let ε > 0 be given. We can apply Definition 1.1 in the following situations:

� There exists N1 ∈ Z+ such that, for all n ≥ N1, |an − L| < ε/2.

� There exists N2 ∈ Z+ such that, for all n ≥ N2, |an −K| < ε/2.

Define N := max{N1, N2}. Then, for all n ≥ N , we see that

|L−K| = |L− an + an −K|
≤ |L− an|+ |an −K|, by the Triangle Inequality,

= |an − L|+ |an −K|, by properties of the absolute value,

< ε/2 + ε/2, by the inequalities above,

= ε.

This shows that the ‘distance’ between the real numbers L andK is less than the positive number
ε, but this works for any ε, so we must have |L−K| = 0. In other words, L = K as required.

Definition 1.5 Let (an) be a sequence.
(i) It is bounded above if there exists M ∈ R where an ≤M for all n ∈ Z+. In this case,

we call the number M an upper bound on the sequence.
(ii) It is bounded below if there exists K ∈ R where an ≥ K for all n ∈ Z+. In this case,

we call the number K an lower bound on the sequence.
(iii) It is bounded if it is bounded above and below.

Proposition 1.6 If a sequence (an) is convergent, then it is bounded.

Proof : Let an → L for some L ∈ R. Then, there exists N ∈ Z+ such that, for all n ≥ N , we
have |an − L| < 1 (remember this works for all ε > 0, so it works for ε = 1 in particular). By
the Triangle Inequality, this means that |an| ≤ |L|+ 1 for all n ≥ Z+. If we define the number

K := max{|a1|, |a2|, ..., |aN−1|, |L|+ 1},

then we see that |an| ≤ K for every n ∈ Z+, as required.

Note: The idea of the proof is this: even though |an| ≤ |L| + 1 for all n ≥ N , we aren’t
done yet. It might be that an earlier term of the sequence is larger than this number.
Therefore, we must consider the sizes of these earlier terms, namely |an| for n < N . Hence,
K is the largest number amongst the earlier terms and the number |L|+ 1.

Remark The converse of Proposition 1.6 is false: an = (−1)n is bounded but not convergent.
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Proposition 1.7 If an → L and K ≤ an ≤M for all n ∈ Z+, then K ≤ L ≤M .

Proof : Since an → L, there exists N ∈ Z+ such that, for all n ≥ N , we have |an − L| < ε. In
particular, it is satisfied by the term aN , meaning |aN − L| < ε. We now show each inequality.

� Assume to the contrary that L > M . Then, we can choose ε = L−M > 0. But this means
that aN > L− ε =M , a contradiction to the fact that an ≤M for all n ∈ Z+.

� Assume to the contrary that L < K. Then, we can choose ε = K −L > 0. But this means
that aN < L+ ε = K, a contradiction to the fact that an ≥ K for all n ∈ Z+.

Remark The bounds in Proposition 1.7 must be non-strict, that is if we impose K < an < M
for all n ∈ Z+, the statement is false: an = 1/n satisfies 0 < an < 2 for all n, but its limit L = 0
does not satisfy the same inequality 0 < L < 2.

Proposition 1.8 (Squeeze Rule) If an ≤ bn ≤ cn with an → L and cn → L, then bn → L.

Proof : For any ε > 0, there exists N ∈ Z+ such that, for all n ≥ N , we have both |an − L| < ε
and |cn − L| < ε. By definition of the absolute value, this means that an > L−ε and cn < L+ε.
Hence, for all n ≥ N , we have

bn ≥ an > L− ε and bn ≤ cn < L+ ε.

Combining these gives us L − ε < bn < L + ε, which is equivalent to −ε < bn − L < ε by
subtracting L. But this is precisely |bn − L| < ε, and so bn → L as required.

Remark We can visualise Proposition 1.8 with a geometric interpretation given below in Figure 2.
Notice that in the picture, the sequence (bn) is confined to the rectangle of width 2ε much earlier
than either of N1 and N2. But the point of Proposition 1.8 is that it gives us a cheap-and-easy
way to show that (bn) does indeed end up staying inside this rectangle.

n

L

N

2ε

an ≤ bn ≤ cn

Figure 2: The geometric interpretation of the Squeeze Rule.
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Proposition 1.9 (Algebra of Limits) For an → A and bn → B, the following are true:
(i) an + bn → A+B.
(ii) anbn → AB.
(iii) an/bn → A/B if bn ̸= 0 for all n ∈ Z+ and B ̸= 0.

Sketch of Proof : (i) Since (an) and (bn) are convergent, we can assume |an −A| < ε/2 and
|bn −B| < ε/2 for large enough n. Then, we apply the Triangle Inequality to

∣∣an + bn − (A+B)
∣∣.

(ii) Since (bn) is convergent, it is bounded by Proposition 1.6, that is |bn| ≤ K for some K ∈ R.
But since (an) is also convergent, we can assume |an −A| < ε′ and |bn −B| < ε′ for large enough
n, where for any ε > 0 we define

ε′ :=
ε

K + |A|
.

Then, we apply the Triangle Inequality to |anbn −AB| = |anbn −Abn +Abn −AB|.

(iii) We prove that 1/bn → 1/B and apply (ii). To this end, since B ̸= 0, we know that |B|/2 > 0.
Since (bn) is convergent, we can assume |bn −B| < |B|/2 for n ≥ N1 and |bn −B| < ε′, where for
any ε > 0 we define ε′ := ε|B|2/2. Then, we write

∣∣1/bn − 1/B
∣∣ using a common denominator.

Definition 1.10 A subsequence of (an) is a sequence (bk) such that there exists a strictly
increasing sequence of positive integers (nk) such that bk = ank

.

In other words, the terms in (bk) must occur in (an) in the same order. An alternate take is that
we can obtain (bk) from (an) by simply omitting the terms we don’t want.

Proposition 1.11 If an → L and (bk) is a subsequence of (an), then bk → L.

Proof : Let ε > 0 be given. Since an → L, there exists N ∈ Z+ such that, for all n ≥ N , we have
|an − L| < ε. By Definition 1.10, we can write bk = ank

for a strictly increasing sequence (nk) of
positive integers. Note that n1 ≥ 1 and, if nk ≥ k, then nk+1 ≥ nk + 1 ≥ k + 1. By induction,
we conclude that nk ≥ k for all k ∈ Z+. Therefore, for all k ≥ N , we have nk ≥ nN ≥ N which
means |bk − L| =

∣∣ank
− L

∣∣ < ε.

Method – Showing Divergence of a Sequence: To show that a sequence (an) does not
converge, one can show that it has a subsequence which diverges. Alternatively, it suffices
to find subsequences that converge to different limits (combine Propositions 1.4 and 1.11).
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Definition 1.12 Let (an) be a sequence.
(i) It is increasing if an+1 ≥ an for all n ∈ Z+.
(ii) It is decreasing if an+1 ≤ an for all n ∈ Z+.
(iii) It is strictly increasing if an+1 > an for all n ∈ Z+.
(iv) It is strictly decreasing if an+1 < an for all n ∈ Z+.
(v) It is monotonic if it is either increasing or decreasing.

We now state but do not prove the following important results (they were proved in MATH1026).

Theorem 1.13 (Monotone Convergence) Every bounded monotonic sequence converges.

Theorem 1.14 (Bolzano-Weierstrass) Any bounded sequence has a convergent subsequence.

1.2 Convergence of Sequences and the Cauchy Property

Definition 1.15 A real sequence (an) is Cauchy (or has the Cauchy property) if, for each
ε > 0, there exists N ∈ Z+ such that, for all n,m ≥ N , we have |an − am| < ε.

Remark The definition of Cauchy is very similar to that of convergent, with a key difference; no
mention of a real number L. Instead, we look at the difference between two terms an and am. In
words, where convergence is about having all terms after a certain point being within distance ε
of the limit L, the Cauchy property is about having all terms after a certain point being within
distance ε of each other.

Lemma 1.16 If (an) converges, then it is Cauchy.

Proof : Let an → L, meaning for any ε > 0, there exists N ∈ Z+ such that, for all n ≥ N , we
have |an − L| < ε/2. But for all n,m ≥ N , the Triangle Inequality can be applied to produce

|an − am| = |an − L+ L− am| ≤ |an − L|+ |am − L| < ε.

Lemma 1.17 If (an) is Cauchy, then it is bounded.

Proof : By assumption, there exists N ∈ Z+ such that, for all n,m ≥ N , we have |an − am| < 1.
In particular, for all n ≥ N , it is true that |an − aN | < 1. This can be rearranged to say that
|an| < |aN |+ 1. Proceeding similarly to the proof of Proposition 1.6, we define the number

K := max{|a1|, |a2|, ..., |aN−1|, |aN |+ 1}.

Then, we see that |an| ≤ K for every n ∈ Z+, as required.

6



Lemma 1.18 If (an) is Cauchy and has a convergent subsequence, then it itself converges.

Proof : Let ank
→ L be the convergent subsequence and suppose ε > 0 is given. Then, there

exists N1 ∈ Z+ such that, for all k ≥ N1, ew have
∣∣ank

− L
∣∣ < ε/2. But the Cauchy property

means there exists N2 ∈ Z+ such that, for all n,m ≥ N2, we have |an − am| < ε/2. Define
N = max{N1, N2}. Then, for all n ≥ N , we see that

|an − L| =
∣∣an − anN + anN − L

∣∣
≤
∣∣an − anN

∣∣+ ∣∣anN − L
∣∣, by the Triangle Inequality,

< ε/2 + ε/2, by the inequalities above,

= ε.

Theorem 1.19 A sequence (an) converges if and only if it is Cauchy.

Proof : The “only if” is Lemma 1.16. Conversely, if (an) is Cauchy, it is bounded (Lemma 1.17),
so has a convergent subsequence (Bolzano-Weierstrass) and thus converges (Lemma 1.18).

Note: We could define the Cauchy property for a sequence of elements in any so-called
metric space. However, it is not true in general that convergence and the Cauchy property
are equivalent. The metric spaces for which this is the case care called complete. Hence,
Theorem 1.19 can be re-stated in the following succinct way: R is complete.

1.3 Limits of Functions

1.3.1 Limits at Infinity

Definition 1.22 Let D ⊆ R be unbounded above. We say f : D → R has a limit L ∈ R at
infinity if, for each ε > 0, there exists K ∈ R such that, for all x ∈ D with x > K, we have∣∣f(x)− L

∣∣ < ε. In this case, we write lim
x→∞

f(x) = L.

We can make a very similar definition this time for the limit of a function at minus infinity.

Definition Let D ⊆ R be unbounded below. We say f : D → R has a limit L ∈ R at minus
infinity if, for each ε > 0, there exists K ∈ R such that, for all x ∈ D with x < K, we have∣∣f(x)− L

∣∣ < ε. In this case, we write lim
x→−∞

f(x) = L.

1.3.2 Cluster Points

Definition 1.26 Let D ⊆ R. We say a ∈ R is a cluster point of D if, for each ε > 0, there
exists x ∈ D with 0 < |x− a| < ε. Equivalently, (D \ {a})∩ (a− ε, a+ ε) ̸= ∅ for all ε > 0.
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A characterisation of cluster points by sequences may help illuminate what they are.

Proposition 1.28 Let D ⊆ R. Then, a ∈ R is a cluster point of D if and only if there
exists a sequence in D \ {a} that converges to a.

Proof : (⇒) Let a ∈ R be a cluster point. By definition, for each ε > 0, there exists x ∈ D with
0 < |x− a| < ε. Hence, x ∈ D \ {a}. But this works in particular for ε = 1/n where n ∈ Z+, i.e.
for each n ∈ Z+, there exists xn ∈ D \ {a} such that 0 < |xn − a| < 1/n. The sequence (xn) lies
in D \ {a} and the Squeeze Rule implies that xn → a.

(⇐) Let (xn) be a sequence in D \ {a} such that xn → a. Then, for any ε > 0, there exists
N ∈ Z+ such that, for all n ≥ N , we have |xn − a| < ε. In particular, this is satisfied by the N th

term: |xN − a| < ε. But since xN ∈ D and xN ̸= a, it is true that 0 < |xN − a| < ε. Hence, we
have found x = xN as in Definition 1.26, that is a is a cluster point of D.

1.3.3 Limits of Functions: The Main Definition

Definition 1.29 Let D ⊆ R and a ∈ R be a cluster point of D. We say that f : D → R
has a limit L ∈ R at a if, for each ε > 0, there exists δ > 0 such that, for all x ∈ D with
0 < |x− a| < δ, we have

∣∣f(x)− L
∣∣ < ε. In this case, we write lim

x→a
f(x) = L.

Remark In other words, given any positive number (ε > 0), we can find another positive number
(δ > 0) such that whenever x is within distance δ of a (0 < |x− a| < δ), it follows that f(x)
is within distance ε of L (

∣∣f(x)− L
∣∣ < ε). Geometrically, if we plot the graph of f and delete

from it the point (a, f(a)), having a limit at a ∈ R tells us that the part of the graph between
the vertical lines x = a± δ lies entirely between the horizontal lines y = L± ε.

x

f(x)

L

a

2ε

2δ

Figure 3: The geometric interpretation of the limit of f : D → R at a.

Note: The cluster point inequality 0 < |x− a| < δ is equivalent to x ∈ (a− δ, a+ δ) \ {a}.
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Method – Finding δ: Suppose we wish to do an ε-δ proof of a limit.
(i) Manipulate the absolute value

∣∣f(x)− L
∣∣ = g(x)|x− a|, where g is some function.

(ii) Pick n ∈ R such that 0 < δ ≤ n keeps the interval (a− δ, a+ δ) strictly positive.
(iii) Use x ≤ a+ δ ≤ a+n to determine an inequality that g must satisfy, i.e. g(x) < m.
(iv) Choose δ = min{n, ε

m} to ensure that g(x)|x− a| < ε.

1.3.4 Some Basic Properties of Limits

Theorem 1.34 (Uniqueness of Limits) If a function f has a limit at a, then it is unique.

Proof : Let f : D → R and a ∈ R be a cluster point of D. Assume to the contrary that distinct
L1, L2 ∈ R satisfy Definition 1.29. For ε = |L2 − L1|/2 > 0, apply said definition in each case:

� There exists δ1 > 0 such that, for all x ∈ D with 0 < |x− a| < δ1, we have
∣∣f(x)− L1

∣∣ < ε.

� There exists δ2 > 0 such that, for all x ∈ D with 0 < |x− a| < δ2, we have
∣∣f(x)− L2

∣∣ < ε.

Define δ := min{δ1, δ2} and let y ∈ D be such that 0 < |y − a| < δ; this exists since a is a cluster
point of D. Then, for all x ∈ D with 0 < |x− a| < δ, we obtain the following contradiction:

2ε = |L2 − L1|
=
∣∣L2 − f(y) + f(y)− L1

∣∣
≤
∣∣f(y)− L2

∣∣+ ∣∣f(y)− L1

∣∣, by the Triangle Inequality,

< ε+ ε, by the inequalities above,

= 2ε.

Note: The proof makes essential use of the fact a is a cluster point of D. If we omit this
assumption, we can’t be sure that the point y ∈ D \ {a} satisfying 0 < |y − a| < δ exists!

Reminder: The negation of a statement is true if and only if the original statement is false.
Under negation, the universal quantifier (∀) and existential quantifier (∃) swap roles.

Theorem 1.36 Let f : D → R and a ∈ R be a cluster point of D. Then, lim
x→a

f(x) = L if

and only if for all sequences (xn) in D \ {a} such that xn → a, it follows that f(xn) → L.

Proof : (⇒) Let (xn) be a sequence in D \ {a} such that xn → a, and suppose ε > 0 is given.
By assumption of the existence of the limit of f at a, there exists δ > 0 such that, for all x ∈ D
with 0 < |x− a| < δ, we have

∣∣f(x)− L
∣∣ < ε. But since xn → a and δ > 0, there exists N ∈ Z+

such that, for all n ≥ N , we have |xn − a| < δ (notice this is just Definition 1.1 with δ playing
the role usually held by ε). But since xn ̸= a, we know |xn − a| > 0 for all n. Hence, for all
n ≥ N , we have 0 < |xn − a| < δ. But by the definition of δ, this means

∣∣f(xn)− L
∣∣ < ε for all

n ≥ N . In other words, this shows that f(xn) → L.
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(⇐) We will prove the contrapositive: if f does not have limit L at a, then there exists a sequence
(xn) in D \ {a} such that xn → a but f(xn) ↛ L. To this end, suppose lim

x→a
f(x) = L is false:

there exists ε > 0 such that, for all δ > 0, there exists x ∈ D with 0 < |x− a| < δ such that∣∣f(x)− L
∣∣ ≥ ε. Because this holds for all δ > 0, it holds in particular for δ = 1/n where n ∈ Z+.

In other words, for each n, there exists a point xn ∈ D with 0 < |xn − a| < 1/n such that∣∣f(xn)− L
∣∣ ≥ ε. But by the Squeeze Rule, it is clear that xn → a. Because 0 < |xn − a|, we

know that xn ̸= a (i.e. xn ∈ D \ {a}). The fact
∣∣f(xn)− L

∣∣ ≥ ε tells us that f(xn) ↛ L.

Theorem 1.35 (Algebra of Limits) For lim
x→a

f(x) = L and lim
x→a

g(x) = K, these are true:

(i) lim
x→a

(
f(x) + g(x)

)
= L+K.

(ii) lim
x→a

(
f(x)g(x)

)
= LK.

(iii) lim
x→a

(
1/f(x)

)
= 1/L if f(x) ̸= 0 for all x ∈ D and L ̸= 0.

Proof : We can do an ε-δ argument in the style of the proof of the Algebra of Limits for sequences
(Proposition 1.9). However, a much more efficient argument follows from Theorem 1.36, alongside
a direct application of Proposition 1.9. Indeed, let (xn) be a sequence in D \ {a} with xn → a.
By assumption, Theorem 1.36 tells us f(xn) → L and g(xn) → K. Let’s now work case-by-case.

(i) By Proposition 1.9(i), we have f(xn) + g(xn) → L+K.

(ii) By Proposition 1.9(ii), we have f(xn)g(xn) → LK.

(iii) By Proposition 1.9(iii), we have 1/f(xn) → 1/L.

As these hold for any such sequence (xn), the statement follows directly from Theorem 1.36.

1.3.5 Continuity and Limits

Definition 1.38 Let f : D → R and a ∈ D. We say that f is continuous at a if, for all
sequences (xn) in D such that xn → a, it follows that f(xn) → f(a). If f is not continuous
at a, it is discontinuous at a. Moreover, f is continuous if it is continuous at every a ∈ D.

Lemma Every polynomial f : R → R given by f(x) = a0 + a1x+ · · ·+ akx
k is continuous.

Proof : This is continuous by Proposition 1.9, and the easy fact that id(x) = x is continuous: if
xn → a, then id(xn) = xn → a = id(a); this is exactly what Definition 1.38 asks us to show.

