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2 Linear Equations

2.1 Equations and Inequalities

Reminder: There a number of sets that we use throughout (and in mathematics generally):

N = the set of natural numbers {1, 2, 3, 4, ...},
N0 = the set of non-negative integers {0, 1, 2, 3, 4, ...},
Z = the set of integers {...,−2,−1, 0, 1, 2...},
Q = the set of rational numbers {a/b : a, b ∈ Z, b ̸= 0},
R = the set of real numbers.

Note: Distinguishing between {1, 2, 3, 4...} and {0, 1, 2, 3, 4...} is a matter of convention;
some label it as above, but others prefer to label the second of these sets by N instead.

Definition 2.1 A statement of the form x+ 3y = 7 is an equation/equality. An expression
of the form x+ 3y ≤ 7 is an inequality, whereas x+ 3y < 7 is a strict inequality.

Definition We call an (in)equality linear if the highest power of any of the variables is one.

2.3 Matrix Notation for Equations

Definition 2.3 A matrix is a rectangular array of numbers or expressions of the form
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

The matrix above is an m× n matrix, which has m rows and n columns.

Note: We call a matrix augmented if we separate some of columns with a vertical line, e.g.(
3 6 2 9 0
π 1 0 0 7

)
.
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2.4 Operations on a Matrix

Definition 2.4 A matrix A is in row echelon form (REF) if the following are true:
(i) Each non-zero row begins with more zeros than the rows above it.
(ii) Every all-zero row appears at the bottom of the matrix.

The leading entries are the first non-zero elements in each row.

Definition 2.5 A matrix A is in reduced row echelon form (RREF) if the following are true:
(i) A is in row echelon form.
(ii) Each leading entry is 1.
(iii) Every entry in a column containing a leading one is zero (except for the leading one).

Note: There are three types of row operation we allow ourselves to perform on a matrix.
(i) Adding and subtracting one row to/from another, e.g. R1 → R1− 3R2.
(ii) Multiplying a row by a constant, e.g. R3 → 2R3.
(iii) Swapping two rows, e.g. R2 ↔ R4.

Definition 2.7 The process of Gaussian elimination transforms a matrix into a REF. The
process of Gauss-Jordan elimination transforms a matrix into the RREF.

Method – Gaussian Elimination: We can find a REF of a matrix A as follows:
(i) If the first entry in R1 is zero, swap the row with one whose first entry is non-zero.

Otherwise, if the first entry in R1 is already non-zero, move to Step (ii).
(ii) Multiply R1 by a constant so that the first entry becomes 1.
(iii) Clear below it by adding/subtracting multiples of R1 to/from the other rows.
(iv) Repeat Steps (i)-(iii) with the next rows, until all rows have been covered.

Method – Gauss-Jordan Elimination: We can find the RREF of a matrix A as follows:
(i) Transform A into a REF by applying the above method.
(ii) Starting at the rightmost column with a leading entry, clear above it.
(iii) Repeat Step (ii) by moving right-to-left through the leading entries.

Method – Solving Systems of Linear Equations: To solve a system of equations, we
form the matrix of coefficients and augment it by adding one final column; this column
contains the numbers that each equation in the system is equal to. We can then do
Gaussian/Gauss-Jordan elimination and read-off the solutions.
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Note: Suppose we write our system of equations as an augmented matrix, in its RREF.
� If there are as many leading ones as there are columns, we have a unique solution.
� If there are less leading ones as there are columns, then the variables corresponding
to the columns without said leading ones are free; this means they can be any real
number. This means there are infinitely-many solutions.

� If there is a row with zeros to the left of the augmented column but with a non-zero
in the augmented column, then there is no solution.
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3 Feasible Sets

3.1 Notation

Definition The set of n-tuples of real numbers is this: Rn = {(x1, ..., xn) : each xi ∈ R}.
The familiar ones are R2, which are just pairs of real numbers (these can be plotted in
a plane, i.e. on a pair of axes) and R3, which are triples of real numbers (these can be
plotted in three-dimensional space, i.e. on a set of three axes).

Note:Given a collection of inequalities, the feasible set is the region in which all inequalities
are satisfied. Throughout, we consider maximising/minimising problems sketched in R2.

Method – Sketching the Feasible Set: To find the feasible set, we first sketch the lines
that define the inequalities (i.e. replace the ≤,≥ with = and draw the lines). From here,
we can determine which side of each line we need to be on to satisfy the given inequality.
The location in which all inequalities are satisfied is then the feasible set.