Note: A function which is continuous everywhere except one point is any step function.
On the other hand, a function which is discontinuous everywhere except one point is

f(x) =

{
x if x ∈ Q
0 if x /∈ Q

.
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Lemma (Stars over Babylon) The Stars over Babylon function f : R → R which is given by

f(x) =


0 if x /∈ Q
1

q
if x =

p

q
∈ Q written in lowest terms with q > 0

is continuous at every irrational number, and discontinuous at every rational number.

Proof : (i) We will show that for all a ∈ R\Q, f is continuous at a. Assume to the contrary that
there is a sequence (xn) such that xn → a but f(xn) ↛ f(a). Note first that a /∈ Q, so we know
f(a) = 0. Saying that f(xn) doesn’t converge to zero means there exists ε > 0 such that, for all
k ∈ Z+, there exists a term nk ∈ Z+ such that nk ≥ k and

∣∣f(xnk
)− 0

∣∣ ≥ ε (or, in other words,
f(xnk

) ≥ ε since f is non-negative). Hence, there is a subsequence yk = xnk
such that f(yk) ≥ ε.

By Proposition 1.11, we know that yk → a. Moreover, since f(yk) ≥ ε > 0, we know that each
yk ∈ Q (since the only non-zero outputs of this function come from rational inputs). This means
we can write yk = pk/qk for pk, qk ∈ Z, qk > 0 and gcd(pk, qk) = 1. By definition, we know

f(yk) =
1

qk
≥ ε.

Hence, this tells us that 0 < qk ≤ 1/ε. In other words, (qk) is a bounded sequence in Z+. By the
Bolzano-Weierstrass Theorem, there exists a convergent subsequence (qkm), that is qkm → q for
some q ∈ Z+. By Theorem 1.19, we know that (qkm) is Cauchy. Consequently, there is a point
in the sequence after which every positive integer lies within distance 1/2 of each other (taking
ε = 1/2 in Definition 1.15). This is a sequence of integers, so it means all terms after this point
are constant. Explicitly, there exists K ∈ Z+ such that for all m ≥ K, qkm = q. For m ≥ K,

ykm =
pkm
qkm

=
pkm
q
.

But pkm/q → a again by Proposition 1.11. Thus, (pkm) is bounded and has a convergent
subsequence (pkmℓ

). by the Bolzano-Weierstrass Theorem. This subsequence is therefore also
Cauchy, so every term lies within distance 1/2 of each other beyond a certain term. But they
are all integers, so there exists L ∈ Z+ such that, for all ℓ ≥ L, pkmℓ

= p ∈ Z+. For ℓ ≥ L,

ykmℓ
=
pkmℓ

qkmℓ

=
p

q
.

Hence, ykmℓ
→ p/q. But applying Proposition 1.11 (a lot), it follows that ykmℓ

→ a. By the
Uniqueness of Limits for sequences, we know a = p/q, but a /∈ Q and we have a contradiction.

(ii) We will show that for all a ∈ Q, f is discontinuous at a. Assume to the contrary that a ∈ Q
and f is continuous at a. For each n ∈ Z+, there exists an irrational in ∈ R \ Q such that
a < in < a + 1/n (by the density of the irrationals in the rationals; see MATH1025). By the
Squeeze Rule, in → a. Because we assume f is continuous at a, we know that f(in) → f(a). By
the assumption that q > 0, we know that f(a) > 0 for any rational a = p/q. But f(in) = 0 → 0
since each in is irrational, a contradiction to the Uniqueness of Limits for sequences.
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Note: Strangely, there is no function that is continuous on Q and discontinuous on R \Q!

Proposition 1.42 Let f : D → R and a ∈ D such that a not a cluster point of D. Then,
f is continuous at a.

Proof : Let (xn) be any sequence in D such that xn → a. Since a is not a cluster point of D,
there exists ε > 0 such that there is no element x ∈ D with 0 < |x− a| < ε. Consequently, if
x ∈ D is such that |x− a| < ε, to ensure the previous inequality fails, it must be that |x− a| = 0,
i.e. x = a. Because xn → a, there exists N ∈ Z+ such that, for all n ≥ N , we have |xn − a| < ε.
Combining this with what we just explained tells us that xn = a. Hence, for all n ≥ N , the
sequence is constant and f(xn) = f(a). Therefore, f(xn) → f(a) as required.

Theorem 1.43 Let f : D → R and a ∈ D be a cluster point of D. These are equivalent:
(i) f is continuous at a.
(ii) lim

x→a
f(x) = f(a).

(iii) For each ε > 0, there exists δ > 0 such that, for all x ∈ D with |x− a| < δ, we have∣∣f(x)− f(a)
∣∣ < ε.

Proof :
(
(i) ⇒ (ii)

)
This is immediate from Theorem 1.36 with L = f(a).(

(ii) ⇒ (iii)
)
For any ε > 0, there exists δ > 0 such that, for all x ∈ D with 0 < |x− a| < δ,

we have
∣∣f(x)− f(a)

∣∣ < ε by Definition 1.29. But if x = a, we see that
∣∣f(x)− f(a)

∣∣ = 0 < ε.
Hence, we can restrict merely to x ∈ D with |x− a| < δ and we are done.(
(iii) ⇒ (i)

)
Let (xn) be any sequence in D such that xn → a and ε > 0 is given. By assumption,

there exists δ > 0 such that, for all x ∈ D with |x− a| < δ, we have
∣∣f(x)− f(a)

∣∣ < ε. But since
xn → a, there exists N ∈ Z+ such that, for all n ≥ N , we have |xn − a| < δ. By the definition
of δ, it follows that

∣∣f(xn)− f(a)
∣∣ < ε for all n ≥ N , which is to say that f(xn) → f(a).

Remark In other words, a function f : D → R is continuous at a ∈ D if a small change of the
input (for all x ∈ D with |x− a| < δ) results in a small change of the output (

∣∣f(x)− f(a)
∣∣ < ε).

Geometrically, the graph of f(x) should stay inside the rectangle as in Figure 4.

x

f(x)

f(a)

a

2ε

2δ

Figure 4: The geometric interpretation of continuity of f : D → R.
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Theorem 1.46 Let D,E ⊆ R with f : D → E continuous at a ∈ D and g : E → R
continuous at f(a) ∈ E. Then, the composition g ◦ f : D → R is continuous at a.

Proof : Let (xn) be any sequence in D such that xn → a. Because f is continuous at a, we
know that the sequence yn := f(xn) → f(a). But since g is continuous at f(a), we know that
g(yn) → g(f(a)). In other words, this shows (g ◦ f)(xn) → (g ◦ f)(a) as required.

Reminder: A closed bounded interval is [a, b] := {x ∈ R : a ≤ x ≤ b} for any a, b ∈ R. It is
non-empty if and only if we have a ≤ b. Note that if a = b, then the interval is [a, a] = {a}.

Theorem 1.48 (Intermediate Value Theorem) Let f : [a, b] → R be continuous and y be a
number between f(a) and f(b). Then, there exists c ∈ [a, b] such that f(c) = y.

Proof : Omitted, but proved in MATH1026 (we prove it differently later).

Remark The classic (but highly non-rigorous) explanation of a continuous function is this: “f is
continuous if it’s graph can be drawn without taking your pen off the paper”. This isn’t accurate
(since f(x) = 1/x is continuous on R \ {0}), but the Intermediate Value Theorem asserts that
this slogan is true for continuous functions on an interval. Geometrically, any horizontal line
between f(a) and f(b) must intersect the graph of f at least once.

Theorem 1.49 (Extreme Value Theorem) Let f : [a, b] → R be continuous. Then, f is
bounded and attains both a minimum and maximum value.

Proof : Omitted, but also proved in MATH1026.

Remark Geometrically, the Extreme Value Theorem asserts that the graph of f as we vary its
input from x = a to x = b can be covered by a rectangle, that is there exist two horizontal lines
y = m and y =M which define the lower and upper edges, respectively, of said rectangle. These
are the minimum and maximum values of the function.

13



2 Differentiable Functions

2.1 The Main Definition

Definition 2.1 Let D ⊆ R, f : D → R and a ∈ D a cluster point of D. We say that f is
differentiable at a if the following limit, called called the derivative of f at a, exists:

lim
x→a

f(x)− f(a)

x− a
.

We denote this by f ′(a). Moreover, f is differentiable if it is differentiable at every a ∈ D.

Remark Look back at Definition 1.29 and notice that to define a limit, we need only that a is a
cluster point of the domain, not that it is also an element of the domain. However, we do impose
this extra condition here. Therefore, we can very easily argue the following by definition:

� f : D → R is not differentiable at any a /∈ D.

� f : Z → R is not differentiable anywhere, since Z has no cluster points.

Note: We give an explicit ε-δ criteria of differentiability by referring to Definition 1.29.
Namely, f : D → R is differentiable at a if there exists a real number f ′(a) ∈ R such that,
for each ε > 0, there exists δ > 0 where, for all x ∈ D with 0 < |x− a| < δ, we have∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε.

Remark The slope of the straight line through the points (a, f(a)) and (x, f(x)) is given by

f(x)− f(a)

x− a
.

If we take the limit as x→ a, these points approach one another, and the line segment between
them (called a chord) approaches a straight line through (a, f(a)) with gradient f ′(a). Hence,
we interpret the derivative as being the slope of the tangent line to the graph of f at a.

x

f(x)

(a, f(a))

(x, f(x))

Figure 5: The geometric interpretation of differentiability of f : D → R.
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Lemma The following (constant) function f : R → R is differentiable at every a ∈ R:

f(x) = c, with f ′(a) = 0.

Proof : Let a ∈ R be arbitrary, ε > 0 be given and take δ = 1. For all x ∈ R with 0 < |x− a| < 1,∣∣∣∣f(x)− f(a)

x− a
− 0

∣∣∣∣ = ∣∣∣∣ c− c

x− a

∣∣∣∣ = 0 < ε.

Lemma The following function f : R → R is differentiable at every a ∈ R:

f(x) = x, with f ′(a) = 1.

Proof : Let a ∈ R be arbitrary, ε > 0 be given and take δ = 1. For all x ∈ R with 0 < |x− a| < 1,∣∣∣∣f(x)− f(a)

x− a
− 1

∣∣∣∣ = ∣∣∣∣x− a

x− a
− 1

∣∣∣∣ = 0 < ε.

Note: In the above proofs, any δ > 0 work. We just decided on δ = 1 because “why not?”.

Lemma The following function f : R → R is differentiable at every a ∈ R:

f(x) = x2, with f ′(a) = 2a.

Proof : Let a ∈ R be arbitrary, ε > 0 be given and take δ = ε. For all x ∈ R with 0 < |x− a| < δ,∣∣∣∣f(x)− f(a)

x− a
− 2a

∣∣∣∣ =
∣∣∣∣∣x2 − a2

x− a
− 2a

∣∣∣∣∣ = |x+ a− 2a| = |x− a| < δ = ε.

Lemma The following function f : R \ {0} → R is differentiable at every a ∈ R \ {0}:

f(x) =
1

x
, with f ′(a) = − 1

a2
.

Proof : Let a ∈ R \ {0} be arbitrary, ε > 0 be given and take δ = min{|a|/2, |a|3ε/2}. For all
x ∈ R \ {0} with 0 < |x− a| < δ,∣∣∣∣f(x)− f(a)

x− a
+

1

a2

∣∣∣∣ = ∣∣∣∣(1/x)− (1/a)

x− a
+

1

a2

∣∣∣∣
=

∣∣∣∣ a− x

ax(x− a)
+

1

a2

∣∣∣∣
15



=

∣∣∣∣− 1

ax
+

1

a2

∣∣∣∣
=

1

|a|

∣∣∣∣1a − 1

x

∣∣∣∣
=

1

|a|2|x|
|x− a|

≤ 2

|a|3
|x− a|, as |x− a| < |a|/2 and so |x| > |a|/2,

< ε, as |x− a| < |a|3ε/2.

Remark You may think “where on Earth did you decide on that value of δ?”, but secretly we did
the absolute value calculation first. Indeed, we get to the fifth line (the one with |x− a|/|a|2|x|)
and, from there, we consider the following: if |x− a| < δ, how do I make this whole expression
less than ε? Well, we choose δ so that 1/|x| doesn’t become unbounded (i.e. is away from zero,
so half the distance from a will do), and then we introduce the second inequality to make the
result less than ε. Hence, δ should be the smaller of these numbers to ensure both cases hold.

Lemma The following function f : [0,∞) → R is differentiable at every a ∈ (0,∞):

f(x) =
√
x, with f ′(a) =

1

2
√
a
.

Proof : Let a ∈ (0,∞), ε > 0 be given and δ = 2a3/2ε. For all x ∈ [0,∞) with 0 < |x− a| < δ,∣∣∣∣f(x)− f(a)

x− a
− 1

2
√
a

∣∣∣∣ =
∣∣∣∣∣
√
x−

√
a

x− a
− 1

2
√
a

∣∣∣∣∣
=

∣∣∣∣∣
√
x−

√
a

x− a
·
√
x+

√
a√

x+
√
a
− 1

2
√
a

∣∣∣∣∣
=

∣∣∣∣ x− a

(x− a)(
√
x+

√
a)

− 1

2
√
a

∣∣∣∣
=

∣∣∣∣ 1√
x+

√
a
− 1

2
√
a

∣∣∣∣
=

∣∣∣∣∣
√
x−

√
a

2
√
a(
√
x+

√
a)

∣∣∣∣∣
=

∣∣∣∣∣
√
x−

√
a

2
√
a(
√
x+

√
a)

·
√
x+

√
a√

x+
√
a

∣∣∣∣∣
=

|x− a|
2
√
a(
√
x+

√
a)2

≤ |x− a|
2a3/2

, as
√
x ≥ 0,

< ε.
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Note: This proof uses the standard trick, when working with square roots, of multiplying
by one in a slightly obscure way. This ensures that we can get |x− a| somewhere, which
then allows us to do an estimate involving δ and ε.

To show that a function is not differentiable at a point, one option is to use the negation of
Definition 2.1. However, it is often more convenient to use Theorem 1.36: it suffices to find one
sequence (xn) in D \ {a} such that xn → a but where this sequence doesn’t converge:(

f(xn)− f(a)

xn − a

)
.

Lemma The function f : R → R given by f(x) = |x| is not differentiable at 0.

Proof : Assume to the contrary that f is differentiable at zero, with derivative f ′(0). Then,

lim
x→0

f(x)− f(0)

x− 0
= f ′(0).

Consider the sequence xn = (−1)n/n→ 0 which lies in R \ {0}. But Theorem 1.36 ensures that

f(xn)− f(0)

xn − 0
→ f ′(0).

However, the left-hand side is precisely

f(xn)− f(0)

xn − 0
=

∣∣(−1)n/n
∣∣

(−1)n/n
=

1

(−1)n
= (−1)n

which does not converge, a contradiction.

Lemma The function f : [0,∞) → R given by f(x) =
√
x is not differentiable at 0.

Proof : Assume to the contrary that f is differentiable at zero, with derivative f ′(0). Then,

lim
x→0

f(x)− f(0)

x− 0
= f ′(0).

Consider the sequence xn = 1/n→ 0 which lies in (0,∞). But Theorem 1.36 ensures that

f(xn)− f(0)

xn − 0
→ f ′(0).

However, the left-hand side is precisely

f(xn)− f(0)

xn − 0
=

√
1/n

1/n
=

n√
n
=

√
n

which does not converge, a contradiction.
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Proposition 2.8 Let f : D → R be differentiable at a ∈ D. Then, it is continuous at a.

Proof : By Theorem 1.43, it suffices to show that lim
x→a

f(x) = f(a). Define s : D \ {a} → R by

s(x) =
f(x)− f(a)

x− a
.

By assumption, we know that s as a limit at a, namely f ′(a). But for all x ∈ D \ {a},

f(x) = f(a) + (x− a)s(x).

Appealing to the Algebra of Limits, it is clear that

lim
x→a

f(x) = f(a) + 0f ′(a) = f(a).

Note: The converse is false, that is continuity does not imply differentiability. For example,
the function f : R → R given by f(x) = |x| is continuous, but not differentiable, at zero.

Lemma The following function f : R → R is differentiable at 0 but nowhere else:

f(x) =

{
x if x ∈ Q
x− x2 if x /∈ Q

, with f ′(0) = 1.

Proof : Let a ∈ R and assume that f is differentiable at a. We aim to prove that a = 0; this does
not prove that f is differentiable at zero (because we are assuming differentiability). The logic
here is that we are proving the following by contrapositive: f is not differentiable at a ̸= 0. But
f is continuous by Proposition 2.8. For each n ∈ Z+, there exist rn ∈ Q and in ∈ R \Q with

a < rn < a+
1

n
and a < in < a+

1

n
.

By the Squeeze Rule, we see that rn → a and in → a. By continuity, it follows that f(rn) → f(a)
and f(in) → f(a). But because rn is rational and in is irrational, the definition of f tells us

f(rn) = rn → a and f(in) = in − i2n → a− a2.

But both limits are equal to f(a), which tells us that a = a− a2. The only solution is a = 0.

Corollary The function f from above is not increasing on any neighbourhood of zero.

Proof : We must show that there does not exist ε > 0 such that f : (−ε, ε) → R is increasing.
Indeed, for any ε > 0 given, we can find an irrational number x ∈ R \ Q such that 0 < x < ε
(since the irrationals are dense in the reals). By the definition of the function f , it is clear that

f(x) = x− x2 < x.

On the other hand, we can find a rational number y ∈ Q such that x − x2 < y < x. Again by
definition, f(y) = y > x− x2 = f(x), so y < x does not imply that f(y) < f(x) as required.
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2.2 The Rules of Differentiation

Proposition 2.10 (Linearity) Let f : D → R and g : D → R be differentiable at a ∈ D with
derivatives f ′(a) and g′(a) respectively, and c ∈ R some constant. Then, these are true:
(i) The function cf : D → R is differentiable at a with derivative cf ′(a).
(ii) The function f + g : D → R is differentiable at a with derivative f ′(a) + g′(a).

Proof : This is immediate from the Algebra of Limits (Theorem 1.35), since we have

lim
x→a

cf(x)− cf(a)

x− a
= lim

x→a
c

(
f(x)− f(a)

x− a

)
= cf ′(a)

and

lim
x→a

f(x) + g(x)−
(
f(a) + g(a)

)
x− a

= lim
x→a

(
f(x)− f(a)

x− a
+
g(x)− g(a)

x− a

)
= f ′(a) + g′(a).

Note: The above proof uses lim
x→a

c = c, which is easy to prove directly (with an ε-δ proof).

Reminder: Let f : A→ B and g : B → C. Their composition g ◦ f : A→ C is given by

(g ◦ f)(x) = g(f(x)).

Of course, we can only compose functions if the range of f is a subset of the domain of g. Recall
we know that the composition of continuous functions is itself continuous (Theorem 1.46). We
can now look at the differentiability on the composition of two differentiable functions.

Proposition 2.12 (Carathéodory’s Criterion) Let f : D → R and a ∈ D be a cluster point
of D. Then, f is differentiable at a if and only if there exists a function ϕ : D → R which
is continuous at a and satisfies the following equation for all x ∈ D:

f(x)− f(a) = ϕ(x)(x− a). (∗)

In this case, the derivative f ′(a) = ϕ(a).

Proof : (⇒) Let f be differentiable at a with derivative f ′(a). We define ϕ : D → R by

ϕ(x) =


f(x)− f(a)

x− a
if x ̸= a

f ′(a) if x = a

.

Clearly, ϕ satisfies (∗) for all x ∈ D \ {a}. But when x = a, both sides of (∗) are zero and thus it
holds automatically. Moreover, we see that ϕ is continuous at a by appealing to Theorem 1.43:

lim
x→a

ϕ(x) = lim
x→a

f(x)− f(a)

x− a
= f ′(a) = ϕ(a).
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(⇐) Let such a function ϕ exist. Then, dividing (∗) by (x− a) and taking a limit produces

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
ϕ(x) = ϕ(a),

by continuity. But this says precisely that f is differentiable at a with derivative f ′(a) = ϕ(a).

Remark What is the motivation behind Carathéodory’s Criterion? If a function g : R \ {a} → R
has a limit L at a, we can extend the function to the domain R by defining g(a) := L. The
resulting extended function is continuous by Theorem 1.43. On the other hand, if such a function
g : R \ {a} → R admits a continuous extension to all of R, then its limit at a is precisely g(a).
We have applied this idea to the difference quotient s(x) defined in the proof of Proposition 2.8.

Theorem 2.11 (Chain Rule) Let f : D → E be differentiable at a ∈ D and g : E → R be
differentiable at f(a) ∈ E. Then, g ◦ f : D → R is differentiable at a, with derivative

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof : By Carathéodory’s Criterion, there exist functions ϕ : D → R and ψ : E → R such that
ϕ is continuous at a, ψ is continuous at f(a) and, for all x ∈ D and y ∈ E, we have the following:

f(x)− f(a) = ϕ(x)(x− a) and g(y)− g(f(a)) = ψ(y)(y − f(a)).

We define Φ : D → R by Φ(x) = ψ(f(x))ϕ(x). By the Algebra of Limits and Theorem 1.46, it is
clear that Φ is continuous at a. Moreover, for all x ∈ D, we conclude that

Φ(x)(x− a) = ψ(f(x))ϕ(x)(x− a)

= ψ(f(x))
(
f(x)− f(a)

)
, by the first equality above,

= g(f(x))− g(f(a)), by the second equality above with y = f(x).

Hence, Carathéodory’s Criterion applies again: g ◦ f is differentiable at a with derivative

Φ(a) = ψ(f(a))ϕ(a) = g′(f(a))f ′(a).

Proposition 2.15 (Product Rule) Let f : D → R and g : D → R be differentiable at a ∈ D
with derivatives f ′(a) and g′(a), respectively. Then, fg : D → R is differentiable at a with
derivative f ′(a)g(a) + f(a)g′(a).

Proof : Let σ : R → R be the function σ(x) = x2; recall this is differentiable (proven in an earlier
lemma). Hence, the Chain Rule and linearity imply that the following are differentiable at a:

� σ ◦ f , with derivative (σ ◦ f)′(a) = 2f(a)f ′(a).

� σ ◦ g, with derivative (σ ◦ g)′(a) = 2g(a)g′(a).

� σ ◦ (f + g), with derivative
(
σ ◦ (f + g)

)′
(a) = 2

(
f(a) + g(a)

) (
f ′(a) + g′(a)

)
.
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The trick here is to write the product fg that we are working with as

fg =
1

2

(
(f + g)2 − f2 − g2

)
=

1

2

(
(σ ◦ (f + g))− (σ ◦ f)− (σ ◦ g)

)
.

Applying the Chain Rule and simplifying, we see that fg is differentiable at a with derivative

(fg)′(a) =
1

2

(
2
(
f(a) + g(a)

) (
f ′(a) + g′(a)

)
− 2f(a)f ′(a)− 2g(a)g′(a)

)
= f ′(a)g(a) + f(a)g′(a).

Proposition 2.17 Every polynomial f : R → R given by f(x) = a0 + a1x + · · · akxk is
differentiable, and its derivative is another polynomial f ′ : R → R which is given by

f ′(x) = a1 + 2a2x+ · · ·+ kakx
k−1.

Sketch of Proof : Use linearity and proceed by induction on the degree k of the polynomial.

Corollary Let m ∈ Z+ and f : R \{0} → R be the function defined as f(x) = 1/xm. Then,
f is differentiable with derivative given by f ′(x) = −m/xm+1.

Proof : We can view f = h ◦ g, where g : R \ {0} → R is defined by g(x) = 1/x and h : R → R is
defined by h(x) = xm. We know that g is differentiable (a previous lemma) and h is differentiable
(Proposition 2.17). Thus, we can apply the Chain Rule to conclude that

f ′(x) = h′(g(x))g′(x)

= mg(x)m−1

(
− 1

x2

)
= −m

(
1

x

)m−1( 1

x2

)
= − m

xm+1
.

Proposition 2.19 (Quotient Rule) Let f : D → R and g : D → R \ {0} be differentiable at
a ∈ D. Then, f/g is differentiable at a with derivative

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Sketch of Proof : Use the same trick as in the above corollary: view f/g = f · (1/g) and use the
Product Rule. Note that in order to differentiate 1/g, we view this as the composition of g with
the function 1/x and apply the Chain Rule.
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Note: For all k ∈ Z, we know now that f(x) = xk is differentiable everywhere it is
well-defined (i.e. if k < 0, it is not defined for x = 0 of course), and that f ′(x) = kxk−1.

Proposition 2.20 Let r ∈ Q. Then, the function f : (0,∞) → R given by f(x) = xr is
differentiable with f ′(x) = rxr−1.

Proof : This is postponed; something more general is proven using the natural logarithm.

2.3 Open Sets and the Localisation Lemma

Definition 2.21 A subset U ⊆ R is open if for every element a ∈ U , there exists δ > 0
such that the interval (a− δ, a+ δ) ⊆ U .

Remark The geometric intuition is that a subset of R is open if around any point of our subset,
we can squeeze in an open interval that doesn’t spill out of our subset. For instance, the subset
[0, 1) is not open because for a = 0, we want (−δ, δ) ⊆ [0, 1) where δ > 0; this is clearly not
possible since −δ/2 ∈ (−δ, δ) but −δ/2 /∈ [0, 1).

Note: Not only is R an open subset of itself, but the empty set ∅ is indeed an open subset.

Lemma 2.24 (Localisation Lemma) Let f : D → R coincide with a differentiable function
g : U → R on some open set U ⊆ D. Then, on U , f is differentiable with derivative g′.

Proof : Let a ∈ U be arbitrary. Per Definition 2.1, we must show that the limit

lim
x→a

f(x)− f(a)

x− a
= g′(a).

To that end, let ε > 0 be given. Since U is open, there exists δ1 > 0 where (a−δ1, a+δ1) ⊆ U ⊆ D.
But since g is differentiable, there exists δ2 > 0 such that, for all x ∈ U with 0 < |x− a| < δ2,∣∣∣∣g(x)− g(a)

x− a
− g′(a)

∣∣∣∣ < ε.

Let δ := min{δ1, δ2} so that both situations above happen concurrently. Then, for all x ∈ D
with 0 < |x− a| < δ, we know that x ∈ U . Because f and g coincide on U , this means that
f(x) = g(x) for all such x ∈ U , in particular f(a) = g(a). Therefore, since 0 < |x− a| < δ ≤ δ2,∣∣∣∣f(x)− f(a)

x− a
− g′(a)

∣∣∣∣ = ∣∣∣∣g(x)− g(a)

x− a
− g′(a)

∣∣∣∣ < ε.

Note: Having U be open in the statement of the Localisation Lemma is crucial. Indeed,
f(x) = |x| coincides with the differentiable function g(x) = x on the non-open set [0,∞),
but we know that f is not differentiable at zero.
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3 Functions Differentiable on an Interval

3.1 The Interior Extremum Theorem

Reminder: Let f : D → R be a function.
� It attains a maximum at a ∈ D if f(x) ≤ f(a) for all x ∈ D.
� It attains a minimum at a ∈ D if f(x) ≥ f(a) for all x ∈ D.
� It attains an extremum at a ∈ D if it has either a maximum or minimum at a.

Theorem 3.1 (Interior Extremum Theorem) Let f : (a, b) → R be differentiable and attain
an extremum at c ∈ (a, b). Then, f ′(c) = 0.

Proof : Suppose first that f attains a maximum at c ∈ (a, b). By assumption, f ′(c) exists. Hence,
by Theorem 1.36, for any sequence (xn) in (a, b) \ {c} where xn → c, we know the sequence

s(xn) :=
f(xn)− f(c)

xn − c
→ f ′(c).

In particular, this is true for the sequence xn = c+ (b− c)(n+ 1) ∈ (c, b). Note that xn > c for
all c, so the denominator xn − c > 0. Because f(c) is the maximum, we know that f(xn) ≤ f(c)
and thus the numerator satisfies f(xn)− f(c) ≤ 0. Therefore, s(xn) ≤ 0 for every n, so it follows
from Proposition 1.7 that f ′(c) ≤ 0. But on the other hand, this is also true for the sequence
xn = c− (c− a)/(n+1) ∈ (a, c). Note that xn < c for all c, so the denominator xn − c < 0. But
still we have that f(c) is the maximum, so the numerator satisfies f(xn)− f(c) ≤ 0. Therefore,
s(xn) ≥ 0 for every n, so it follows from Proposition 1.7 that f ′(c) ≥ 0. Combining these
inequalities shows that f ′(c) = 0.

Suppose next that f attains a minimum at c ∈ (a, b). We can define the function g(x) = −f(x).
Then, g is differentiable on (a, b) by the linearity property, and it attains a maximum at c ∈ (a, b).
By the above argument, we know that g′(c) = 0. Hence, f ′(c) = −g′(c) = 0.

Definition 3.2 Let f : D → R be differentiable. Then, c ∈ D is a critical point if f ′(c) = 0.

The Interior Extremum Theorem says that any extremum is automatically a critical point.

Method – Finding Extrema: Suppose we want to find the extrema of f : [a, b] → R.
(i) Evaluate f at the endpoints f(a) and f(b), and at the critical points c ∈ (a, b).
(ii) State which of the values from Step (i) are largest and smallest.

Proposition 3.4 Let f : [a, b] → R be differentiable.
(i) If f ′(a) > 0, then f(a) is not the maximum value attained by f .
(ii) If f ′(a) < 0, then f(a) is not the minimum value attained by f .
(iii) If f ′(b) > 0, then f(b) is not the minimum value attained by f .
(iv) If f ′(b) < 0, then f(b) is not the maximum value attained by f .
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Proof : (i) Assume to the contrary that f does attain a maximum at a. Since f is differentiable
at a, for any sequence (xn) in [a, b] \ {a} = (a, b] where xn → a, we know that the sequence

s(xn) :=
f(xn)− f(a)

xn − a
→ f ′(a) > 0.

But f(xn) ≤ f(a) since we assume that f(a) is a maximum. However, xn > a since our sequence
(i.e. each term) lies in the interval (a, b]. Combining these inequalities tells us that s(xn) ≤ 0
for all n. But Proposition 1.7 tells us that f ′(a) ≤ 0, a contradiction. The proofs of the other
statements (ii), (iii) and (iv) are near-identical, so we omit them.

3.2 The Mean Value Theorem

Theorem 3.6 (Rolle’s Theorem) Let f be continuous on [a, b] and differentiable on (a, b).
If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof : By the Extreme Value Theorem (Theorem 1.49), we know that f attains both a maximum
and a minimum on [a, b]. If both of these occur at the endpoints, the fact that f(a) = f(b) tells
us that the maximum and minimum are equal; the function f : [a, b] → R is therefore constant.
Consequently, f ′(x) = 0 for all x ∈ (a, b), so it is true in particular for c = (a+ b)/2.

On the other hand, if either the maximum or minimum does not occur at an endpoint, it must
be that f attains an extremum at some interior point c ∈ (a, b). But we know immediately that
f ′(c) = 0 by the Interior Extremum Theorem.

Theorem 3.7 (Mean Value Theorem) Let f be a real function that is continuous on [a, b]
and differentiable on (a, b). Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof : Define α := (f(b)− f(a))/(b− a) and let the function g : [a, b] → R be given by

g(x) := f(x)− α(x− a).

It is clear that g is continuous, and differentiable on (a, b) since f is. But notice that g(a) = f(a)
and g(b) = f(b) − α(b − a) = f(b) − (f(b) − f(a)) = f(a). In other words, the values at the
endpoints of g coincide and so it satisfies the hypotheses of Rolle’s Theorem: there exists c ∈ (a, b)
such that g′(c) = 0. That being said, the linearity of the derivative and the Product Rule imply

0 = g′(c) = f ′(c)− α ⇒ f ′(c) = α.

Remark Consider the graph y = f(x) of a differentiable function f : R → R. For each pair
of numbers (a, b) where a < b, we can construct the chord (line segment) between the points
(a, f(a)) and (b, f(b)). The Mean Value Theorem asserts that at some point (c, f(c)) on the
graph between the previous two points, the tangent line to the graph is parallel to the chord.
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f(x)

a b

c1

c2

Figure 6: The geometric interpretation of the Mean Value Theorem.

The statement guarantees the existence of a point c ∈ (a, b) with the required value of f ′(c), but
it does not say it is unique. An example with two such points is presented in Figure 6 above.

Note: We can view Rolle’s Theorem as a special case of the Mean Value Theorem, because
setting f(a) = f(b) will result in α = 0 (geometrically, this means the chord is horizontal).

Corollary Let I ⊆ R be an interval and f : I → R be differentiable. If f ′(x) = 0 for all
x ∈ I, then f is constant.

Proof : Assume to the contrary that f is not constant, that is there exist a, b ∈ I with a < b
such that f(a) ̸= f(b). But we apply the Mean Value Theorem to f on the subinterval [a, b] to
determine that there exists a point c ∈ (a, b) ⊆ I such that

f ′(c) =
f(b)− f(a)

b− a
̸= 0.

Method – Solving Differential Equations: Suppose f : R → R is such that we know f ′(x)
and an initial condition f(0) = c. We want to determine an expression for the function f .
(i) Find a function F : R → R whose derivative is F ′(x) = f ′(x).
(ii) Define the function g(x) := f(x)− F (x).
(iii) Differentiate to obtain g′(x) = f ′(x)− F ′(x) = 0, using Step (i).
(iv) Apply the corollary above to conclude that g(x) = g(0) = 0, i.e. F (x) = f(x).

Definition 3.9 Let f : D → R be a function.
� It is increasing if for all x, y ∈ D with x < y, we have f(x) ≤ f(y).
� It is decreasing if for all x, y ∈ D with x < y, we have f(x) ≥ f(y).
� It is strictly increasing if for all x, y ∈ D with x < y, we have f(x) < f(y).
� It is strictly decreasing if for all x, y ∈ D with x < y, we have f(x) > f(y).
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Proposition 3.11 Let I ⊆ R be an interval and f : I → R be differentiable.
(i) For all x ∈ I, f ′(x) ≥ 0 if and only if f is increasing.
(ii) For all x ∈ I, f ′(x) ≤ 0 if and only if f is decreasing.
(iii) For all x ∈ I, f ′(x) = 0 if and only if f is constant.
(iv) If f ′(x) > 0 for all x ∈ I, then f is strictly increasing.
(v) If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing.

Proof : (i) Assume to the contrary f ′(x) ≥ 0 for all x ∈ I but that f is not increasing. Then,
there exist a, b ∈ I such that a < b and f(a) > f(b). But the Mean Value Theorem guarantees
the following contradiction: there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
< 0.

Conversely, assume f is increasing. If a ∈ I is the left-hand endpoint, then f attains a minimum
at a. It follows from the contrapositive of Proposition 3.4(ii) that f ′(a) ≥ 0. Similarly, if b ∈ I
is the right-hand endpoint, then f attains a maximum at b. It follows from the contrapositive of
Proposition 3.4(iv) that f ′(b) ≥ 0. Now, let x ∈ (a, b) ⊆ I be an interior point and define

xn = x+
b− x

n+ 1
∈ (x, b) ⊆ I.

It is clear that xn → x by the Algebra of Limits. Since f is differentiable (at x), we have

s(xn) :=
f(xn)− f(x)

xn − x
→ f ′(x).

But f is increasing and xn > x, so s(xn) ≥ 0. Hence, its limit f ′(x) ≥ 0 by Proposition 1.7.

(ii) This is very similar to (i) with some modifications, and thus is omitted.

(iii) If f(x) = c for all x ∈ I, then f ′(x) = 0 by an earlier lemma. The converse is proved in the
previous corollary. Alternatively, if f ′(x) = 0 for all x ∈ I, then we know that f is increasing by
(i) and decreasing by (ii). The only instance that both can happen is if for all x, y ∈ I, we have
f(x) = f(y).

(iv) Assume to the contrary f ′(x) > 0 for all x ∈ I but that f is not strictly increasing. Then,
there exist a, b ∈ I such that a < b and f(a) ≥ f(b). But the Mean Value Theorem guarantees
the following contradiction: there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
≤ 0.

(v) This is very similar to (iv) with some modifications, and thus is omitted.

Note: The converse of Proposition 3.11(iv) and (v) are false, e.g. f(x) = x3 has f ′(0) = 0.
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Remark The condition that I ⊆ R is an interval in Proposition 3.11 is actually very important.
Indeed, note that f : R \ {0} → R given by f(x) = 1/x has f ′(x) = −1/x2 < 0 everywhere, but
f(−1) = f(1). Thus, f is not decreasing. But this doesn’t contradict Proposition 3.11 precisely
because the domain of this function R \ {0} is not an interval.

Method – Showing Injectivity: Suppose we wish to show that a differentiable function
f : I → R is injective. It suffices to prove either f ′(x) > 0 or f ′(x) < 0 for all x ∈ I.
Indeed, this means f is strictly monotonic by Proposition 3.11(iv). So, f(x) = f(y) implies
x = y. If not, then x < y without loss of generality and f is not increasing or decreasing.

Proposition The following function f : R → R is differentiable everywhere and is such
that f ′(0) = 1 > 0, but it is not increasing on any neighbourhood of zero:

f(x) =

{
x+ 2x2 sin

(
1/x
)

if x ̸= 0

0 if x = 0
.

Proof : On U = R \ {0}, f coincides with g : U → R given by g(x) = x+ 2x2 sin
(
1/x
)
. Because

g is differentiable by the Product and Chain Rules, we know that f is differentiable on U by the
Localisation Lemma. Consequently, for all a ∈ U , we have

f ′(a) = g′(a) = 1 + 4a sin
(
1/a
)
− 2 cos

(
1/a
)
.