Method – Finding Extrema of a Linear Expression with Linear Constraints: Suppose we
have a linear expression we wish to maximise/minimise subject to linear inequalities:
(i) Find the feasible set satisfying all the inequalities.
(ii) Note the vertices of the feasible set, i.e. all intersection points of the lines that form

the boundary of the feasible set (these are the vertices of the feasible set).
(iii) The maximum/minimum will always occur at one of these vertices, so substitute

each in and find which gives the highest/lowest value.
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4 Using Echelon Forms to Solve Equations

4.1 Using the Reduced Row Echelon Form to Solve Equations

Definition Let A be an augmented matrix representing a system of equations. Variables
corresponding to a leading one are leading variables. All other variables are free variables.

Method – Solving Systems of Equations via the RREF: Let A be an augmented matrix
representing a system of equations and assume it is in RREF (if it isn’t, make it so).
(i) If the final column contains a leading entry, the system is inconsistent (no solution).
(ii) If the final column doesn’t contain a leading entry, solutions are obtained by setting

the free variables equal to arbitrary parameters and using the equations to determine
values of the leading variables in terms of these parameters.

� If there are free variables, there are infinitely-many solutions.
� If there are no free variables, there is a unique solution.

Note: Suppose we have a system of equations, but some of the coefficients involve an
unknown constant k. We can still convert everything into matrix language and apply row
operations, but we have to be careful. If our constant k = 0, then we can not divide by
it. Additionally, we shouldn’t be multiplying rows by zero. However, a row operation of
the form Ri → Ri+ kRj is allowed because it still makes sense if k = 0.

4.2 Homogeneous Equations

Definition A homogeneous equation is one where the right-hand side is zero. Therefore, a
system of homogeneous equations is one in which every equation is equal to zero.

Note: Because the augmented column for a system of homogeneous system is all-zero, we
know that any row operations will not affect it. Although we should still write it down, it
is exactly the same if we just work with the coefficient matrix A as opposed to (A | 0).
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5 Vectors

Reminder: Rn is a real vector space. We therefore refer to Rn as a space (not just a set).

We introduce two notions of a real vector in Rn:

row vectors v = (v1, ..., vn) and column vectors v =


v1
...
vn

 .

Alternatively, we can just think of these as 1× n matrices and n× 1 matrices, respectively.

Definition We define the following operations between vectors in Rn:
(i) The vector addition operation is (v1, ..., vn) + (w1, ..., wn) := (v1 + w1, ..., vn + wn).
(ii) The scalar multiplication operation is k(v1, ..., vn) := (kv1, ..., kvn), where k ∈ R.

Note: More generally, a real vector space is a set V which contains elements called vectors
and has this structure: we can add together two vectors and we can multiply a vector by
any real number; doing these operations should still give us an element of our set V .

Definition 5.1 A subspace of Rn is a subset W ⊆ Rn satisfying the following properties:
(i) The zero vector 0 ∈ W .
(ii) For all v,w ∈ W , we have v +w ∈ W . (Closed under Vector Addition)
(iii) For all v ∈ W and k ∈ R, we have kv ∈ W . (Closed under Scalar Multiplication)

Note: For something to not be a subspace, only one thing in Definition 5.1 must fail.

Lemma The set of solutions to a system of homogeneous equations is always a subspace.

Proof : Consider a system of homogeneous equations written in matrix notation Ax = 0, where
A is an m×n matrix (remembering that homogeneous means the right-hand side is always zero).
Let S be the set of solutions of this system; clearly S ⊆ Rn is a subset. We just need to show
that the three parts of Definition 5.1 are satisfied and then we know the result is true.

(i) It is clear to see that A0 = 0 ⇒ 0 ∈ S.

(ii) If v,w ∈ S, then Av = 0 and Aw = 0. So, A(v+w) = Av+Aw = 0+0 = 0 ⇒ v +w ∈ S.

(iii) If v ∈ S, then Av = 0. So, for any k ∈ R, A(kv) = kAv = k0 = 0 ⇒ kv ∈ S.

Definition 5.3 Let v1, ...,vk ∈ Rn be a collection of vectors. Then, a linear combination is
the vector a1v1 + · · ·+ akvk, where each coefficient a1, ..., ak ∈ R is a scalar.
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Definition Let v1, ...,vk ∈ Rn be a collection of vectors. Then, the span of these vectors
is the subspace span(v1, ...,vk) which contains all possible linear combinations of these
vectors. This is the smallest subspace containing each of the vectors v1, ...,vk.

Proposition The smallest subspace of Rn containing all of v1, ...,vk is span(v1, ...,vk).