We consider the derivative at zero. So let (xn) be any sequence in R \ {0} with xn → 0. Then,

s(xn) :=
f(xn)− f(0)

xn − 0
= 1 + 2xn sin

(
1/xn

)
.

Notice −|xn| ≤ xn sin
(
1/xn

)
≤ |xn|, so the Squeeze Rule implies that xn sin

(
1/xn

)
→ 0. Hence,

the Algebra of Limits tells us s(xn) → 1. By definition (and Theorem 1.36), f is differentiable at
zero with f ′(0) = 1. It remains to show that f is not increasing on a neighbourhood of zero. To
that end, assume to the contrary that there exists ε > 0 such that f : (−ε, ε) → R is increasing.
Then, f ′(x) ≥ 0 for all x ∈ (−ε, ε) by Proposition 3.11(i). But (by the Archimedean Property)
we can find m ∈ Z+ such that m > 1/(2πε). Note that a = 1/(2πm) ∈ (0, ε) ⊆ U . Substituting
it into the above derivative formula, we obtain this contradiction:

f ′(a) = −1 < 0.

3.3 Darboux’s Theorem

Note: We know that any differentiable function f : D → R is automatically continuous
by Proposition 2.8. But it is not true in general that f ′ : D → R is itself continuous (e.g.
the function in the above proposition is differentiable but not continuous at zero).

Theorem 3.15 (Darboux’s Theorem) Let f be differentiable on [a, b] and k be a number
between f ′(a) and f ′(b). Then, there exists c ∈ [a, b] such that f ′(c) = k.
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Proof : If k = f ′(a) or k = f ′(b), then we can take c = a and c = b, respectively. Otherwise,
there are two cases to consider: f ′(a) < k < f ′(b) and f ′(b) < k < f ′(a). We will prove the
first case directly, and then use a trick to transform the second case into the first case. Indeed,
assume f ′(a) < k < f ′(b) and consider the function

g(x) := kx− f(x).

This is differentiable with derivative g′(x) = k− f ′(x), and therefore continuous, on the interval
[a, b]. Thus, the Extreme Value Theorem implies g attains a maximum somewhere on [a, b]. We
see from the inequality we assume at the start that

g′(a) = k − f ′(a) > 0 and g′(b) = k − f ′(b) < 0.

The first tells us that the maximum can’t be at a, and the second tells us that the maximum can’t
be at b (Proposition 3.4). Therefore, the maximum is obtained at some interior point c ∈ (a, b).
But g′(c) = 0 by the Interior Extremum Theorem. Substituting this into the expression for g′

tells us that 0 = k − f ′(c), which rearranges to k = f ′(c).

For the second case, assume f ′(b) < k < f ′(a) and define the function h(x) := −f(x). Then, we
see that h is differentiable on [a, b] and satisfies h′(a) < −k < h′(b). But by the above argument,
there exists c ∈ (a, b) such that h′(c) = −k. This is equivalent to f ′(c) = k, so we are done.

Note: The slogan for Darboux’s Theorem: f ′ has the intermediate value property on [a, b].

3.4 The Extended Mean Value Theorem and L’Hôpital’s Rule

Theorem 3.16 (Extended Mean Value Theorem) Let f and g be real functions that are
continuous on [a, b] and differentiable on (a, b), where also g′(x) ̸= 0 for all x ∈ (a, b).
Then, there exists c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

Proof : Let’s call the right-hand side of the above equality α, and note that it is a constant. This
is well-defined since g(a) ̸= g(b). Indeed, if g(a) = g(b), then Rolle’s Theorem implies there
exists c ∈ (a, b) with g′(c) = 0, contradicting the fact g′ ̸= 0 on this open interval. We now define

h(x) := f(x)− αg(x).

This is also continuous on [a, b] and differentiable on (a, b), since it is a linear combination of
functions with these properties. By linearity, we see that h′(x) = f ′(x)− αg′(x). Furthermore,

h(a) =
f(a)g(b)− f(b)g(a)

g(b)− g(a)

by substituting and cancelling. But if we interchange a and b, we get the same expression (this
can be checked explicitly). In other words, h(a) = h(b). This allows us to apply Rolle’s Theorem
to h, so there exists c ∈ (a, b) such that h′(c) = 0. But this means that f ′(c) − αg′(c) = 0,
equivalent to the expression f ′(c)/g′(c) = α we wanted to show.
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Note: If we apply the Extended Mean Value Theorem in the case where g(x) = x, we
reduce to the usual Mean Value Theorem. Even better, if we apply it to g(x) = x−a, this
reduction still holds and the proof of Theorem 3.16 reduces to the proof of Theorem 3.7.

Remark Similar to that of the Mean Value Theorem, we can give a geometric interpretation of
the Extended Mean Value Theorem. However, instead of considering a graph, we consider a
parametrised curve whose components are g and f . Namely, let us define the parametrised curve

γ : [a, b] → R2, γ(t) = (g(t), f(t)).

The tangent to γ at γ(t) is parallel to the vector γ′(t) = (g′(t), f ′(t)). Therefore, its slope is
precisely f ′(t)/g′(t). The Extended Mean Value Theorem says that there is a point on γ between
its start γ(a) and end γ(b) at which its tangent is parallel to the chord connecting the endpoints.

x

y

γ′(c)

γ(a)

γ(b)

Figure 7: The geometric interpretation of the Extended Mean Value Theorem.

Theorem 3.17 (L’Hôpital’s Rule) Let I ⊆ R be an open interval and f, g : I → R be
differentiable functions with f(a) = g(a) = 0 for some a ∈ I, where also g′(x) ̸= 0 for all
x ∈ I and g(x) ̸= 0 for all x ∈ I \ {a}. Then, it follows that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof : Let (xn) be any sequence in I \ {a} where xn → a. For each n ∈ Z+, consider f and g
restricted to the closed interval with endpoints a and xn. These functions satisfy the hypotheses
of the Extended Mean Value Theorem. As such, there exists cn between a and xn such that

f ′(cn)

g′(cn)
=
f(xn)− f(a)

g(xn)− g(a)
=
f(xn)

g(xn)
.

But cn → a by the Squeeze Rule. Since we assume that the limit L := lim
x→a

f ′(x)/g′(x) exists,

f ′(cn)/g
′(cn) → L by Theorem 1.36, and this is the same as f(xn)/g(xn) → L by the above.
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3.5 Higher Derivatives and Taylor’s Theorem

Definition 3.19 A function f : D → R is continuously differentiable if it is differentiable
and its derivative f ′ : D → R is continuous. We say it is n-times continuously differentiable
if all its derivatives up to the nth exist everywhere on the domain D and are continuous.
We say that f is smooth if it is n-times continuously differentiable for every n ∈ Z+.

Notation The set of n-times continuously differentiable functions on the domain D is denoted
Cn(D). If f ∈ Cn(D), we say that “f is Cn”. Similarly, the set of smooth functions on D is
denoted C∞(D). For completeness, the set of continuous functions on D is denoted C0(D).

Theorem 3.21 (Taylor’s Theorem) Let I ⊆ R be an interval, f : I → R be (n + 1)-times
differentiable and a, x ∈ I. Then, there exists c between a and x such that we can write

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +

f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Proof : If x = a, the claim is trivial since we can choose c = a. Hence, let’s assume now that
x ̸= a. We consider a function similar to the one in the statement, namely F : I → R given by

F (t) = f(x)− f(t)− f ′(t)(x− t)− f ′′(t)

2!
(x− t)2 − · · · − f (n)(t)

n!
(x− t)n.

The claim to be proved is that there exists c between a and x whereby

F (a) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

By linearity and the Product Rule, we see that F is differentiable and compute

F ′(t) = −f
(n+1)(t)

n!
(x− t)n.

Define G(t) := (x− t)n+1, which has derivative G′(t) = −(n+ 1)(x− t)n. Now, F and G satisfy
the hypotheses of the Extended Mean Value Theorem; there exists c between a and x such that

F ′(c)

G′(c)
=
F (x)− F (a)

G(x)−G(a)
⇔ −f (n+1)(c)(x− c)n

n!
(
−(n+ 1)(x− c)n

) =
F (a)

(x− a)n+1
.

Multiplying by (x− a)n+1 gives us precisely the expression we wanted for F (a).

Note: The nth Taylor approximant of f about a refers to the polynomial

pn(x) := f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n,

and the remainder refers to the additional term

f (n+1)(c)

(n+ 1)!
(x− a)n+1.
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We know from MATH1026 that the following series converges, using the Alternating Series Test,
but this does not give us a way to access the actual limit of this series. However, Taylor’s
Theorem provides the missing piece to this puzzle.

Proposition (Alternating Harmonic Series) The series
∞∑
n=1

(−1)n+1

n converges to ln(2).

Proof : Let f : (0,∞) → R be given by f(x) = ln(x). This is a smooth function with

f ′(x) =
1

x
, f ′′(x) = − 1

x2
, f ′′′(x) =

2

x3
, f (4)(x) = − 6

x4
, ....

Indeed, we can prove by induction that f (m)(x) = (−1)m+1(m − 1)!x−m for all m ∈ Z+. The
base case (m = 1) says that f (1)(x) = x−1 which agrees with the explicit derivative computed
above. As for the inductive step, assume it is true for m = k, that is

f (k)(x) = (−1)k+1(k − 1)!x−k.

But we can view f (k+1)(x) as the derivative of the above, so differentiating gives us

f (k+1)(x) = (−1)k+1(k − 1)!(−k)x−k−1 = (−1)k+2k!x−(k+1).

It follows by induction that the derivative formula is correct. We use this to see that, for each
m ∈ Z+, f (m)(1) = (−1)m+1(m− 1)!. Next, the nth Taylor approximant for f about 1 is

pn(x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 + · · ·+ f (n)(1)

n!
(x− 1)n

= 0 + (x− 1)− 1

2
(x− 1)2 + · · ·+ (−1)n+1(n− 1)!

n!
(x− 1)n

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 + · · ·+ (−1)n+1

n
(x− 1)n.

Evaluating this at x = 2, we have precisely the nth partial sum of the alternating harmonic series:

pn(2) = 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n
.

But Taylor’s Theorem applies, and gives us the existence of some c ∈ (1, 2) such that

f(2) = pn(2) +
f (n+1)(c)

(n+ 1)!
(2− 1)n+1 = pn(2) +

(−1)n+2n!c−(n+1)

(n+ 1)!
= pn(2) +

(−1)n+2

n+ 1

1

cn+1
.

Therefore, the size of the error term when approximating via Taylor approximant is precisely

0 <
∣∣f(2)− pn(2)

∣∣ = ∣∣∣∣∣(−1)n+1

n+ 1

1

cn+1

∣∣∣∣∣ = 1

n+ 1

1

cn+1
<

1

n+ 1
.

Applying the Squeeze Rule, the sequence of partial sums pn(2) → f(2) = ln(2) as required.
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4 Integration

4.1 Suprema and Infima

Reminder: Let A ⊆ R be any subset.
� We say A is bounded above if there exists K ∈ R such that x ≤ K for all x ∈ A.
� We say A is bounded below if there exists L ∈ R such that x ≥ L for all x ∈ A.
� We say A is bounded if it is bounded both above and below.

Definition 4.1 Let A ⊆ R be non-empty. If they exist, the supremum sup(A) of A is the
least upper bound on A, and the infimum inf(A) of A is the greatest lower bound on A.

In other words, the supremum is an upper bound with the property that no number less than
it is also an upper bound. Similarly, the infimum is a lower bound with the property that no
number greater than it is also a lower bound.

Note: There is a difference between a supremum and a maximum (similarly for an infimum
and a minimum). For example, A = (1, 2) has no maximal element, but sup(A) = 2 /∈ A.

One of the defining properties of the real numbers is the below axiom (an additional assumption).

Axiom (Completeness) Every non-empty subset of R bounded above has a supremum in R.

Theorem 4.4 Every non-empty subset of R bounded below has an infimum in R.

Proof : Let A ⊆ R be such a non-empty subset and suppose B := {−x : x ∈ A} ⊆ R. Because A
is non-empty, so too is B. Moreover, if L ∈ R is a lower bound of A, this means x ≥ L for all
x ∈ A. Therefore, −x ≤ −L for all x ∈ A and so −L is an upper bound of B. By the Axiom of
Completeness, the number K := sup(B) ∈ R exists. It remains to prove that − sup(B) = inf(A).
Indeed, assume that M ∈ R satisfies M ≥ − sup(B). But it follows that −M ≤ sup(B). But by
definition of a supremum, there exists x ∈ B such that x ≥ −M . This is equivalent to −x ≤M .
Because x ∈ B, by definition we have −x ∈ A and so M is not a lower bound on A. Hence,
− sup(B) is the greatest lower bound on A, i.e. it is precisely inf(A).

Note: Suppose that A ⊆ B ⊆ R such that their suprema and infima exist. It follows that

sup(A) ≤ sup(B) and inf(A) ≥ inf(B).
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4.2 Dissections and Riemann Sums

Definition 4.5 A dissection of a closed bounded interval [a, b] is a finite subset D of [a, b]
containing both a and b. By convention, if D has n + 1 elements, we call D a dissection
of size n and label its elements a0, a1, ..., an−1, an in such a way that

a = a0 < a1 < · · · < an−1 < an = b.

Remark The size of the dissection is one less than the number of elements it contains since the
size actually counts the number of subintervals [aj−1, aj ] into which the dissection divides [a, b].

Note: A dissection D is called regular if the points in it are evenly spaced, that is for all j,

aj − aj−1 =
b− a

n
.

Let f : [a, b] → R be bounded and D be a dissection of size n of [a, b]. Throughout, we will use

mj := inf{f(x) : x ∈ [aj−1, aj ]} and Mj := sup{f(x) : x ∈ [aj−1, aj ]}. (†)

Definition 4.6 Let f : [a, b] → R be bounded and D be a dissection of size n of [a, b].

(i) The lower Riemann sum of f with respect to D is lD(f) =
n∑

j=1
mj(aj − aj−1).

(ii) The upper Riemann sum of f with respect to D is uD(f) =
n∑

j=1
Mj(aj − aj−1).

Remark If f(x) ≥ 0 for all x ∈ [a, b], we can visualise each of the lower and upper Riemann sums
geometrically. Indeed, the lower Riemann sum gives the total area of the tallest rectangles with
bases [aj−1, aj ] that fit under the graph y = f(x). Similarly, the upper Riemann sum gives the
total area of the shortest rectangles with bases [aj−1, aj ] that fit over the graph y = f(x).

x

f(x)

a ba1 a2 a3 a4 a5

(a) The lower Riemann sum.

x

f(x)

a ba1 a2 a3 a4 a5

(b) The upper Riemann sum.

Figure 8: The geometric interpretation of the lower and upper Riemann sums.
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Proposition 4.8 Let f : [a, b] → R be bounded above by M and below by m, and D be any
dissection of [a, b]. Then, we have

m(b− a) ≤ lD(f) ≤ uD(f) ≤M(b− a).

Proof : Let D = {a0, a1, ..., an} and mj andMj be defined as in (†). Then, by definition of upper
and lower bounds, it is clear that m ≤ mj ≤Mj ≤M ; the central inequality here implies that

lD(f) =
n∑

j=1

mj(aj − aj−1) ≤
n∑

j=1

Mj(aj − aj−1) = uD(f).

As for the inequalities on the far left and far right, we respectively obtain the following:

lD(f) =
n∑

j=1

mj(aj − aj−1) ≥
n∑

j=1

m(aj − aj−1) = m(an − a0) = m(b− a)

and

uD(f) =

n∑
j=1

Mj(aj − aj−1) ≤
n∑

j=1

M(aj − aj−1) =M(an − a0) =M(b− a).

Note: Hence, Proposition 4.8 tells us that the set of lower Riemann sums is bounded above
by M(b− a) and the set of upper Riemann sums is bounded below by m(b− a).

4.3 Definition of the Riemann Integral

Definition 4.9 Let f : [a, b] → R be bounded.
(i) The lower Riemann integral of f is l(f) = sup{lD(f) : D is any dissection of [a, b]}.
(ii) The upper Riemann integral of f is u(f) = inf{lD(f) : D is any dissection of [a, b]}.
(iii) We say that f is Riemann integrable on [a, b] if l(f) = u(f).
We call the common number l(f) = u(f) the Riemann integral of f on [a, b] and denote it∫ b

a
f or

∫ b

a
f(x) dx.

Remark Thinking geometrically, the lower Riemann integral can be thought of as the least upper
bound on the collection of all underestimates of the area under the graph y = f(x). Similarly,
the upper Riemann integral is the greatest lower bound on the collection of all overestimates of
the area under the graph y = f(x). Loosely speaking, the number

∫ b
a f is the unique (if it exists)

number which is smaller than every overestimate and larger than every underestimate.

Definition 4.10 We say that a dissection D ′ of [a, b] is a refinement of a dissection D also
of [a, b] if we have D ′ ⊇ D . In other words, D is obtained from D ′ by throwing away some
number of points. If D ′ \ D contains k points, we call D ′ a k-point refinement of D .
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Note: For any dissection D of [a, b], the unique 0-point refinement of D is simply D itself.

Lemma 4.11 (Refinement Lemma) Let f : [a, b] → R be bounded and D ,D ′ be dissections
of [a, b] such that D ′ is a refinement of D . Then,

lD(f) ≤ lD ′(f) ≤ uD ′(f) ≤ uD(f).

Proof : We first prove this result for the case where D ′ = D ∪ {z} for z /∈ D , meaning D ′ is
a one-point refinement of D . Let D = {a0, a1, ..., an}. Because z /∈ D , it lies in a subinterval
defined by D , i.e. there exists k ∈ {1, ..., n} such that z ∈ (ak−1, ak). Alongside the notation of
(†) used before, we define the following:

m′ = inf{f(x) : x ∈ [ak−1, z]},
m′′ = inf{f(x) : x ∈ [z, ak]},

M ′ = sup{f(x) : x ∈ [ak−1, z]},
M ′′ = sup{f(x) : x ∈ [z, ak]}.

Because [ak−1, z], [z, ak] ⊆ [ak−1, ak], we know immediately thatm′,m′′ ≥ mk andM ′,M ′′ ≤Mk.
As for the lower and upper Riemann sums with respect to this one-point refinement, we have

lD ′(f) =

n∑
k ̸=j=1

mj(aj − aj−1) +m′(z − ak−1) +m′′(ak − z)

= lD(f)−mk(ak − ak−1) +m′(z − ak−1) +m′′(ak − z)

≥ lD(f)−mk(ak − ak−1) +mk(z − ak−1) +mk(ak − z)

= lD(f)

and

uD ′(f) =
n∑

k ̸=j=1

Mj(aj − aj−1) +M ′(z − ak−1) +M ′′(ak − z)

= uD(f)−Mk(ak − ak−1) +M ′(z − ak−1) +M ′′(ak − z)

≤ uD(f)−Mk(ak − ak−1) +Mk(z − ak−1) +Mk(ak − z)

= uD(f).