Proof : (Non-examinable) Let W ⊆ Rn be the smallest subspace containing v1, ...,vk. It is our
job to prove W = span(v1, ...,vk). Because subspaces are closed under vector addition and scalar
multiplication, we know thatW must contain all linear combinations of v1, ...,vk. In other words,
span(v1, ...,vk) ⊆ W . On the other hand, any vi = 0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ 0vk

and this works for every i = 1, ..., k. Thus, vi ∈ span(v1, ...,vk). But because W is the smallest
vector containing the vi, it follows that W ⊆ span(v1, ...,vk). Since each is a subset of the other,
the only option is that they are equal.

Method – Spanning vs Non-Spanning: Suppose we have a collection of vectors from Rn.
(i) Form a matrix whose columns are the vectors.
(ii) Find a REF of the matrix.
(iii) Count the number of leading entries (this is the rank of the matrix; Definition 5.8).
If the number of leading entries is n (which is the maximum it can be), the vectors are
spanning. If the number of leading entries is less than n, the vectors are non-spanning.

Definition 5.5 A set of vectors {v1, ...,vk} ⊆ Rn is called linearly independent if the only
solution to a1v1 + · · ·+ akvk = 0 is a1 = · · · = ak = 0. If not, they are linearly dependent.

Note: If we have two vectors v1 and v2, they are linearly independent if and only if they
are not scalar multiples of each other. This is true in any of the vector spaces Rn.

Definition 5.6 A basis of a subspace W ⊆ Rn is a set of linearly independent vectors which
spans W . For Rn itself, there is the so-called standard basis containing n vectors, each of
which is all-zero bar a 1 in one place (the first position, the second position, etc.):

{e1, e2, ..., en}, where

e1 = (1, 0, 0, ..., 0)

e2 = (0, 1, 0, ..., 0)

...

en = (0, ..., 0, 0, 1)

.

Definition 5.7 The dimension of a subspace W ⊆ Rn is the number of vectors in a basis
of W (which is always the same number for any of its bases). We denote this by dim(W ).

8



5.1 Testing Spanning, Linear Independence and Basis

Definition 5.8 The rank of a matrix is the dimension of the subspace spanned by its rows.

Method – Rank of a Matrix: As mentioned in the previous method, the rank is simply
the number of leading entries in a REF of the matrix, so this is really just an application
of Gaussian elimination.

Note: The non-zero rows of a REF form a basis of the subspace spanned by the rows.

Lemma The set {v1, ...,vk} ⊆ Rn is independent if and only if dim
(
span(v1, ...,vk)

)
= k.

Method – Linear Independence vs Linear Dependence: Given a collection of vectors,
to see if they are linearly (in)dependent, form a matrix whose columns are the vectors
and determine a REF of the matrix. If there are no all-zero rows, then they are linearly
independent. If there is a zero row, then they are linearly dependent.

There is a neat application of this theory to what we did before when solving systems of equations.

Method – Basis of a Solution Set of a Homogeneous System: Given a homogeneous
system, we can solve it using previous methods). Assume the general solution is of the
form x = a1v1 + · · ·+ akvk. We see that the solutions are spanned by {v1, ...,vk}, which
are each non-zero. We then look at linear (in)dependence to either conclude that this is a
basis, or that we can make a basis by throwing away any vectors that depend on others.
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6 Matrix Algebra

6.1 Operations on Matrices

We will explain the operations we can do with matrices.

� Scalar multiplication. If we have an m × n matrix A = (aij) and a scalar k ∈ R, then we
can form the matrix kA = (kaij), meaning that the entries of the matrix kA are found by
multiplying each of the entries of A by the scalar k.

� Addition. If we have two m × n matrices A = (aij) and B = (bij) of the same size, then
we can form the matrix A+B = (aij + bij), meaning that the entries of the matrix A+B
are found by adding the corresponding entries of A and B.

� Multiplication. If we have an m× n matrix A = (aik) and an n× p matrix B = (bkj), then
we can form the m × p matrix AB = (

∑n
k=1 aikbkj), meaning that the ijth entry of the

matrix AB is found by adding the multiplies of the ith row of A and the jth column of B.

Note: The identity matrix In is the n×n matrix with ones on the main diagonal and zeros
elsewhere. Multiplication by In does noting (akin to multiplying a real number by one).

6.2 Linear Maps

Definition 6.1 Let f : Rn → Rm be a map between two Euclidean vector spaces. It is
called a linear map (or linear transformation) if these are true for all v,w ∈ Rn and k ∈ R:
(i) f(v +w) = f(v) + f(w). (Additivity)
(ii) f(kv) = kf(v). (Homogeneity)

Theorem Any linear map f : Rn → Rm is just f(x) = Ax, for some m× n matrix A.

Method – Finding the Matrix of a Linear Map: To represent a linear map f : Rn → Rm

by a matrix, we need to see what this map f does to the standard basis vectors e1, ..., en
of Rn. Indeed, if we compute f(e1), ..., f(en), we will get some vectors in Rm. If we put
these vectors as columns of a matrix, we will have constructed A as in the above theorem.