As Proposition 4.8 tells us lD ′(f) ≤ uD ′(f), we can stitch together the above to conclude that

lD(f) ≤ lD ′(f) ≤ uD ′(f) ≤ uD(f).

We can now proceed inductively. Namely, let D ′ = D ∪ {z1, ..., zk} be a k-point refinement of D
where each zi /∈ D . The trick is to define a chain of dissections Di for i = 0, .., k where D0 = D
and Di = Di−1∪{zi}. Note that Dk = D ′, and each Di is a one-point refinement of Di−1. Hence,
lD(f) ≤ lD1(f) ≤ · · · ≤ lDk−1

(f) ≤ lD ′(f) and uD(f) ≥ uD1(f) ≥ · · · ≥ uDk−1
(f) ≥ uD ′(f) by the

argument above for the one-point refinement case. By again using Proposition 4.8 to see that
lD ′(f) ≤ uD ′(f), we can stitch these together and conclude precisely the result we are after:

lD(f) ≤ lD ′(f) ≤ uD ′(f) ≤ uD(f).
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Corollary 4.12 Let f : [a, b] → R be bounded and D , D̂ be any dissections of [a, b]. Then,

lD(f) ≤ u
D̂
(f).

Proof : Let D ′ := D ∪ D̂ , a refinement of both D and of D̂ . Hence, the Refinement Lemma says

lD(f) ≤ lD ′(f) ≤ uD ′(f) ≤ u
D̂
(f).

Lemma 4.13 Let f : [a, b] → R be bounded. Then, l(f) ≤ u(f).

Proof : Let D be the set of all dissections of [a, b]. In this notation, Definition 4.9 introduces

l(f) = sup{lD(f) : D ∈ D} and u(f) = inf{uD(f) : D ∈ D}.

Assume to the contrary that l(f) > u(f). Then, l(f) is not a lower bound on the set of all
upper Riemann sums {uD(f) : D ∈ D}. Hence, there exists some D ∈ D such that uD(f) < l(f).
But then, uD(f) is not an upper bound on the set of all lower Riemann sums {lD(f) : D ∈ D}.
Similarly, there exists D̂ ∈ D such that l

D̂
(f) > uD(f). But this contradicts Corollary 4.12.

Proposition The function f : [0, 1] → R given by f(x) = x2 is Riemann integrable.

Proof : For each n ∈ Z+, let Dn be the regular dissection of [0, 1] of size n. Explicitly, this means

Dn =

{
0,

1

n
,
2

n
, ...,

n− 1

n
, 1

}
.

Each subinterval [aj−1, aj ] = [ j−1
n , jn ] has width 1/n. Since f is increasing, it is straightforward

to calculate explicitly the numbers mj and Mj introduced in (†). Indeed, one can see that

mj = inf{f(x) : x ∈ [aj−1, aj ]} =
(j − 1)2

n2
and Mj = sup{f(x) : x ∈ [aj−1, aj ]} =

j2

n2
.

By using the sums of squares formula, we can compute the lower and upper Riemann sums as

lDn(f) =
1

6

(
1− 1

n

)(
2− 1

n

)
and uDn(f) =

1

6

(
1 +

1

n

)(
2 +

1

n

)
.

But by definition, we know that l(f) ≥ lDn(f). Since we can see from above that lDn(f) → 1/3
by the Algebra of Limits, it follows from Proposition 1.7 that l(f) ≥ 1/3 also. Arguing similarly,
u(f) ≤ uDn(f) → 1/3, so the same result tells us that u(f) ≤ 1/3. Combining these produces

u(f) ≤ 1

3
≤ l(f).

Finally, Lemma 4.13 tells us that l(f) ≤ u(f) always, so it must be that l(f) = u(f), i.e. f is
Riemann integrable. The Riemann integral is this common value, so∫ 1

0
f =

1

3
.

36



Note: The only dissection of the interval [a, a] = {a} is the singleton set D = {a}. Because
every function f : [a, a] → R is bounded above and below by f(a), one can see easily that
l{a}(f) = u{a}(f) = 0. In other words,

∫ a
a f = 0. For convenience, when a ≤ b, we define∫ a

b
f := −

∫ b

a
f.

4.4 A Sequential Characterisation of Integrability

Theorem 4.16 Let f : [a, b] → R be bounded. Then, f is Riemann integrable if and only
if there exists a sequence (Dn) of dissections of [a, b] such that

uDn(f)− lDn(f) → 0.

Proof : Let D be the set of all dissections of [a, b]. Similarly, we let L and U be the set of all lower
and upper Riemann sums, respectively. This means we have l(f) = sup(L) and u(f) = inf(U).

(⇒) Assume that f is Riemann integrable, so l(f) = u(f). For each n ∈ Z+, notice that
u(f) + 1/n > u(f). Since u(f) is the infimum of U, we know that u(f) + 1/n is not a lower
bound on U. Hence, there exists some dissection D ′

n ∈ D such that uD ′
n
(f) < u(f) + 1/n.

Similarly, we have l(f)−1/n < l(f), the latter of which is the supremum of L. Hence, l(f)−1/n
is not an upper bound on L. This means there exists D ′′

n ∈ D such that lD ′′
n
(f) > l(f)− 1/n. We

now set Dn := D ′
n ∪ D ′′

n , which is a refinement of both D ′
n and D ′′

n . Consequently, we have

u(f) ≤ uDn(f) ≤ uD ′
n
(f) < u(f) +

1

n

and

l(f)− 1

n
< lD ′

n
(f) ≤ lDn(f) ≤ l(f).

by the Refinement Lemma. The Squeeze Rule applies: uDn(f) → u(f) and lDn(f) → l(f). So
uDn(f)− lDn(f) → u(f)− l(f) = 0 by the Algebra of Limits. Further, the Riemann integral is∫ b

a
f = lim

n→∞
lDn(f) = lim

n→∞
uDn(f).

(⇐) Assume that a sequence (Dn) exists such that uDn(f)− lDn(f) → 0. But for all n ∈ Z+, we
know that uDn(f) ≥ u(f) and lDn(f) ≤ l(f) by definition. Hence, uDn(f)− lDn(f) ≥ u(f)− l(f).
By Proposition 1.7, we can apply the limit and preserve the inequality:

0 = lim
n→∞

(
uDn(f)− lDn(f)

)
≥ u(f)− l(f).

In other words, l(f) ≥ u(f). Since l(f) ≤ u(f) by Lemma 4.13, we see that l(f) = u(f) and so
f is Riemann integrable. To find the integral explicitly, notice that

0 ≤ uDn(f)− u(f) ≤ uDn(f)− u(f) + l(f)− lDn(f) = uDn(f)− lDn(f).

The Squeeze Rule now shows that uDn(f)− u(f) → 0, that is uDn(f) → u(f) as needed.
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Theorem 4.17 Let f : [a, b] → R be increasing. Then, f is Riemann integrable.

Proof : Since f is increasing, it is bounded below by f(a) and above f(b); we know that l(f) and
u(f) exist. For each n ∈ Z+, let Dn be the regular dissection of [a, b] of size n, meaning each
subinterval has width (b− a)/n. Then, for each j = 1, ..., n, the numbers introduced in (†) are

mj = inf{f(x) : x ∈ [aj−1, aj ]} = f(aj−1) and Mj = sup{f(x) : x ∈ [aj−1, aj ]} = f(aj).

Using these in the definition of the upper and lower Riemann sums, we obtain

uDn(f)− lDn(f) =
b− a

n

n∑
j=1

(
f(aj)− f(aj−1)

)
=
b− a

n

(
f(b)− f(a)

)
→ 0,

to which we can apply Theorem 4.16 and conclude that f is Riemann integrable.

Theorem Let f : [a, b] → R be decreasing. Then, f is Riemann integrable.

Proof : Since f is decreasing, it is bounded below by f(b) and above f(a); we know that l(f) and
u(f) exist. For each n ∈ Z+, let Dn be the regular dissection of [a, b] of size n, meaning each
subinterval has width (b− a)/n. Then, for each j = 1, ..., n, the numbers introduced in (†) are

mj = inf{f(x) : x ∈ [aj−1, aj ]} = f(aj) and Mj = sup{f(x) : x ∈ [aj−1, aj ]} = f(aj−1).

Using these in the definition of the upper and lower Riemann sums, we obtain

uDn(f)− lDn(f) =
b− a

n

n∑
j=1

(
f(aj−1)− f(aj)

)
=
b− a

n

(
f(a)− f(b)

)
→ 0,

to which we can apply Theorem 4.16 and conclude that f is Riemann integrable.

Theorem 4.21 Let f : [a, b] → R be continuous. Then, f is Riemann integrable.

Proof : By the Extreme Value Theorem, we know f is bonded and so l(f) and u(f) exist. Consider
now the sequence (Dn) of regular dissections of [a, b] of size 2

n. Since Dn ⊆ Dn+1, the Refinement
Lemma tells us that (lDn(f)) is an increasing sequence and (uDn(f)) is a decreasing sequence.
Hence, the Monotone Convergence Theorem tells us that lDn(f) → K and uDn(f) → L for some
K,L ∈ R. The Algebra of Limits and Proposition 1.7 now inform us that

uDn(f)− lDn(f) → K − L ≥ 0.
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In order to show integrability via Theorem 4.16, we must prove that K − L = 0. To this end,
assume for a contradiction that ε := K − L > 0. As usual, we use the notation mj and Mj

established in (†). Then, the difference between the upper and lower Riemann sums is

uDn(f)− lDn(f) =
b− a

2n

2n∑
j=1

(Mj −mj) ≥ ε.

The sum consists of 2n non-negative terms, so at least one of them must be greater than or equal
to ε/2n (if not, the whole sum would be less than ε). As such, there exists j ∈ {1, ..., 2n} with

Mj −mj ≥
ε

b− a
.

Note that f : [aj−1, aj ] → R is continuous; the Extreme Value Theorem once again applies,
telling us that f attains a maximum and minimum on the subinterval [aj−1, aj ]. In other words,
there exist xn, yn ∈ [aj−1, aj ] such that f(xn) = Mj and f(yn) = mj . It follows that for each
n ∈ Z+, there exist points xn, yn ∈ [a, b] satisfying

|xn − yn| ≤
b− a

2n
, (4.1)

since they lie in an interval of this width, and

f(xn)− f(yn) ≥
ε

b− a
. (4.2)

The sequence (xn) is bounded, so there exists a convergent subsequence xnk
→ c ∈ [a, b] as a

result of the Bolzano-Weierstrass Theorem. By (4.1), we know that

xnk
− b− a

2nk
≤ ynk

≤ xnk
+
b− a

2nk
.

The Squeeze Rule implies ynk
→ c also. Because f is continuous, we know that f(xnk

) → f(c)
and f(ynk

) → f(c). The Algebra of Limits now tells us that f(xnk
)− f(ynk

) → f(c)− f(c) = 0;
this is a contradiction to both (4.2) and Proposition 1.7.

Proposition The following function f : [0, 1] → R is not Riemann integrable:

f(x) =

{
0 if x ∈ Q
1 if x /∈ Q

.

Proof : Let D be any dissection of [0, 1]. Then, every subinterval [aj−1, aj ] contains both rational
and irrational numbers; the punchline to this is that mj = 0 and Mj = 1 for all j. Consequently,

lD(f) =
n∑

j=1

0(aj − aj−1) = 0 and uD(f) =
n∑

j=1

1(aj − aj−1) = an − a0 = 1.

Because this is true for any dissection, we see that l(f) = sup{0} = 0 ̸= 1 = inf{1} = u(f).
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4.5 Elementary Properties of the Riemann Integral

Proposition 4.22 Let f be Riemann integrable on [a, b] and on [b, c]. Then, f is Riemann
integrable on [a, c], and the Riemann integral is given by∫ c

a
f =

∫ b

a
f +

∫ c

b
f.

Proof : By Theorem 4.16, there exist sequences of dissections (D ′
n) of [a, b] and (D ′′

n) of [b, c] with

lD ′
n
(f) →

∫ b

a
f, uD ′

n
(f) →

∫ b

a
f, lD ′′

n
(f) →

∫ c

b
f, uD ′′

n
(f) →

∫ c

b
f.

Let Dn = D ′
n ∪ D ′′

n , which is a dissection of [a, c]. By Definition 4.6 and the Algebra of Limits,

lDn(f) = lD ′
n
(f) + lD ′′

n
(f) →

∫ b

a
f +

∫ c

b
f,

uDn(f) = uD ′
n
(f) + uD ′′

n
(f) →

∫ b

a
f +

∫ c

b
f.

Hence, the claim is immediate from Theorem 4.16; f is Riemann integrable on [a, c].

Lemma 4.23 Let f, g : [a, b] → R be bounded and D any dissection of [a, b]. Then,

lD(f + g) ≥ lD(f) + lD(g) and uD(f + g) ≤ uD(f) + uD(g).

Proof : We shall prove the first inequality (the second is done via an analogous argument).
Suppose first that D = {a0, a1, ..., an}. For any bounded function h : [a, b] → R, we use notation
similar to that of (†), except we keep track of which function we are referring to here:

mj(h) = inf{h(x) : x ∈ [aj−1, aj ]}.

For all x ∈ [aj−1, aj ], we have f(x) ≥ mj(f) and g(x) ≥ mj(g) by definition of the infimum, from
which it follows that f(x)+g(x) ≥ mj(f)+mj(g). The number on the right-hand side is a lower
bound on the set {f(x) + g(x) : x ∈ [aj−1, aj ]}. Consequently, mj(f + g) ≥ mj(f) +mj(g) since
the number on the left-hand side is the greatest lower bound on the aforementioned set. Thus,

lD(f + g) =

n∑
j=1

mj(f + g)(aj − aj−1)

≥
n∑

j=1

(
mj(f) +mj(g)

)
(aj − aj−1)

= lD(f) + lD(g).
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Theorem 4.24 (Linearity of the Riemann Integral) Let f, g : [a, b] → R both be Riemann
integrable, and α ∈ R some constant. Then, the following are true:

(i) The function αf is Riemann integrable on [a, b], with

∫ b

a
αf = α

∫ b

a
f .

(ii) The function f + g is Riemann integrable on [a, b], with

∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Proof : (i) By Theorem 4.16, there exists a sequence of dissections (Dn) such that

lDn(f) →
∫ b

a
f and uDn(f) →

∫ b

a
f.

It is not too hard to see directly from Definition 4.6 that

lDn(αf) =

{
αlDn(f) if α ≥ 0

αuDn(f) if α < 0
and uDn(αf) =

{
αuDn(f) if α ≥ 0

αlDn(f) if α < 0
.

In either case, the Algebra of Limits implies that lDn(αf) → α
∫ b
a f and uDn(αf) → α

∫ b
a f ; the

integrability and its expression follow from the sequential characterisation in Theorem 4.16.

(ii) By Theorem 4.16, there exist sequences of dissections (D ′
n) and (D ′′

n) of [a, b] such that

lD ′
n
(f) →

∫ b

a
f, uD ′

n
(f) →

∫ b

a
f, lD ′′

n
(g) →

∫ b

a
g, uD ′′

n
(g) →

∫ b

a
g.

Let Dn = D ′
n ∪ D ′′

n , a refinement of the two dissections above. The Refinement Lemma implies

lD ′
n
(f) ≤ lDn(f) ≤

∫ b

a
f,

lD ′′
n
(g) ≤ lDn(g) ≤

∫ b

a
g,

∫ b

a
f ≤ uDn(f) ≤ uD ′

n
(f),∫ b

a
g ≤ uDn(g) ≤ uD ′′

n
(g).

We can now apply the Squeeze Rule to each of the above inequalities. Doing so yields

lDn(f) →
∫ b

a
f, uDn(f) →

∫ b

a
f, lDn(g) →

∫ b

a
g, uDn(g) →

∫ b

a
g.

By Lemma 4.23, we see also that

lDn(f) + lDn(g) ≤ lDn(f + g) ≤ l(f + g)

and
u(f + g) ≤ uDn(f + g) ≤ uDn(f) + uDn(g).

But the far-left and far-right (respectively) both converge to
∫ b
a f +

∫ b
a g, so applying the limit

to the above inequalities and using Proposition 1.7 produces for us∫ b

a
f +

∫ b

a
g ≤ l(f + g) and u(f + g) ≤

∫ b

a
f +

∫ b

a
g.
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Combining these gives us u(f + g) ≤ l(f + g), but we know from Lemma 4.13 that the reverse
inequality is always true. Hence, we have straight-up equality: l(f + g) = u(f + g), telling us
that f + g is Riemann integrable. Furthermore, notice that∫ b

a
(f + g) = l(f + g) ≥

∫ b

a
f +

∫ b

a
g

and ∫ b

a
(f + g) = u(f + g) ≤

∫ b

a
f +

∫ b

a
g,

which tells us that the integral is indeed given by
∫ b
a (f + g) =

∫ b
a f +

∫ b
a g.

Proposition 4.25 Let f, g : [a, b] → R be Riemann integrable such that f(x) ≤ g(x) for all
x ∈ [a, b]. Then, their integrals satisfy the inequality∫ b

a
f ≤

∫ b

a
g.

Proof : By Theorem 4.16, there exist sequences of dissections (D ′
n) and (D ′′

n) of [a, b] where

lD ′
n
(f) →

∫ b

a
f and lD ′′

n
(f) →

∫ b

a
g.

Let Dn = D ′
n∪D ′′

n , which is a dissection of [a, b] and a refinement of each of the dissections given
above. By applying the Refinement Lemma and the Squeeze Rule, it follows that

lDn(f) →
∫ b

a
f and lDn(f) →

∫ b

a
g.

But since f(x) ≤ g(x) for all x ∈ [a, b], it follows that inf(f) ≤ inf(g) on any subset of [a, b].

Hence, lDn(f) ≤ lDn(g), or rather 0 ≤ lDn(g)− lDn(f), for all n ∈ Z+. But now, 0 ≤
∫ b
a g −

∫ b
a f

by taking the limit and using Proposition 1.7. Of course, this rearranges to what we require.

Note: Assuming that f and g are continuous, we can replace ≤ by < in Proposition 4.25.

Proposition 4.26 (Integral Triangle Inequality) Let f : [a, b] → R be Riemann integrable.
Then, |f | : [a, b] → R is Riemann integrable and its integral satisfies the inequality∣∣∣∣∣

∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |.

Proof : Firstly, if |f | is Riemann integrable, since −
∣∣f(x)∣∣ ≤ f(x) ≤

∣∣f(x)∣∣ for all x ∈ [a, b], then

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f |.
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This is equivalent to the inequality in the statement, so all that remains is to show Riemann
integrability of |f |. To that end, let f+ : [a, b] → R be the so-called positive part of f , that is

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0
.

Since we can write |f | = 2f+ − f , it suffices to show that f+ is Riemann integrable (and the
result then follows from Theorem 4.24). Indeed, let D = {a0, a1, ..., an} be a dissection of [a, b]
and consider for a particular subinterval Ij = [aj−1, aj ] the numbers mj(f), mj(f+), Mj(f) and
Mj(f+) in the notation from the proof of Lemma 4.23. There are three cases:

� If f ≥ 0 on Ij , then f+ ≡ f on Ij and thus

Mj(f+)−mj(f+) =Mj(f)−mj(f).

� If f < 0 on Ij , then f+ ≡ 0 on Ij and thus

Mj(f+)−mj(f+) = 0 ≤Mj(f)−mj(f).

� If f varies in sign on Ij , we have mj(f+) = 0 > mj(f) and Mj(f+) =Mj(f), and thus

Mj(f+)−mj(f+) < Mj(f)−mj(f).

Across all three cases, we see that the following is satisfied for every index j:

Mj(f+)−mj(f+) ≤Mj(f)−mj(f).

Consequently, for any dissection D , we have

uD(f+)− lD(f+) =

n∑
j=1

(
Mj(f+)−mj(f+)

)
(aj − aj−1)

≤
n∑

j=1

(
Mj(f)−mj(f)

)
(aj − aj−1)

= uD(f)− lD(f).

But f is Riemann integrable by assumption, so there exists a sequence of dissections (Dn) such
that uDn(f)− lDn(f) → 0 (Theorem 4.16). Applying the above to Dn produces the inequality

0 ≤ uD(f+)− lD(f+) ≤ uDn(f)− lDn(f).

The Squeeze Rule implies uD(f+)− lD(f+) → 0, that is f+ is Riemann integrable.

Theorem 4.27 Let f : [a, b] → R be Riemann integrable. Then, f2 is Riemann integrable.
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Proof : Since f is Riemann integrable, so too is |f | by Proposition 4.26. We can write f2 = |f |2.
Let K be any upper bound on |f | and D = {a0, a1, ..., an} be any dissection of [a, b]. Then,

Mj(f
2) =Mj(|f |2) =Mj(f)

2 and mj(f
2) = mj(|f |2) = mj(f)

2.

Therefore, we see that

uD(f
2)− lD(f

2) =
n∑

j=1

(
Mj(f

2)−mj(f
2)
)
(aj − aj−1)

=
n∑

j=1

(
Mj(|f |)2 −mj(|f |)2

)
(aj − aj−1)

=
n∑

j=1

(
Mj(|f |) +mj(|f |)

) (
Mj(|f |)−mj(|f |)

)
(aj − aj−1)

≤
n∑

j=1

2K
(
Mj(|f |)−mj(|f |)

)
(aj − aj−1)

= 2K
(
uD(|f |)− lD(|f |)

)
.

But we know that |f | is Riemann integrable, so there exists a sequence of dissections (Dn) such
that uDn(|f |)− lDn(|f |) → 0 (Theorem 4.16). Applying the above to Dn produces the inequality

0 ≤ uD(f
2)− lD(f

2) ≤ uDn(|f |)− lDn(|f |).

The Squeeze Rule implies uD(f
2)− lD(f

2) → 0, that is f2 is Riemann integrable.

Corollary 4.28 (Algebra Property of Integrable Functions) Let f and g be bounded functions
that are Riemann integrable on [a, b], and α ∈ R be a constant. Then, the following are
all Riemann integrable on [a, b]:

αf, f + g, fg.

Proof : The first two were proved in Theorem 4.24. As for the product, notice that we can write

fg =
1

2

(
(f + g)2 − f2 − g2

)
.

But f2, g2 and (f+g)2 are Riemann integrable by Theorem 4.27, so fg is Riemann integrable.

Note: The linearity in Theorem 4.24 establishes that the set L([a, b]) of Riemann integrable
functions on [a, b] is an R-vector space. Indeed, it is closed under the obvious addition
and scalar multiplication operations. Better still, Corollary 4.28 tells us that L([a, b]) is
an R-algebra with pointwise multiplication. We know therefore that this map is a linear
map:

L([a, b]) → R, f 7→
∫ b

a
f.
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5 The Fundamental Theorem of Calculus

5.1 The First Form and the Intermediate Value Theorem

Reminder: For relevant f : [a, b] → R, recall
∫ b
a f ∈ R is a single number, not a function.

That said, if we fix the left-hand endpoint a of the interval and allow the right-hand endpoint b
to vary, we can consider

∫ b
a f as a function of b. This idea is crucial for the next theorem.

Theorem 5.1 (Fundamental Theorem of Calculus Version 1) Let I ⊆ R be an interval and
f : I → R be continuous. For any fixed a ∈ I, define the function F : I → R by

F (x) =

∫ x

a
f.

Then, F is differentiable with derivative F ′ = f .

Proof : First, f is continuous on [a, x] (if x ≥ a) or [x, a] (if x < a) for all x ∈ I. This establishes
F is well-defined as continuous functions are integrable (Theorem 4.21). We aim to determine

lim
y→x

F (y)− F (x)

y − x
,

which we will do by using the sequential characterisation of limits (Theorem 1.36). To that end,
let (yn) be a sequence in I \ {x} such that yn → x, and

s(yn) :=
F (yn)− F (x)

yn − x
.

We must show s(yn) → f(x). For each n ∈ Z+, note that either yn > x or yn < x. This gives us
two options for s(yn), which can be dealt with by simplifying F (yn)−F (x) via Proposition 4.22:

s(yn) =


1

yn − x

∫ yn

x
f if yn > x

1

x− yn

∫ x

yn

f if yn < x

.

In either case, the Extreme Value Theorem guarantees the existence of wn and zn between x and
yn such that f(wn) is the minimum value on that closed interval, and f(zn) is the maximum
value on the same closed interval. Therefore, Proposition 4.8 gives us the following:

yn > x ⇒ 1

yn − x
f(wn)(yn − x) ≤ s(yn) ≤

1

yn − x
f(zn)(yn − x),

yn < x ⇒ 1

x− yn
f(wn)(x− yn) ≤ s(yn) ≤

1

x− yn
f(zn)(x− yn).

Either way, we conclude that f(wn) ≤ s(yn) ≤ f(zn). Finally, since yn → x, the Squeeze Rule
implies also that wn → x and zn → x. But the continuity of f implies that f(wn) → f(x) and
f(zn) → f(x). The Squeeze Rule applies to the above inequality, meaning s(yn) → f(x).
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Note: The Fundamental Theorem of Calculus Version 1 says this: any function that is
continuous on an interval is the derivative of some differentiable function on said interval.

We can use the Fundamental Theorem of Calculus to give a remarkable proof of Theorem 1.48.

Theorem 1.48 (Intermediate Value Theorem) Let f : [a, b] → R be continuous and y be a
number between f(a) and f(b). Then, there exists c ∈ [a, b] such that f(c) = y.

Proof : Let F : [a, b] → R be given by F (x) =
∫ x
a f . Then, F is differentiable with F ′ = f by

Theorem 5.1. In these terms, y is a number between F ′(a) = f(a) and F ′(b) = f(b). Hence, there
exists c ∈ [a, b] such that F ′(c) = y, by Darboux’s Theorem, but this is precisely f(c) = y.

Corollary 5.2 Let I ⊆ R be an interval and f : I → R be continuous. For any fixed b ∈ I,
define the function F : I → R by

F (x) =

∫ b

x
f.

Then, F is differentiable with derivative F ′ = −f .

Proof : Let a ∈ I be arbitrary and define G : I → R by G(x) =
∫ x
a f . By Proposition 4.22,

G(x) + F (x) =

∫ x

a
f +

∫ b

x
f =

∫ b

a
f ≡ K ∈ R

some constant. But G is differentiable with G′ = f by Theorem 5.1. Hence, the above can be
rearranged to F (x) = K −G(x); this is differentiable by linearity, with F ′ = 0−G′ = −f .

Method – Differentiating an Integral: Suppose we are given an integral g(x) =
∫ v(x)
u(x) f .

We can differentiate this by using the Fundamental Theorem of Calculus Version 1, namely

g′(x) = v′(x)f(v(x))− u′(x)f(u(x)).

5.2 The Second Form and a Practical Method for Computing Integrals

The next version of the Fundamental Theorem of Calculus is one we’ve used implicitly for years.

Theorem 5.4 (Fundamental Theorem of Calculus Version 2) Let f : [a, b] → R be continuous
and F : [a, b] → R be any differentiable function such that F ′ = f . Then,∫ b

a
f = F (b)− F (a).
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Proof : Define the function g : [a, b] → R by g(x) =
(∫ x

a f
)
− F (x). By Theorem 5.1 and the

definition of F , we see that g′(x) = f(x) − f(x) = 0 for all x ∈ [a, b]. Therefore, we know g is
constant by Proposition 3.11(iii). In particular, g(b) = g(a) and this is equivalent to saying(∫ b

a
f

)
− F (b) =

(∫ a

a
f

)
− F (a) = 0− F (a) ⇔

∫ b

a
f = F (b)− F (a).

Reminder: Let f : D → R be a function. We say f is odd if f(−x) = −f(x) for all x ∈ D.

Proposition 5.6 Let f : [−a, a] → R be a continuous odd function. Then,∫ a

−a
f = 0.

Proof : Let’s define F : [0, a] → R by F (x) =
∫ x
−x f . Using Proposition 4.22, we can write

F (x) =

∫ 0

−x
f +

∫ x

0
f.

Then, the Chain Rule along with Theorem 5.1 and Corollary 5.2 gives us its derivative:

F ′(x) = −(−f(−x)) + f(x) = f(−x) + f(x) = −f(x) + f(x) = 0,

using the oddness of f . Hence, we know F is constant by Proposition 3.11(iii). In particular,∫ a

−a
f = F (a) = F (0) = 0.

Remark The best part about Theorem 5.4 is that we can explicitly compute integrals of f just
by conjuring up a so-called anti-derivative of f , that is any function whose derivative is f . It
is common to call an anti-derivative of f an indefinite integral, denoted somewhat ambiguously
by
∫
f(x) dx. Really, this represents a class of functions (recall the involvement of “+C” when

you have worked with indefinite integrals before) who all differentiate to f . This is a function of
x, not a single number; its definition has nothing to do with Riemann sums. But the relation
between

∫
f and

∫ b
a f is exactly provided by the Fundamental Theorem of Calculus Version 2.

5.3 The Natural Logarithm

Definition 5.8 The (natural) logarithm is the function ln : (0,∞) → R defined by

ln(x) =

∫ x

1

1

t
dt.
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Remark The integrand f(t) = 1/t is continuous on (0,∞) and hence Riemann integrable on [1, x]
(if x ≥ 1) or [x, 1] (if 0 < x < 1). Thus, we know that the natural logarithm is well-defined.
Moreover, the Fundamental Theorem of Calculus Version 1 implies it is differentiable with

ln′(x) =
1

x
.

Proposition 5.9 For all x, y ∈ (0,∞), we have ln(xy) = ln(x) + ln(y).

Proof : Fix y ∈ (0,∞) and define the function f : (0,∞) → R by f(x) = ln(xy)− ln(x)− ln(y).
By applying the Chain Rule and linearity, we know f is differentiable with derivative

f ′(x) =
y

xy
− 1

x
− 0.

Hence, f is constant by Proposition 3.11(iii). In particular, f(x) = f(1) = ln(y)−0−ln(y) = 0 for
all x ∈ (0,∞), so the definition of f rearranges to precisely the identity we wished to prove.

Proposition 5.10 For all x ∈ (0,∞) and n ∈ Z, we have ln(xn) = n ln(x).

Proof : We proceed by induction, starting with the base case n = 0 which is certainly true:
ln(x0) = ln(1) =

∫ 1
1 1/tdt = 0 = 0 ln(x). Moreover, Proposition 5.9 in the case y = 1/x tells us

ln

(
x · 1

x

)
= ln(x) + ln

(
1

x

)
,

But the left-hand side is zero which means the above becomes ln
(
1/x
)
= − ln(x), which is

precisely the statement when n = −1. Let’s assume the claim holds for some n = k ∈ Z. Then,
applying Proposition 5.9 and the inductive hypothesis gives us

ln(xk+1) = ln(xkx)

= ln(xk) + ln(x)

= k ln(x) + ln(x)

= (k + 1) ln(x)

and

ln(xk−1) = ln(xk(1/x))

= ln(xk) + ln
(
1/x
)

= k ln(x)− ln(x)

= (k − 1) ln(x).

Therefore, by induction, the formula holds for all n ∈ Z.
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Proposition 5.11 The function ln : (0,∞) → R is smooth, strictly increasing and bijective.

Proof : Let f : (0,∞) → R be given by f(x) = 1/x. We know ln is differentiable with derivative
f . But f is smooth, which means ln is smooth. Also, for all x ∈ (0,∞), we have f(x) > 0. By
Proposition 3.11(iv), ln is strictly increasing and hence injective. Next, for n ∈ Z+ with n ≥ 2,
let Dn = {1, 2, ..., n} be the regular dissection of [1, n] of size n− 1. Then, we see that

ln(n) =

∫ n

1
f

≥ lDn(f)

=

n−1∑
j=1

f(j + 1)((j + 1)− 1)

=
n−1∑
j=1

1

j + 1

=
n∑

k=2

1

k

=: sn,

changing the summation variable for convenience. Note that the sequence (sn) is unbounded
above because it is a partial sum of the geometric series. Therefore, the sequence (lnn) is also
unbounded above. Hence, for any K ≥ 0, there exists n ∈ Z+ with ln(n) > K. But ln(1) = 0 and
ln is continuous because it is differentiable (Proposition 2.8). We can thus apply the Intermediate
Value Theorem: there exists x ∈ [1, n] such that ln(x) = K. As such, ln takes all non-negative
values. We now let L ≤ 0; we have just showed that there exists x ∈ [1,∞) such that ln(x) = −L.
But notice that x ∈ [1,∞) implies 1/x ∈ (0, 1] and, by Proposition 5.10, we have

L = − ln(x) = ln
(
1/x
)
.

As such, ln also takes all negative values; this concludes surjectivity and thus bijectivity.

Note: It is common to define the natural logarithm as the inverse of the exponential
function. Note that Definition 5.8 has no obvious connection with the exponential function,
so this coincidence of terminology must be justified (and will indeed be, a bit later).
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6 Uniform Convergence

6.1 Swapping Limits

There are occasions where we must compute a double limit, e.g. define f : R → R by

f(x) = lim
k→∞

k∑
n=0

xn

n!

and compute f ′ (assuming it exists; it does since this is the exponential function). So, at a ∈ R,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a
lim
k→∞

1

x− a

k∑
n=0

xn − an

n!
.

Note: The major problem is that we generally can’t interchange two different limits.

6.2 Pointwise Convergence vs Uniform Convergence

Definition 6.4 A sequence of functions fn : D → R converges pointwise to f : D → R if,
for each fixed x ∈ D, the real sequence (fn(x)) converges to f(x) in the usual sense.

Lemma This sequence converges pointwise to f : [0, 1] → R given by f(x) = 0:

fn : [0, 1] → R, fn(x) =


2n2x if 0 ≤ x ≤ 1

2n

2n− 2n2x if 1
2n ≤ x ≤ 1

n

0 if 1
n ≤ x ≤ 1

.

Proof : Fix x ∈ (0, 1] and notice that, for all n > 1/x we have x > 1/n and so fn(x) = 0 by
the third case in its definition above. Hence, for each x ∈ (0, 1], the real sequence fn(x) → 0.
Furthermore, fn(0) = 2n2 · 0 = 0 for all n ∈ Z+. Hence, fn(x) → 0 for all x ∈ [0, 1].

Remark We can interpret fn for fixed n ∈ Z+ geometrically: its graph is an isosceles triangle
based at x = 0 to x = 1/n, followed by a horizontal line from x = 1/n to x = 1 along the x-axis.

x

fn(x)

n

1
2n

0 1
n

1

Figure 9: The geometric interpretation of fn : [0, 1] → R from the above lemma.
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Lemma The sequence fn : [0, 1] → R where fn(x) = xn converges pointwise to

f : [0, 1] → R f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1
.

Proof : If x ∈ [0, 1), we have fn(x) = xn → 0. However, if x = 1, we see that fn(1) = 1n = 1 → 1
for all n ∈ Z+. Therefore, (fn) converges pointwise to the discontinuous function on [0, 1] which
outputs zero everywhere, except at x = 1 where it outputs one. This is precisely f as above.

Remark We can interpret the sequence (fn) geometrically: it consists of curves with endpoints
(0, 0) and (1, 1) which, as n increases, get steeper and steeper. The idea is that in the pointwise
limit n → ∞, the curve will be flat to the x-axis except for the single point at (1, 1); this is the
red curve (the graph of the discontinuous function f from above) in Figure 10 below.

x

fn(x)

1

1

Figure 10: The geometric interpretation of fn : [0, 1] → R given by fn(x) = xn.

Note: This shows that, even if each fn is continuous, the pointwise limit f may not be.

Proposition 6.7 If a sequence of functions (fn) converges pointwise, then its limit is unique.

Proof : Suppose to the contrary that (fn) converges pointwise to f and g ̸= f . Then, there
exists c ∈ D such that f(c) ̸= g(c). However, fn(c) → f(c) and fn(c) → g(c) by Definition 6.4.
But this here is convergence of a real sequence, so it contradicts the usual Uniqueness of Limits
(Proposition 1.4).

Proposition 6.8 Let (fn) and (gn) be sequences that, on the domain D, converge pointwise
to f and g, respectively. Then, we have the following:
(i) (fn + gn) converges pointwise to f + g on D.
(ii) (fngn) converges pointwise to fg on D,

Sketch of Proof : Just apply Definition 6.4 and the usual Algebra of Limits.
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Definition 6.9 The sup norm of a bounded function f : D → R is defined as

∥f∥ := sup{
∣∣f(x)∣∣ : x ∈ D}.

Remark Suppose we have two continuous functions f, g : [a, b] → R. We can give a neat geometric
interpretation to ∥f − g∥. Indeed, this is the maximum separation between the points (x, f(x))
and (x, g(x)) as x varies in the interval [a, b]. This is a sort-of distance between f and g.

x

y

a b

∥f − g∥

Figure 11: The geometric interpretation of ∥f − g∥.

The geometric intuition behind the sup norm of a continuous bounded function is now clear: this
is the special case where g is identically zero, so it is the maximum distance the graph y = f(x)
is away from the x-axis.

Definition 6.11 A sequence of functions fn : D → R converges uniformly to f : D → R if
the real sequence ∥fn − f∥ → 0 in the usual sense.

Lemma The sequence fn : [0, 1] → R where fn(x) = xn doesn’t converge uniformly to

f : [0, 1] → R f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1
.

Proof : For each n ∈ Z+, we see that

∣∣fn(x)− f(x)
∣∣ = ∣∣xn − f(x)

∣∣ = {xn if 0 ≤ x < 1

0 if x = 1
.