Note: To show a map is not linear, we only need to show one thing in Definition 6.1 fail.

6.3 Inverse Matrices

Definition Let A be an n×n matrix. Then, its inverse (if it exists) is the matrix B which
is such that AB = In and BA = In. To remind us that the matrix B is the inverse of A,
we often relabel it as A−1. In this case, we say that A is invertible.
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Proposition Let A and B be n× n matrices. If AB = In, then BA = In automatically.

Proof : Omitted; this requires a decent bit of work to prove.

Method – Finding the Inverse of a Matrix: To find the inverse of the n×n matrix A, if it
exists, we form the augmented matrix (A | In) and apply to it Gauss-Jordan elimination;
this will get it into the form (In | A−1), from which we can read-off the inverse matrix.
In the case that we get a zero row on the left of the vertical line during this process, we
conclude that A is not invertible.

Note: A matrix A is not invertible if the rows are linearly dependent (i.e. the row rank is
less than its size). Hence, we can see this by obtaining an all-zero row in the RREF of A.

6.4 An Application of Inverse Matrices

Method – Solving Systems of Equations with Inverse Matrices: Suppose we wish to
solve a system of equations. If we first convert it into a matrix problem, it will have the
form Ax = b, where A is the coefficient matrix, x is the vector of variables and b is the
vector of constants. If we know that A is invertible, then x = A−1b is the unique solution.

6.5 Error Analysis

Definition We perform error analysis if the constants in a system of equations (the numbers
on the right-hand side of the equals) are measured to within some degree of accuracy/error.

Method – Error Analysis: Suppose we wish to solve the system of m equations described
by Ax = b where A is invertible, but the elements of b ∈ Rm have errors e1, ..., em. Then,
we can compute the errors in the solution as follows:

A−1


e1
...
em



Reminder: The absolute value is the function |·| : R → R given by |x| =

{
x if x ≥ 0

−x if x < 0
.

Note: In words, |x| ignores any minus sign that x might have. Thus, |x| ≥ 0 for all x ∈ R.
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Method – Maximising/Minimising Errors: If we wish to determine the largest/smallest
error in a solution, we use the above method to get expressions for the errors in each
variable. We then look at how to make their absolute values as large as possible.

6.6 Input-Output Analysis (The Leontief Model)

Definition The Leontief model describes how output from one industrial sector may become
an input for another industrial sector. This is described using a matrix A = (aij) which
tells us that the jth sector requires aij-units from the ith sector to produce one unit. The
final demand in the ith sector is the number of units sold to customers, denoted di.

Note: Let A be the input-output matrix from the Leontief model, x the vector representing
the total output and d be the final demand vector (with entries di). Then, x = Ax+ d.

Method – Production to Meet Demand: Suppose we have a Leontief equation x = Ax+d
and we are told to calculate how much each sector must produce to meet a final demand.
(i) Rearrange the Leontief equation to (I −A)x = d.
(ii) Compute the inverse (I −A)−1.
(iii) Use Step (ii) to rearrange the equation in Step (i) to x = (I −A)−1d.
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7 Determinants

Definition The determinant of a square matrix is a scalar value (number) which is found by
considering the entries of the matrix. If A is a matrix, then we either write the determinant
as det(A) or by writing out the matrix with vertical lines | · | instead of brackets ( · ).

Reminder: The determinant of a general 2× 2 matrix

(
a b
c d

)
is the number ad− bc.

Method – Inverse of a 2×2 Matrix: Suppose we wish to find the inverse of A =

(
a b
c d

)
.

(i) Compute the determinant det(A) = ad− bc.
(ii) Swap the main diagonal entries.
(iii) Multiply the off-diagonal entries by −1.
(iv) Divide everything by the determinant.

This provides us with the following formula for the inverse: A−1 =
1

ad− bc

(
d −b
−c a

)
.

7.1 An Application of Determinants

Theorem (Cramer’s Formula) Let Ax = b represent a system of n equations in n variables.
If the matrix Ai|b denotes the matrix A except with the ith column replaced by the vector
b, then the system has solutions xi = det(Ai|b)/ det(A).

7.3 General Determinants

Definition Let A be a matrix. The ijth minor Aij is the determinant of the sub-matrix
formed by deleting the ith row and the jth column from A. The ijth cofactor is (−1)i+jAij .

Note: The determinant of an n×n matrix


a11 · · · a1n
...

. . .
...

an1 · · · ann

 is this:
∑n

j=1(−1)1+ja1jA1j .