It is clear from the above calculation that

{
∣∣fn(x)− f(x)

∣∣ : x ∈ [0, 1]} = {xn : 0 ≤ x < 1} ∪ {0} = [0, 1).

Hence, ∥fn − f∥ = sup[0, 1) = 1 ↛ 0; the sequence (fn) doesn’t converge uniformly to f .

Note: This establishes that pointwise convergence does not imply uniform convergence.
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Theorem 6.12 If a sequence fn : D → R converges uniformly to f : D → R, then it
converges pointwise to f .

Proof : Suppose that (fn) converges uniformly to f . Then, for each fixed x ∈ D, we have

0 ≤
∣∣fn(x)− f(x)

∣∣ ≤ sup{
∣∣fn(y)− f(y)

∣∣ : y ∈ D} = ∥fn − f∥ → 0.

By the Squeeze Rule, we see that
∣∣fn(x)− f(x)

∣∣→ 0. Hence, fn(x) → f(x) for each x ∈ D.

Corollary 6.13 If a sequence of functions (fn) converges uniformly, then its limit is unique.

Proof : Suppose (fn) converges uniformly to f and g say. Then, fn converges pointwise to each of
f and g by Theorem 6.12, but pointwise limits are unique by Proposition 6.7. Thus, f = g.

Theorem 6.14 Let fn : D → R be a sequence of continuous functions that converges
uniformly to f : D → R. Then, f is itself continuous.

Proof : We must show that f is continuous at a for every a ∈ D. To this end, we use Theorem
1.43 and show that for each ε > 0, there exists δ > 0 such that, for all x ∈ D with |x− a| < δ,
we have

∣∣f(x)− f(a)
∣∣ < ε. Let ε > 0 be given. Since (fn) converges uniformly to f , we have

∥fn − f∥ → 0, i.e. there exists N ∈ Z+ such that, for all n ≥ N , ∥fn − f∥ < ε/3. In particular,

∥fN − f∥ = sup{
∣∣fN (x)− f(x)

∣∣ : x ∈ D} < ε

3
⇒

∣∣fN (x)− f(x)
∣∣ < ε

3
for each x ∈ D.

Furthermore, fN is continuous by assumption; Theorem 1.43 guarantees the existence of δ > 0
such that, for all x ∈ D with |x− a| < δ, we have∣∣fN (x)− fN (a)

∣∣ < ε

3
.

Therefore, for all x ∈ D with |x− a| < δ, we have∣∣f(x)− f(a)
∣∣ = ∣∣f(x)− fN (x) + fN (x)− fN (a) + fN (a)− f(a)

∣∣
≤
∣∣fN (x)− f(x)

∣∣+ ∣∣fN (x)− fN (a)
∣∣+ ∣∣fN (a)− f(a)

∣∣
≤ ∥fN − f∥+

∣∣fN (x)− fN (a)
∣∣+ ∥fN − f∥

<
ε

3
+
ε

3
+
ε

3
= ε.

Method – Showing Non-Uniform Convergence of Continuous Functions: If we want
to show that a sequence of continuous functions (fn) does not converge uniformly on
its domain, assume to the contrary it does converge uniformly to some f . Then, (fn)
converges pointwise to f by Theorem 6.12. If we can find a discontinuous pointwise limit
g, we know that f = g by Proposition 6.7, a contradiction to Theorem 6.14.
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6.3 Uniform Convergence and Calculus

Theorem 6.16 Let fn : [a, b] → R be a sequence of continuous functions that converges
uniformly to f : [a, b] → R. Then, we have∫ b

a
fn →

∫ b

a
f.

Proof : Because f is continuous by Theorem 6.14, it is Riemann integrable by Theorem 4.21; this
means that the limit

∫ b
a f certainly exists. Now, for each n ∈ Z+, we have

0 ≤

∣∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣, by Theorem 4.24(ii),

≤
∫ b

a
|fn − f |, by Proposition 4.26,

≤ (b− a)∥fn − f∥, by Proposition 4.25.

By the Squeeze Rule, we conclude that
∫ b
a fn →

∫ b
a f , as required.

Lemma On the domain [0, 1], we have

lim
n→∞

∫ 1

0

n

n+ xn
dx = 1

Proof : Let fn : [0, 1] → R define the sequence of integrands, that is fn(x) = n/(n+xn). We first
consider the pointwise limit of this sequence of functions. Indeed, for each x ∈ [0, 1), we see that

fn(x) =
n

n+ xn
=

1

1 + xn/n
→ 1

1 + 0
= 1

by the Algebra of Limits. On the other hand, when x = 1, we can also see that

fn(1) =
n

n+ 1
=

1

1 + 1/n
→ 1

1 + 0
= 1

again by the Algebra of Limits. Thus, (fn) converges pointwise to the function f : [0, 1] → R
where f(x) = 1. It remains to show this is also the uniform limit. For fixed x ∈ [0, 1] and n ∈ Z+,∣∣fn(x)− f(x)

∣∣ = ∣∣∣∣ n

n+ xn
− 1

∣∣∣∣ = ∣∣∣∣ xn

n+ xn

∣∣∣∣ ≤ 1

n+ xn
≤ 1

n
.

Consequently, 0 ≤ ∥fn − f∥ = sup{
∣∣fn(x)− f(x)

∣∣ : x ∈ [0, 1]} ≤ 1/n. By the Squeeze Rule, it
follows that ∥fn − f∥ → 0. And by Theorem 6.16, we get the result we are after:∫ 1

0
fn →

∫ 1

0
f =

∫ 1

0
1 = 1.
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Theorem 6.19 Let fn : [a, b] → R be a sequence of continuously differentiable functions
that converges pointwise to f : [a, b] → R, where the sequence of derivatives f ′n : [a, b] → R
converges uniformly to g : [a, b] → R. Then, f is continuously differentiable with f ′ = g.

Proof : For each n ∈ Z+, let Fn : [a, b] → R be defined by

Fn(x) =

∫ x

a
f ′n.

This exists because each f ′n is continuous. By the Fundamental Theorem of Calculus Version 2,

Fn(x) = fn(x)− fn(a).

By Theorem 6.16, it is true for each fixed x ∈ [a, b] that

fn(x)− fn(a) = Fn(x) →
∫ x

a
g,

using the fact that (f ′n) converges uniformly to g on the interval [a, x]. But (fn) also converges
pointwise to f , so fn(x) → f(x) and fn(a) → f(a). Therefore, the Algebra of Limits implies
fn(x)− fn(a) → f(x)− f(a). But (pointwise) limits are unique, meaning

f(x)− f(a) =

∫ x

a
g.

By the Fundamental Theorem of Calculus Version 1, f is differentiable with f ′ = g.

Note: We view Theorem 6.19 as being the analogue of Theorem 6.16 but for derivatives.

6.4 Completeness of the Set of Bounded Functions

Reminder: A real sequence (an) is Cauchy if, for each ε > 0, there exists N ∈ Z+ where,
for all n,m ≥ N , we have |an − am| < ε. It is equivalent to convergence (Theorem 1.19).

Definition 6.20 A sequence of bounded functions fn : D → R is uniformly Cauchy if, for
each ε > 0, there exists N ∈ Z+ such that, for all n,m ≥ N , we have ∥fn − fm∥ < ε.

Lemma 6.23 For all bounded functions f, g : D → R, we have ∥f + g∥ ≤ ∥f∥+ ∥g∥.

Proof : For all x ∈ D, we have
∣∣f(x) + g(x)

∣∣ ≤ ∣∣f(x)∣∣+ ∣∣g(x)∣∣ ≤ ∥f∥+ ∥g∥ by the usual Triangle
Inequality, and using the fact that ∥h∥ is always an upper bound on the set {

∣∣h(x)∣∣ : x ∈ D}
(used in the cases where h = f and h = g). Therefore, ∥f∥+ ∥g∥ is an upper bound on the set
{
∣∣f(x) + g(x)

∣∣ : x ∈ D}. But by definition, ∥f + g∥ is the supremum of this set (the least upper
bound), which means ∥f + g∥ ≤ ∥f∥+ ∥g∥.
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Theorem 6.22 Let fn : D → R be a sequence of bounded functions that converges uniformly
to the bounded function f : D → R. Then, (fn) is uniformly Cauchy.

Proof : Let ε > 0 be given. Since (fn) converges uniformly to f , there exists N ∈ Z+ such that,
for all n ≥ N , we have ∥fn − f∥ < ε/2. Hence, for all n,m ≥ N , Lemma 6.23 implies that

∥fn − fm∥ = ∥fn − f + f − fm∥ ≤ ∥fn − f∥+ ∥fm − f∥ < ε

2
+
ε

2
= ε.

Lemma 6.24 Let fn : D → R be a uniformly Cauchy sequence of bounded functions. Then,
(fn) converges pointwise to some function f : D → R.

Proof : Fix x ∈ D; we must show that the real sequence (fn(x)) is Cauchy. Indeed, let ε > 0 be
given. Since (fn) is uniformly Cauchy, there exists N ∈ Z+ such that, for all n,m ≥ N , we have
∥fn − fm∥ < ε. Hence, for all n,m ≥ N , it follows that∣∣fn(x)− fm(x)

∣∣ ≤ ∥fn − fm∥ < ε.

By Theorem 1.19, it follows that fn(x) → f(x) ∈ R. But if we now let x vary in D, we obtain a
function f : D → R to which (fn) converges pointwise.

Lemma 6.25 Let fn : D → R be a uniformly Cauchy sequence of bounded functions that
converges pointwise to f : D → R. Then, f is bounded.

Proof : Because (fn) is uniformly Cauchy, there exists N ∈ Z+ such that, for all n,m ≥ N , we
have ∥fn − fm∥ < 1 (we have chosen ε = 1 in the definition). Furthermore, fN : D → R is
bounded, so there exists K > 0 such that

∣∣fN (x)
∣∣ ≤ K for all x ∈ D. But now, for all n ≥ N

and fixed x ∈ D, we have∣∣f(x)∣∣ = ∣∣f(x)− fn(x) + fn(x)− fN (x) + fN (x)
∣∣

≤
∣∣f(x)− fn(x)

∣∣+ ∣∣fn(x)− fN (x)
∣∣+ ∣∣fN (x)

∣∣
≤
∣∣f(x)− fn(x)

∣∣+ ∥fn − fN∥+K

≤
∣∣f(x)− fn(x)

∣∣+ 1 +K.

But we assume pointwise convergence, i.e. fn(x) → f(x). Therefore, the sequence in the final
inequality above converges to K + 1. By Proposition 1.7, we see that

∣∣f(x)∣∣ ≤ K + 1; this is
precisely the claim that f is bounded.

Theorem 6.26 A sequence fn : D → R of bounded functions converges uniformly if and
only if it is uniformly Cauchy.
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Proof : The “only if” is Theorem 6.22. Conversely, assume that (fn) is uniformly Cauchy. Then,
it converges pointwise (Lemma 6.24) to some bounded (Lemma 6.25) function f : D → R. It
remains to prove that this convergence is uniform, i.e. ∥fn − f∥ → 0. To that end, let ε0 be
given. Since (fn) is uniformly Cauchy, there exists N ∈ Z+ such that, for all n,m ≥ N , we have
∥fn − fm∥ < ε/4. Next, for fixed x ∈ D and n,m ≥ N , we have∣∣fn(x)− f(x)

∣∣ = ∣∣fn(x)− fm(x) + fm(x)− f(x)
∣∣

≤
∣∣fn(x)− fm(x)

∣∣+ ∣∣fm(x)− f(x)
∣∣

≤ ∥fn − fm∥+
∣∣fm(x)− f(x)

∣∣
<
ε

4
+
∣∣fm(x)− f(x)

∣∣.
But (fn) converges pointwise to f , meaning fn(x) → f(x). Therefore, there exists N1 ∈ Z+ such
that, for all m ≥ N1, we have

∣∣fm(x)− f(x)
∣∣ < ε/4. If we set m = max{N,N1}, the above says∣∣fn(x)− f(x)
∣∣ < ε

4
+
ε

4
=
ε

2

for all n ≥ N . This is true for every x ∈ D, and because N is independent of x, we see that

∥fn − f∥ = sup{
∣∣fn(x)− f(x)

∣∣ : x ∈ D} ≤ ε

2
< ε

for all n ≥ N . Since ε > 0 was arbitrary, this implies ∥fn − f∥ → 0.

Reminder: The set of continuous functions on a domain D ⊆ R is denoted C0(D).

Definition The set of bounded functions on a domain D ⊆ R is denoted B(D).

In general, neither B(D) and C0(D) is a subset of the other. However, the Extreme Value
Theorem tells us that, in the case our domain is a closed bounded interval D = [a, b], we have

C0([a, b]) ⊆ B([a, b]).

Note: Recall that completeness means the Cauchy property is equivalent to convergence.
We have shown, in Theorem 6.26, the set B(D) is complete with respect to the sup norm.

It turns out we can rather easily show that C0([a, b]) is compete with respect to the sup norm.

Theorem 6.27 If a sequence fn : [a, b] → R of continuous functions is uniformly Cauchy,
then it converges uniformly to a continuous function f : [a, b] → R.

Proof : Each fn is bounded by the Extreme Value Theorem, so (fn) converges uniformly to a
bounded function f : [a, b] → R by Theorem 6.26. But f is then continuous by Theorem 6.14.
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7 Power Series

Reminder: A series is an infinite sum
∑∞

n=0 an = a0+ a1+ a2+ · · · . The kth partial sum is

sk :=
k∑

n=0

an = a0 + a1 + · · ·+ ak.

We say that a series converges precisely if the sequence (sk) converges in the usual sense.

7.1 Convergence Tests for Series

Definition A series
∑∞

n=0 an converges absolutely if the series
∑∞

n=0 |an| converges.

Proposition If
∑∞

n=0 an converges absolutely, then it converges.

Proof : Omitted, but proved in MATH1026.

Theorem (Divergence Test) If
∑∞

n=0 an converges, then an → 0.

Proof : By assumption, the sequence (sk) of partial sums converges to some limit L ∈ R. Hence,
the subsequence sk+1 → L by Proposition 1.11. But ak+1 = sk+1 − sk → L − L = 0 by the
Algebra of Limits. Since this is true for all k ∈ Z+, it follows that an → 0.

Note: This is called the Divergence Test because its contrapositive allows us to see when
a series diverges. Indeed, the contrapositive says “if an ↛ 0, then

∑∞
n=0 an diverges”.

Theorem 7.1 (Comparison Test) Let an > 0 and bn > 0 for all n ∈ N.
(i) If an/bn is bounded above and

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

(ii) If bn/an is bounded above and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges.

Proof : The second statement is the contrapositive of the first, so it suffices to prove only (i). Well,
there exists K > 0 such that 0 ≤ an/bn ≤ K by the boundedness assumption. This is equivalent
to 0 ≤ an ≤ Kbn. Since

∑∞
n=1 bn converges, this means that

∑∞
n=1 bn <∞. Consequently then,

∞∑
n=1

an ≤ K

∞∑
n=1

bn <∞.
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Theorem 7.5 (Ratio Test) Let bn > 0 for all n ∈ Z+ such that bn+1/bn → L.
(i) If L < 1, then

∑∞
n=0 bn converges.

(ii) If L > 1, then
∑∞

n=0 bn diverges.

Proof : Omitted, but also proved in MATH1026.

Theorem 7.7 (Alternating Series Test) Let (an) be a decreasing positive sequence which
converges to zero. Then, the alternating series

∑∞
n=1(−1)n+1an converges.

Sketch of Proof : Let (sk) be the sequence of partial sums. We can show that (s2m) is increasing
and bounded above by a1; the Monotone Convergence Theorem implies s2m → L for some L ∈ R.
Considering the subsequence (s2m+1), we can write each term as s2m+1 = s2m + a2m+1. By the
Algebra of Limits, we have s2m+1 → L (using the fact (an) converges to zero). Since both the
odd and even subsequences converge to the same limit L, it follows that sk → L also.

7.2 Power Series and their Radii of Convergence

Definition A power series is a series of the form

∞∑
n=0

anx
n,

where x is a real variable. The terms in the series are anx
n and the kth partial sum is

fk(x) =
k∑

n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ akx
k.

Remark Setting x = 0, it is clear that every partial sum is fk(0) = a0 → a0, so the power series
definitely converges (to a0 in fact). But generally, a power series may converge for some values
of x and not for others. As such, it defines a real-valued function on (a subset of) R.

Definition 7.10 The radius of convergence of a power series
∑∞

n=0 anx
n is

R := sup{|x| :
∞∑
n=0

|anxn| converges}.

Much information rests on knowing the radius of convergence of a power series (but convergence
or divergence when x = ±R is unclear). But one can find R by applying the Ratio Test.
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Method – Finding the Radius of Convergence: Consider the power series
∑∞

n=0 anx
n.

(i) Let bn := anx
n be the sequence of power series terms.

(ii) Compute |bn+1|/|bn| and determine its limit as n→ ∞ in terms of |x|.
(iii) Use the Ratio Test, in particular that |bn+1|/|bn| → L < 1 means the power series

converges (absolutely) and |bn+1|/|bn| → L > 1 means the power series diverges, to
determine an upper bound on |x| to ensure the limit in Step (ii) is less than one.

The radius of convergence actually tells us almost everything about where the series converges.

Lemma 7.12 If
∑∞

n=0 anx
n converges at x = y, then it converges absolutely for |x| < |y|.

Proof : As
∑∞

n=0 any
n converges, the Divergence Test implies any

n → 0. In particular, (any
n) is

bounded; there exists K > 0 such that |anyn| < K for all n ∈ N. But we see that

|anxn| = |anyn|
|xn|
|yn|

< K

(
|x|
|y|

)n

.

When |x| < |y|, the Comparison Test with the convergent geometric series
∑∞

n=0(|x|/|y|)n implies
that

∑∞
n=0 |anxn| converges. But absolute convergence implies convergence, so we are done.

Theorem 7.11 Let R > 0 be the radius of convergence of a power series
∑∞

n=0 anx
n. Then,

it converges absolutely for |x| < R and diverges for |x| > R.

Proof : Define the set A := {|x| :
∑∞

n=0 |anxn| converges} ⊆ R; this means that R = sup(A). If
|x| < R, there exists y ∈ R with |x| < |y| < R where

∑∞
n=0 any

n converges absolutely. If this
was not the case, R wouldn’t be the least upper bound on A. But absolute convergence implies
convergence, and thus

∑∞
n=0 anx

n converges absolutely by Lemma 7.12. On the other hand,
assume to the contrary that for for |x| > R, the series

∑∞
n=0 anx

n converges. Then,
∑∞

n=0 anw
n

converges absolutely where w := 1
2(|x| + R); this is another application of Lemma 7.12 since

|x| < |w|. But the fact |w| > R means R is not an upper bound on A, a contradiction.