Remark We just need to pick a row and move along it, computing the minors at each step. We
then multiply each minor by the number in that position of the matrix and then do an alternating
sum (“plus, minus, plus, minus, etc.” or “ minus, plus, minus, plus, etc.”). In fact, the formula
above is the expansion along the first row, but really we could do it along any row, or down any
column (replace each of the 1 indices inside the sum with i; you can then also swap i and j).
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7.4 Properties of Determinants

Definition The transpose of a matrix A = (aij) is the matrix AT = (aji), that is the matrix
where we have swapped the columns and rows.

Proposition These are some important properties of the determinant:
(i) The transpose doesn’t change the determinant, that is det(AT ) = det(A).
(ii) If A has two identical rows, then det(A) = 0.
(iii) If A has one row which is a multiple of the other, then det(A) = 0.
(iv) Applying the row operation Ri ↔ Rj changes the determinant to −det(A).
(v) Applying the row operation Ri → kRi changes the determinant to k det(A).
(vi) Applying the row operation Ri → Ri+ kRj does not change the determinant.

Method – Determinant of an n× n Matrix: To find the determinant of an n× n matrix
in an ‘easy’ way, we do the following:
(i) Apply Gaussian elimination to get a REF.
(ii) Use (iv) and (v) from the above proposition to see how our determinant changes.
(iii) The determinant of a REF is then the product of the main diagonal entries.
(iv) The determinant of the original matrix is then the determinant of the REF, combined

with undoing any sign changes or row multiplications done in Step (i).

7.6 Further Facts about Determinants

Theorem Let A be a matrix. Then, the following are equivalent:
(i) The determinant det(A) = 0.
(ii) The matrix A is not invertible.
(iii) The rank satisfies rank(A) < n.
(iv) The row reduction will contain an all-zero row.
(v) The rows are not linearly independent.

Note: Another neat fact is that Ax = b has a unique solution if and only if det(A) ̸= 0.
Also, Ax = 0 has a non-trivial solution (one other than x = 0) if and only if det(A) = 0.
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8 Eigenvalues and Eigenvectors

Definition 8.1 Let A be an n×n matrix. Then, an eigenvalue of A is a real number λ ∈ R
such that there exists a non-zero vector x ∈ Rn, called an eigenvector, such that Ax = λx.

Theorem 8.2 The number λ is an eigenvalue of A if and only if det(A− λIn) = 0.

Proof : Well, λ is an eigenvalue of A if and only if the system (A− λIn)x = 0 has a non-trivial
solution, just by rearranging the equation in Definition 8.1. But by the last note in Chapter 7,
this happens precisely when the matrix A−λIn is not invertible, meaning det(A−λIn) = 0.

Note: The characteristic polynomial for a matrix A is pA(t) = det(A−tIn). Thus, Theorem
8.2 tells us that we can find the eigenvalues by equating the characteristic polynomial to
zero (this is called the characteristic equation) and solving for t.

Method – Finding the Eigenvectors of a Matrix: Let A be a square matrix.
(i) Find the eigenvalues λ1, ..., λk of A by solving det(A− λIn) = 0.
(ii) Choose one of the eigenvalues, say λ1.
(iii) Solve the system (A− λ1In)x = 0; we should get a family of solutions.
(iv) Repeat this for each of the other eigenvalues λ2, ..., λk in Step (i).

Definition A matrix A is diagonalisable if there is a diagonal matrix D (i.e. one where the
only non-zero entries are on the main diagonal) and invertible matrix P with P−1AP = D.

Method – Diagonalising a Matrix: We want to diagonalise A (assuming it possible).
(i) Find the eigenvalues λ1, ..., λk of A.
(ii) Find the corresponding eigenvectors x1, ...,xk using the previous method.
(iii) The diagonal matrix D is that with the eigenvalues on the diagonal.
(iv) The invertible matrix P is that with the eigenvectors as its columns.
We need to have the eigenvalues and corresponding eigenvectors in the same order, so

D =


λ1

λ2

. . .

λk

 means that P =

 ↑ ↑ ↑
x1 x2 · · · xk

↓ ↓ ↓

 .

Remark 8.5 If the eigenvalues are distinct, meaning the characteristic equation has no repeated
roots, then he matrix P we form above is always invertible. Note that even if there are repeated
roots, P may still be invertible (but it is no longer guaranteed).
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Method – Powers of a Matrix: Suppose we wish to find Am for a huge integer m ∈ Z+.
(i) Diagonalise the matrix, so that P−1AP = D.
(ii) Rearrange the equation in Step (i) so that we have A = PDP−1.
(iii) Notice that Am = (PDP−1)m = PDmP−1.
(iv) Finally, the entries of Dm are just the entries of D raised to the power of m.

8.1 What Can Go Wrong in Computing Eigenvalues and Eigenvectors?

Note: There are a number of problems that can arise if we want to diagonalise.
� It may be that the characteristic equation has no real roots, e.g. λ2 + 1 = 0.
� It may be that an eigenvalue is repeated (we call the number of times it appears as
a root of the characteristic polynomial the algebraic multiplicity), so there may not
be enough eigenvectors to form a basis (i.e to make the matrix P from them).
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9 Linear Programming

9.1 Simplex Algorithm

Definition A maximising linear programming problem is one where we wish to maximise a
function c1x1 + · · ·+ cmxm (called the objective function) subject to these inequalities:

a11x1 + · · ·+ a1mxm ≤ b1, x1 ≥ 0,

a21x1 + · · ·+ a2mxm ≤ b2, x2 ≥ 0,

...
...

an1x1 + · · ·+ anmxm ≤ bn, xm ≥ 0,

where the numbers aij , bi, cj ∈ Z are all integers.

Definition A slack variable is a variable ui ≥ 0 such that, when added to an inequality, it
gives equality, e.g. the inequalities in the above definition become

a11x1 + · · ·+ a1mxm + u1 = b1,

a21x1 + · · ·+ a2mxm + u2 = b2,

...

an1x1 + · · ·+ anmxm + un = bn.

Note:We define the maximising variableM := c1x1+· · ·+cmxm (this is what we maximise).

Definition The simplex tableau is an augmented matrix which encodes information about a
linear programming problem. Indeed, the first n rows represent each of the n inequalities
in the problem (where we have introduced the slack variables to convert them to equalities)
and the bottom row represents the maximising variable:

a11 · · · a1m 1 0 0 · · · 0 b1
a21 · · · a2m 0 1 0 · · · 0 b2
...

. . .
...

...
...

. . . · · · 0
...

an1 · · · anm 0 · · · 0 1 0 bn
−c1 · · · −cm 0 · · · 0 0 1 0

 .

Note: A simplex tableau is in standard form if the last column is non-negative; all bi ≥ 0.
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Definition For a simplex tableau, a Type II variable is one whose columns consist of a single
1 and the rest zeros. Every other variable is called a Type I variable.

Method – The Simplex Algorithm: We consider the maximisation in the first definition.
(i) Construct the simplex tableau.
(ii) Find the most negative entry in the final row to the left of the vertical line (not the

final column); if it is repeated, choose the leftmost one. This is the pivot column.
(iii) For every positive entry in the pivot column above the horizontal line (not in the

bottom row), we compute the ratio [entry in last column]÷ [entry in pivot column].
The row corresponding to the smallest ratio is the pivot row.

(iv) We now look at the entry which is in both the pivot column and pivot row; we clear
the column (get zeros above and below it).

(v) Repeat Steps (ii)–(iv) so all entries in the final row to the left of the line are positive.
(vi) Set all Type I variables in the final tableau to zero and solve for the Type II variables.

Remark 9.2 If at least one of the bi < 0, we call the simplex tableaux broken. This problem can
be solved by ‘fixing’ the simplex tableaux, but this is beyond the scope of the MATH1331 course.

9.2 Marginal Analysis

Suppose we have maximised an objective function but afterwards we change an inequality, e.g.

ak1x1 + · · ·+ akmxm ≤ bk changes to ak1x1 + · · ·+ akmxm ≤ βk.

Instead of repeating the Simplex Algorithm all over again, we can apply a column operation to
the final column (the one with bi’s in it) to change the entry bk to the new value βk. Indeed, we
just need to add to the final column a multiple of the column representing the slack variable uk.

Note: Explicitly, the operation we do is C(2n+ 2) → C(2n+ 2) + (βk − bk)C(n+ k).

9.3 Minimisation Problems

Definition A minimising linear programming problem is one where we wish to minimise a
function c1x1 + · · ·+ cmxm subject to the following inequalities:

a11x1 + · · ·+ a1mxm ≥ b1, x1 ≥ 0,

a21x1 + · · ·+ a2mxm ≥ b2, x2 ≥ 0,

...
...

an1x1 + · · ·+ anmxm ≥ bn, xm ≥ 0,

where the numbers aij , bi, cj ∈ Z are all integers.
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Method – Minimising an Objective Function: Let us minimise c1x1 + · · ·+ cmxm.
(i) Change inequalities like ak1x1 + · · ·+ akmxm ≥ bk to −ak1x1 − · · · − akmxm ≤ − bk.
(ii) Use the usual Simplex Algorithm to maximise −c1x1 − · · · − cmxm.
(iii) Multiply the answer from Step (ii) by −1.