Definition 7.14 The exponential, sine and cosine functions are defined as follows:

exp : R → R, exp(x) =

∞∑
n=0

xn

n!
,

sin : R → R, sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

cos : R → R, cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
.
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7.3 Uniform Convergence of Series of Functions

Note: The kth partial sum of f(x) =
∑∞

n=0 anx
n is a degree k polynomial. Consequently,

Theorem 7.11 says that the sequence of partial sums (fk) converges pointwise on (−R,R)
to the power series function f : (−R,R) → R, where R is the radius of convergence.

But pointwise convergence is a much weaker property than uniform convergence. The aim here
is to develop a test which allows us to establish that a series of functions is uniformly Cauchy
(and hence uniformly convergent, by Theorem 6.26).

Theorem 7.16 (Weierstrass M -Test) Let gn : D → R be a sequence of functions and (Mn)
a sequence of non-negative real numbers such that

∣∣gn(x)∣∣ ≤ Mn for all x ∈ D, and the
series

∑∞
n=0Mn converges. Then, this sequence of functions converges uniformly:

fk : D → R, fk(x) =
k∑

n=0

gn(x).

Proof : Let ε > 0 be given. The sequence sk =
∑k

n=0Mn of partial sums converges by assumption,
so it is Cauchy by Theorem 1.19. Hence, there exists N ∈ Z+ such that, for all k > l ≥ N , we
have |sk − sl| < ε/2. Using that Mn ≥ 0 are non-negative for all n, for all k > l ≥ N , we know

|sk − sl| = sk − sl =

k∑
n=l+1

Mn <
ε

2
.

However, for all x ∈ D and n ∈ N, we know that
∣∣gn(x)∣∣ ≤Mn. Therefore, for all k > l ≥ N ,

∣∣fk(x)− fl(x)
∣∣ =

∣∣∣∣∣∣
k∑

n=0

gn(x)−
l∑

n=0

gn(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

n=l+1

gn(x)

∣∣∣∣∣∣
≤

k∑
n=l+1

∣∣gn(x)∣∣
≤

k∑
n=l+1

Mn

<
ε

2
.

In other words, ∥fk − fl∥ ≤ ε/2 < ε for all k > l ≥ N , so (fk) is uniformly Cauchy. But as
mentioned above, this means (fk) is uniformly convergent by Theorem 6.26.

61



Note: Uniform convergence on (−R,R) is too much to ask for, but we get something close.

Theorem 7.18 Let f(x) =
∑∞

n=0 anx
n have radius of convergence R > 0. Then, for any

ρ ∈ (0, R), the sequence of partial sums (fk) converges uniformly to f on [−ρ, ρ].

Proof : We will apply the Weierstrass M -Test in the context of gn(x) = anx
n, where the domain

is D = [−ρ, ρ] and Mn = |an|ρn. Notice that for all x ∈ [−ρ, ρ], it is clear that∣∣gn(x)∣∣ = |an||x|n ≤ |an|ρn =Mn,

so the first condition is satisfied. Next, because |ρ| < R, the series
∑∞

n=0 converges absolutely at
x = ρ, and thus converges, by Theorem 7.11; the second condition is satisfied. Thus, the series
converges uniformly on [−ρ, ρ] by the Weierstrass M -Test.

Corollary 7.19 The power series f(x) =
∑∞

n=0 anx
n is continuous on (−R,R), for R > 0.

Proof : The sequence of partial sums (fk) is a sequence of continuous functions that converge
uniformly on [−ρ, ρ] to f for all ρ ∈ (0, R), by Theorem 7.18. Hence, f is continuous on every
closed bounded symmetric interval [−ρ, ρ], meaning it is continuous at every x ∈ (−R,R).

Note: We now know that the functions introduced in Definition 7.14 are continuous!

7.4 Differentiability of Power Series

Definition 7.20 The termwise derivative of f(x) =
∑∞

n=0 anx
n is the power series

f̂(x) =
∞∑
n=1

nanx
n−1.

Remark The goal of this section is to show that a power series is differentiable on its domain of
convergence, and its derivative is precisely the termwise derivative in Definition 7.20. However,
we do not yet know this. At present, “termwise derivative” is nothing more than a name.

Note: The definition of f̂ starts instead at n = 1, but we can shift the indices:

f̂(x) =

∞∑
n=0

(n+ 1)an+1x
n.

The first task is to show that f and f̂ have the same radius of convergence.
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Lemma 7.21 A power series f and its termwise derivative f̂ have the same radius of
convergence.

Proof : For notation, we will introduce the sets

A := {|x| :
∞∑
n=0

|anxn| converges} and B := {|x| :
∞∑
n=1

∣∣∣nanxn−1
∣∣∣ converges}.

Hence, the radii of convergence of f and f̂ are sup(A) and sup(B), respectively. The strategy is
to show that each of these suprema is less than or equal to the other, from which equality will
follow. Indeed, let x ∈ R with |x| < sup(B). Then, the sequence sk :=

∑k
n=1

∣∣nanxn−1
∣∣ of partial

sums converges by Theorem 7.11, and is thus bounded (above) by Proposition 1.6. Hence,

tk :=
k∑

n=0

|anxn| = |a0|+ |x|
k∑

n=1

∣∣∣anxn−1
∣∣∣ ≤ |a0|+ |x|sk.

This shows that (tk) is increasing and bounded above; it converges by the Monotone Convergence
Theorem. As such, |x| ∈ A and we have sup(B) ≤ sup(A). On the other hand, let x ∈ R with
|x| < sup(A). If x = 0, g(x) converges; we therefore assume that |x| > 0. Choose ρ ∈ (|x|, supA)
and notice that tk :=

∑k
n=0 |an|ρn converges by Theorem 7.11, and is therefore bounded (above)

by Proposition 1.6 once again. Now,

sk =

∞∑
n=1

∣∣∣nanxn−1
∣∣∣ = |x|−1

k∑
n=1

n

(
|x|
ρ

)n

|an|ρn.

Since |x|/ρ < 1, it is true that n(|x|/ρ)n → 0 and thus it too is bounded, by K > 0 say. Hence,

sk ≤ |x|−1
k∑

n=1

K|an|ρn =
K

|x|
tk.

This shows that (sk) is increasing and bounded above; it converges by the Monotone Convergence
Theorem. As such, |x| ∈ B and we have sup(A) ≤ sup(B).

Note: In summary, we showed that if x ∈ R such that f̂ converges at x, so |x| < sup(B),
then it follows that f converges at x, i.e. |x| ∈ A. We repeat the argument but flipped.

Theorem 7.22 Let R > 0 be the radius of convergence of the power series

f : (−R,R) → R, f(x) =
∞∑
n=0

anx
n.

Then, f is differentiable with f ′ = f̂ , where f̂ is the termwise derivative.
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Proof : Fix ρ ∈ (0, R) and consider the sequence of continuously differentiable partial sums

fk : [−ρ, ρ] → R, fk(x) =
k∑

n=0

anx
n,

which converges pointwise to the function f (Theorem 7.11). Then, the sequence of derivatives

f ′k : [−ρ, ρ] → R, f ′k(x) =
k∑

n=1

nanx
n−1

converges uniformly (Theorem 7.18) to the function f̂ (Lemma 7.21). By Theorem 6.19, it follows
that f is differentiable with derivative f ′ = f̂ . This is true on every closed bounded symmetric
interval [−ρ, ρ], meaning it is true at every x ∈ (−R,R).

Note: In words, the derivative of a power series is obtained by termwise differentiation.

Corollary 7.23 Let R > 0 be the radius of convergence of the power series

f : (−R,R) → R, f(x) =
∞∑
n=0

anx
n.

Then, f is smooth and its kth derivative is given by the formula

f (k)(x) =
∞∑
n=k

n!

(n− k)!
anx

n−k.

Sketch of Proof : This follows by applying Theorem 7.22 inductively.

Note: In particular, we see that for k ≥ 0, the coefficients of the power series are given by

ak =
f (k)(0)

k!
.

Proposition 7.24 The functions exp, sin and cos from Definition 7.14 are smooth, with

exp′ = exp, sin′ = cos, cos′ = − sin .

Proof : Smoothness is an immediate consequence of Corollary 7.23. As for their derivatives, we
can compute them by referring to Theorem 7.22. Indeed, we see that for all x ∈ R,

exp′(x) =
∞∑
n=1

n

(
1

n!

)
xn−1 =

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
m=0

xm

m!
= exp(x).

Near-identical computations can be made for sin′ and cos′, completing the proof.
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7.5 Properties of the Exponential Function

Lemma 7.27 For all x, y ∈ R, we have exp(x+ y) = exp(x) exp(y).

Proof : Fix b ∈ R and define the function f : R → R by f(x) = exp(x) exp(b− x). By the
Product Rule and Proposition 7.24, f is differentiable. Along with the Chain Rule, we obtain

f ′(x) = exp′(x) exp(b− x)− exp(x) exp′(b− x) = 0.

Proposition 3.11(iii) implies that f is constant. In particular, f(x) = f(b) for all x ∈ R, that is

exp(x) exp(b− x) = exp(b).

But b was totally arbitrary, so setting b = x+ y then establishes the result.

Proposition 7.28 For all x ∈ R, exp(x) > 0.

Proof : If exp(x) = 0 for some x ∈ R, then Lemma 7.27 in the case y = −x implies that

1 = exp(0) = 0 · exp(−x) = 0,

which is obviously a contradiction. In particular, we have exp(0) = 1 > 0 and exp is differentiable
(and therefore continuous). It follows from the Intermediate Value Theorem that exp(x) > 0 for
all x ∈ R. If this was not the case, and there exists x ∈ R such that exp(x) < 0, we could find
c ∈ R between x and 0 such that exp(c) = 0, a contradiction to the first argument above.

Reminder: The natural logarithm is the function ln : (0,∞) → R given by ln(x) =

∫ x

1

1

t
dt.

Proposition 7.29 The function exp : R → (0,∞) is bijective, with inverse ln : (0,∞) → R.

Proof : We must show that ln
(
exp(x)

)
= x for all x ∈ R, and exp

(
ln(y)

)
= y for all y ∈ (0,∞).

Let’s consider the function f : R → R given by f(x) = ln
(
exp(x)

)
− x. By the Chain Rule (and

Propositions 5.11 and 7.24), f is differentiable with derivative

f ′(x) =
exp(x)

exp(x)
− 1 = 0.

Again, f is constant by Proposition 3.11(iii). In particular, f(x) = f(0) for all x ∈ R, that is
ln
(
exp(x)

)
− x = ln

(
exp(0)

)
− 0 = ln(1) = 0 which is equivalent to ln

(
exp(x)

)
= x. Next, for all

y ∈ (0,∞), we can set x = ln(y) in the equality just obtained to see that ln(exp
(
ln(y)

)
) = ln(y).

But ln is injective, so the above implies exp
(
ln(y)

)
= y, as required. The surjectivity of exp is

immediate since exp
(
ln(y)

)
= y for all y ∈ (0,∞), and injectivity is also easy:

exp(x1) = exp(x2) ⇒ ln
(
exp(x1)

)
= ln

(
exp(x2)

)
⇒ x1 = x2.
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Note: The value of the exponential at one e := exp(1) =
∞∑
n=0

1

n!
is called Euler’s number.

Remark People often denote exp(x) by the symbol ex, and this is explained by Lemma 7.27.
Indeed, when writing the statement of this lemma using the notation of Euler’s number, it looks
like one of the standard algebraic rules of integer exponents:

ex+y = ex × ey.

Now that we know ln is the inverse function to exp, it follows that ln(e) = 1. However, there is
an alternate way to define the number e via sequences, which will now be explored.

Proposition The sequence xn = (1 + 1
n)

n converges to e.

Proof : It is clear that xn > 0 for all n ∈ Z+. By Proposition 5.10, we see that

ln(xn) = ln

(
1 +

1

n

)n

= n ln

(
1 +

1

n

)
=

ln
(
1 + 1

n

)
− ln(1)

(1 + 1
n)− 1

=:
ln(yn)− ln(1)

yn − 1

by defining yn := 1 + 1
n . We can see from the Algebra of Limits that yn → 1. Because ln is

differentiable (at one), and the above is its sequence of difference quotients at one, we have

ln(yn)− ln(1)

yn − 1
→ ln′(1) = 1.

In other words, ln(xn) → 1. But exp is continuous, so the limit is preserved under taking the
exponential, that is exp

(
ln(xn)

)
→ exp(1) = e. That said, we just established in Proposition

7.29 that exp
(
ln(xn)

)
= xn. Hence, we have xn → e as required.

Definition 7.31 Let a > 0 and x ∈ R. We say that a to the power x is the number

ax := exp(x ln a).

Note: In the instance that x ∈ Z, Definition 7.31 agrees with the usual definition of ax.
Working just a little bit harder, we can show that for any p, q ∈ Z with q ̸= 0, we have

ap/q = ( q
√
a)p,

that is if b is the unique positive real number such that bq = a, then bp = exp
(
(p/q) ln a

)
.

Proposition 7.32 Let f : (0,∞) → R be the function given by f(x) = xr where r ∈ R is
any constant. Then, f is differentiable with f ′(x) = rxr−1.
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Proof : Notice that f(x) = exp(r lnx), so differentiability follows from the Chain Rule, with

f ′(x) = r exp′(r lnx) ln′(x) = r exp(r lnx)
1

x
= r

xr

x
= rxr−1.

7.6 Analyticity vs Smoothness

Reminder: A subset U ⊆ R is open if every point in U is contained in a symmetric open
subinterval of U , that is for all a ∈ U , there exists δ > 0 such that (a− δ, a+ δ) ⊆ U .

Definition 7.33 Let U ⊆ R be open. We say f : U → R is analytic if, for each x0 ∈ U , there
exists ε > 0 and a power series of this form which converges to f for all x ∈ (x0−ε, x0+ε):

∞∑
n=0

an(x− x0)
n.

Note that if f : U → R is analytic, it is smooth by Corollary 7.23. However, the converse is false:
there exist smooth functions that are not analytic.

Definition 7.36 Let p(x) = a0 + a1x+ · · ·+ akx
k and define the function fp : R → R by

fp(x) =

{
p(1/x) exp

(
−1/x

)
if x > 0

0 if x ≤ 0
.

Lemma 7.37 (Exponentials Beat Powers for Sequences) For any k ∈ Z+, the sequence

an = nk exp(−n) → 0.

Proof : Consider the ratio of successive terms and apply the Algebra of Limits to see that

an+1

an
=

(
1 +

1

n

)k

exp(−1) → 1

e
< 1.

Hence,
∑∞

n=1 an converges by the Ratio Test, and thus an → 0 by the Divergence Test.

Lemma 7.38 (Exponentials Beat Powers for Functions) For any k ∈ Z+, we have

lim
x→∞

xk exp(−x) = 0.

Proof : Let g(x) = xk exp(−x). We must show that, for each ε > 0, there exists K ∈ R such
that, for all x > K, we have

∣∣g(x)− 0
∣∣ < ε. Indeed, let ε > 0 be given. Since the sequence
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g(n) = nk exp(−n) → 0 by Lemma 7.37, there exists N ∈ Z+ such that, for all n ≥ N , we have∣∣g(n)− 0
∣∣ < ε. Consequently, 0 < g(n) < ε. By taking K = max{k,N}, for all x > K, we have

g′(x) = (kxk−1 − xk) exp(−x) = −xk−1(x− k) exp(−x) < 0

by the Chain and Product Rules. Therefore, g is strictly decreasing by Proposition 3.11(v).
Because K ≥ N , we see that for all x > K, 0 < g(x) < g(K) < ε, so we are done.

Lemma 7.39 Let fp : R → R be as in Definition 7.36. Then,

lim
x→0

fp(x) = 0.

Proof : Let p(x) = a0 + a1x + · · · + akx
k and denote by mj the monomial of degree j for each

j ∈ N, that is mj(x) = xj . Then, we can write fp = a0fm0 +a1fm1 + · · ·+akfmk
. By the Algebra

of Limits, it suffices to prove the claim in the case p(x) = mk(x) = xk. To that end, let ε > 0 be
given. By Lemma 7.38, there exists K > 0 such that, for all x > K, we have∣∣∣xk exp(−x)− 0

∣∣∣ < ε.

Define δ = 1/K > 0. Then, for all x ∈ (0, δ),

0 ≤ fp(x) = (1/x)k exp
(
−1/x

)
< ε,

since 1/x > 1/δ = K. But for all x ∈ (−δ, 0),

0 < fp(x) < ε.

Therefore, for all x ∈ R with 0 < |x− 0| < δ, we have
∣∣fp(x)− 0

∣∣ < ε, as required.

Theorem 7.40 Let fp : R → R be as in Definition 7.36. Then, fp is differentiable with

f ′p = fq, where q(x) = x2(p(x)− p′(x)).

Proof : On the open set (0,∞), fp coincides with the differentiable function p(1/x) exp
(
−1/x

)
.

Therefore, the Localisation Lemma (Lemma 2.24) along with the Chain and Product Rules imply
that it is differentiable on (0,∞) with

f ′(x) = p′(1/x)(−x−2) exp
(
1/x
)
+ p(1/x) exp

(
−1/x

)
(x−2) = q(1/x) exp

(
−1/x

)
.

Similarly, fp coincides with the differentiable function 0 on the open set (−∞, 0); it is differen-
tiable on this open set (again by the Localisation Lemma) with derivative 0. It remains to show
that fp is differentiable at zero with f ′p(0) = 0. In other words, we must prove that

lim
x→0

fp(x)− fp(0)

x− 0
= lim

x→0

fp(x)

x
= 0.

But fp(x)/x = fs(x), where s(x) = xp(x), so this follows immediately from Lemma 7.39.

68



Corollary 7.41 The function fp : R → R is smooth, with f
(n)
p (0) = 0 for all n ∈ N.

Proof : Let X := {fp : p is a polynomial} be set set of such functions. Then, for all fp ∈ X, we
have fp(0) = 0 by definition. But fp is differentiable and f ′p ∈ X (Theorem 7.40). Hence, every
element of X is infinitely differentiable and has all its derivatives zero.

Note: Almost every fp is smooth but not analytic. The only exception is f0, that is where
we take the polynomial to be p(x) = 0. In this case, f0 ≡ 0 which is trivially analytic.

Proposition The function f1, as defined in Definition 7.36 with p(x) = 1, is not analytic.

Proof : Explicitly, notice that f1 : R → R is the function given by

f(x) =

{
exp
(
−1/x

)
if x > 0

0 if x ≤ 0
.

By Corollary 7.41, it is smooth and all its derivatives at zero are zero. Assume to the contrary
that f1 is analytic. Then, there exist ε > 0 and coefficients (an) such that, for all x ∈ (−ε, ε),

f1(x) =

∞∑
n=0

anx
n.

Using Corollaries 7.23 and 7.41, we know that an = f
(n)
1 (0)/n! = 0. Therefore, f1(x) = 0 for all

x ∈ (−ε, ε). However, f1(ε/2) = exp
(
−2/ε

)
> 0 by the definition of f1, a contradiction.
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