Note: It may be that Step (i) above forms a broken tableaux; we don’t need to study this.
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10 Game Theory

A pay-off matrix is an array whose rows and columns both represent outcomes of a game in-
volving two participants. As such, any game will have two pay-off matrices, one each from the
perspectives of the people playing the game.

10.2 Optimal Pure Strategies

Definition A saddle point in a pay-off matrix is an entry which is the minimum in its row
but also the maximum in its column. If a pay-off matrix contains at least one saddle point,
then the game is called strictly determined.

Note: If a pay-off matrix has a saddle point, the corresponding row is the optimal pure
strategy for the player represented by the rows. Similarly, the corresponding column is the
optimal pure strategy for the player represented by the columns. The pay-off (or value) of
the game is then that saddle number.

10.3 Mixed Strategies

Definition If a pay-off matrix contains no saddle points, then there are no optimal pure
strategies, so we must turn to a mixed strategy. This is the strategy that one player should
adopt based on what the other player has chosen. For instance, if A is an m × n pay-off
matrix, the row vector r = (ri) is the strategy played by the row-player and, similarly,
the column vector c = (cj) is the strategy played by the column-player, then the expected
value of the strategies is

(
r1 r2 · · · rm

)


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



c1
c2
...
cn

 ∈ R.

10.6 Finding Optimal Mixed Strategies

Lemma For a, b ∈ R, the minimum of c1a+ c2b subject to the conditions that c1 ≥ 0 and
c2 ≥ 0 and c1 + c2 = 1 is precisely min(a, b).

Proof : (i) If a ≤ b, we can write c1a + c2b = (c1 + c2)a + c2(b − a). If we impose the condition
that c1 + c2 = 1, this becomes a+ c2(b− a). Because a ≤ b, we know that b− a is non-negative,
so this achieves a minimum of a precisely when c2 = 0, and thus c1 = 1.

(ii) If a > b, we can write c1a + c2b = c1(a − b) + (c1 + c2)b. If we impose the condition that
c1 + c2 = 1, this becomes c1(a− b) + b. Again, because a > b, we know that a− b is positive, so
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this achieves a minimum of b precisely when c1 = 0, and thus c2 = 1.

Lemma For a, b ∈ R, the maximum of c1a+ c2b subject to the conditions that c1 ≥ 0 and
c2 ≥ 0 and c1 + c2 = 1 is precisely max(a, b).

Sketch of Proof : The proof is similar to the proof of the previous lemma.

Note: The above lemmas are mainly used when solving a mixed strategy problem.

10.7 Optimal Mixed Strategy: General Case

Definition The optimal mixed strategy for a player is that where the expected value with
the best counter-strategy for the opposing player is as large as possible.

Method – The Row Optimal Mixed Strategy: Let the matrix A have no saddle points.
(i) Find the minimum of y1 + · · ·+ ym subject to the following inequalities:

a11y1 + a21y2 + · · ·+ am1ym ≥ 1, y1 ≥ 0,

a12y1 + a22y2 + · · ·+ am2ym ≥ 1, y2 ≥ 0,

...
...

a1ny1 + a2ny2 + · · ·+ amnym ≥ 1, ym ≥ 0.

(ii) Compute v = 1/(y1 + · · ·+ ym), the reciprocal of the minimum from Step (i).
(iii) The optimal mixed strategy is the row (r1, r2, ..., rm) = v(y1, y2, ..., ym).

Remark The left-hand side of each of the inequalities are just the entries of this vector:(
y1 y2 · · · ym

)
A.

Method – The Column Optimal Mixed Strategy: Let the matrix A have no saddle points.
(i) Find the maximum of z1 + · · ·+ zn subject to the following inequalities:

a11z1 + a12z2 + · · ·+ a1nzn ≤ 1, z1 ≥ 0,

a21z1 + a22z2 + · · ·+ a2nzn ≤ 1, z2 ≥ 0,

...
...

am1z1 + am2z2 + · · ·+ amnzn ≤ 1, zn ≥ 0.

(ii) Compute w = 1/(z1 + · · ·+ zn), the reciprocal of the maximum from Step (i).
(iii) The optimal mixed strategy is the column (c1, c2, ..., cn)

T = w(z1, z2, ..., zn)
T .
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Remark The left-hand side of each of the inequalities are just the entries of this vector:

A


z1
z2
...
zn

 .

10.8 Transforming the Payoff Matrix

Method – Transforming Payoff Matrices: Suppose we have a game with some payoff
matrix that we wish to transform.
(i) Perform the following operations to get all entries positive (and small):

� To every entry, multiply/divide by a factor k.
� To every entry, add/subtract a constant n.

(ii) Use the previous methods to find the optimal mixed strategies.
(iii) Invert the transformations done in Step (i).

Note: In general, if we have a payoff matrix A and we we obtain from it a new matrix
B = kA+ nU by doing the operations in the method above (U is the matrix of all-ones),
then the row/column optimal mixed strategies are the same for A and B. In particular,

vB = kvA + n,

where vA and vB are the values of the games for A and B, respectively.

10.10 Symmetric Games

Definition A matrix A = (aij) is called anti-symmetric if aij = −aji for all i and j; this
means that there is a near-symmetry about the main diagonal, where all entries are the
same except corresponding entries on either side of the diagonal have opposite signs.

Definition A symmetric game is a game where the pay-off depends only on the strategies
employed in the game, and not on who has played them.
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11 Markov Processes

11.1 Probability

Reminder: The probability of an event E is a number P (E) lying in the interval [0, 1].
� We say the events E and F disjoint if they can’t both happen.
� We say the events E and F are independent if they don’t affect each other.
� For disjoint events, the probability of either happening is P (E∪F ) = P (E)+P (F ).
� For independent, the probability of both happening is P (E ∩ F ) = P (E)P (F ).

11.2 Introduction to Markov Processes

Definition A Markov process is a sequence of events where the outcome at each stage
depends on the outcome of the previous stage, but is independent of the outcomes prior
to the previous stage. These can be represented by transition matrices, where the columns
acting as the events in the current state and the rows acting as the events in the next
state.

Definition A matrix A = (aij) is called a stochastic matrix if the following are true:
(i) All entries are non-negative, meaning aij ≥ 0 for every i and j.
(ii) All columns sum to one, meaning a1j + a2j + · · ·+ amj = 1 for every j.

11.3 Iteration

Method – Iterating a Markov Process: If we have a transition matrix A representing a
Markov process, we can compute the probability of an event occurring, given a starting
state, after n stages by looking at the entries in the matrix An.

11.5 Regular Stochastic Matrices

Definition A stochastic matrix A = (aij) is regular if a power of it contains strictly positive
entries, i.e. there exists some k ∈ Z+ where the entries of Ak are greater than zero.

11.6 The Stable Matrix

Proposition Let A be a regular stochastic matrix. Then, the sequence of powers An has a
limit as n → ∞, which we call the stable matrix S. In particular, for a starting distribution
x0, the sequence xn = Anx0 has a limit as n → ∞, which we call the stable distribution x.

23



Method – Finding the Stable Distribution and Stable Matrix: If we have a regular
stochastic matrix A, the previous proposition implies limn→∞An = S exists. In fact, the
columns of S are all identical, and all equal the stable distribution x.
(i) Solve the equation Ax = x, which can be done by solving (A− I)x = 0.
(ii) Step (i) gives infinitely-many solutions; choose one where the entries of x sum to 1.
(iii) Finally, S is just the matrix where every column is x.

Remark 11.6 There is a quick way to check if a matrix A is regular. Since we are only interested
in if Ak has zero entries, we can replace all entries of A by (i) 0 if it is zero or (ii) X if it is
non-zero. We then multiply the matrix by itself and use these rules to find the result:

XX = X, X0 = 0, 00 = 0, X +X = X, X + 0 = X, 0 + 0 = 0.

11.7 Absorbing Stochastic Matrices

Definition Let A be a stochastic matrix. An absorbing state is one from which “there is
no escape”, that is it’s a state whose column consists of zeros everywhere except for a one
on the main diagonal.

Definition 11.8 An absorbing stochastic matrix is a stochastic matrix A where these occur:
(i) There is at least one absorbing state.
(ii) It is possible to get to an absorbing state when starting at any state.

11.8 Formula for the Stable Matrix

Method – Stable Matrix of an Absorbing Matrix: Suppose A is an absorbing stochastic
matrix; we can always write it in this form, where I is the identity matrix, O is the matrix
of all-zeros and Q and R are arbitrary arrays of numbers:

A =

(
I Q

O R

)
.

(i) Compute the inverse matrix (I −R)−1.
(ii) Compute the matrix Q(I −R)−1.
(iii) The stable matrix of A is as follows:

S =

(
I Q(I −R)−1

O O

)
.

Note: I have used different notation to the lecture notes. This is because we use S
to represent the stable matrix, but for some reason the notes use S (only in this one
place) to mean a sub-matrix of A. Consequently, I have replaced it with Q instead.
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11.9 The Fundamental Matrix

Definition The matrix (I −R)−1 above is called the fundamental matrix.

Note: The ijth entry of the fundamental matrix tells us the average number of times one
can expect to visit the non-absorbing state i if we start at the non-absorbing state j.
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