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1 Elementary Plane Geometry

1.2 Statements

Definition A statement is a collection of sentences that is either true or false.

Note: A common type of mathematical statement is of the form “if P , then Q”, which is
the same as “P implies Q”, where P and Q are themselves statements. This is denoted
P ⇒ Q. We commonly call statement P the assumption and statement Q the conclusion.

Remark The statement P ⇒ Q is always true if the assumption P is false. This may be confusing
at first glance but we will look at some ways to see this. Consider the statement “if I put money
into a vending machine, then it gives me a snack” and look at the truth of the conclusion:

(i) If Q is true (I put no money in and get a snack), this doesn’t violate P ⇒ Q.

(ii) If Q is false, (I put no money in and don’t get a snack), this also doesn’t violate P ⇒ Q.

1.3 Lines and Right Angles

Definition A line is an infinitely-long object with no curvature, depth or width, whereas
a line segment is the straight path between two points.

Definition A right angle is defined as one of the angles formed when a line segment ends
on a line, forming two equal angles; this is pictured in Figure 1. In this case, the line and
line segment are called perpendicular (or orthogonal).

line

line segment

Figure 1: The geometric picture of a right angle.

Definition Two distinct lines are parallel if they do not intersect each other.

Note: We can say two line segments are parallel if and only if the lines they extend to
are parallel. However, this relies on first making an assumption (we discuss this below).
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1.4 Axioms

In general, an axiom is a rule that we impose before we start delving into mathematical theory.

Axiom (Euclidean Axioms) The Euclidean axioms in modern-day language are as follows:
(E1) There is a unique line segment between any two distinct points.
(E2) Any line segment can be extended to a line.
(E3) There is a circle at point P with radius r, for any P and length r line segment at P .
(E4) All right angles are equal.
(E5) For a line L and a point P not on L, there is a unique line through P parallel to L.

Remark Axiom (E5) is the Parallel Postulate. There was a time where mathematicians did not
know if it was redundant: could (E5) be deduced from the others? The answer is no. In fact, if
we remove (E5), we get more exotic forms of geometry (hyperbolic/elliptic geometry).

(a) Axiom (E2).

L

P

(b) Axiom (E5).

Figure 2: The geometric interpretation of the Euclidean Axioms.

1.5 Line Segments and Rays

Note: Throughout, we label a line segment by its endpoints: if a segment connects A and
B, it is denoted AB. We also do this for the line we get by extending the segment AB.

Definition Let L be a line segment containing a point P . Then, a ray from P is the subset
which starts at P and extends infinitely along the rest of the line, as in Figure 3.

P ray

Figure 3: The geometric picture of a ray.

Definition Let A,B,C be points. They are collinear if there is a line on which they all lie.
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Remark In light of this definition, we can combine Axioms (E1) and (E2) to conclude that any
two points are collinear. This is of course not true in general for three points (if it was, triangles
wouldn’t exist)! But the case of three points pushes forward our thinking to looking at angles.

Note: We measure angles in radians (not degrees) in this module, unless stated otherwise.

Definition Let A,B,C be non-collinear points. The non-reflexive angle between the rays
AB and AC is some number ∠ABC ∈ (0, π).

This number ∠ABC we call the non-reflexive angle satisfies the following properties:

� If B is between A and C and the three are collinear, we have ∠ABC = π.

� If B is not between A and C and the three are collinear, we have ∠ABC = 0.

Definition Let A,B,C be non-collinear points. The triangle ABC is the shape formed
with line segments AB,BC,CA. The points A,B,C are then called the vertices of the
triangle and the aforementioned line segments are the edges of the triangle.

Remark Being really technical, we should say that A,B,C are the triangle and the line segments
AB,BC,CA are the trilateral. However, there is no real need to distinguish the two in this
module and thus we use “triangle” to mean any picture of the form in Figure 4.

A

B

C

Figure 4: A set of three non-collinear points forming a triangle.

1.6 Congruent Triangles

Definition 1.6.1 Triangles ABC and DEF are congruent if there is some correspondence
between vertices such that corresponding edges are equal in length and corresponding
angles are equal in size. We denote this by △ABC ≡ △DEF .

Reminder: An equivalence relation ∼ on a set X is a relation that satisfies the following:
(i) For all x ∈ X, we have x ∼ x. (Reflexivity)
(ii) For all x, y ∈ X, we have x ∼ y implies y ∼ x. (Symmetry)
(iii) For all x, y, z ∈ X, we have x ∼ y and y ∼ z imply x ∼ z. (Transitivity)
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Proposition Congruence of triangles is an equivalence relation on the set of triangles.

Sketch of Proof : Show the equivalence relation axioms directly by unpicking Definition 1.6.1.

Axiom (Side-Side-Side) Let ABC and DEF be triangles that satisfy AB = DE and BC =
EF and CA = FD. Then, we have △ABC ≡ △DEF . In other words, triangles with
three common side lengths are congruent.

A

B

C D

E

F

Figure 5: The geometric picture interpretation of the Side-Side-Side (SSS) Axiom.

Axiom (Side-Angle-Side) Let ABC and DEF be triangles that satisfy AB = DE and
BC = EF and ∠ABC = ∠DEF . Then, we have △ABC ≡ △DEF . In other words,
triangles with two common side lengths and a common angle between them are congruent.

A

B

C D

E

F

Figure 6: The geometric picture interpretation of the Side-Angle-Side (SAS) Axiom.

Theorem (Angle-Angle-Side) Let ABC and DEF be triangles with ∠ABC = ∠DEF and
∠BCA = ∠EFD and CA = FD. Then, we have △ABC ≡ △DEF . In other words,
triangles with two common angles and a side length not between them are congruent.

Proof : Omitted; this is similar to a result in one of the exercise sheets.
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1.7 Complementary, Supplementary and Vertically Opposite Angles

Definition 1.7.1 Suppose we have two angles α and β.
(i) They are complementary if α+ β = π/2.
(ii) They are supplementary if α+ β = π.

Lemma 1.7.2 Angles on a line are supplementary

Proof : Consider a line L with angles α ≥ β (without loss of generality) as drawn below.

L

α β

By Axiom (E4), all right angles are equal. Now, we can draw a line segment that meets L at
right angles. This shows us that we can decompose α+ β into α1 + α2 + β where α2 + β = π/2
are complementary and α1 is a right angle (and thus equals π/2 also).

Remark 1.7.3 It may seem like the statement of Lemma 1.7.2 is obvious. However, the point
of this is to prove that even something seemingly trivial that is itself not an assumption does
indeed follow from the axioms we set out at the beginning.

Definition 1.7.4 Suppose we have two lines crossing at a point P . We call the non-adjacent
angles (the ones looking across from one another as in Figure 7) vertically opposite.

P
α β

Figure 7: A pair of vertically opposite angles.

Proposition 1.7.5 Vertically opposite angles are equal.

Proof : Consider again Figure 7 but we embellish the picture by labelling the upper angle:

P
α β

γ
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By Lemma 1.7.2, we can see that α+γ = π and that γ+β = π. Subtracting the second equation
from the first yields α− β = 0, from which we conclude the indented result: α = β.

Note: This is an example of a direct proof ; this is where we start with the assumptions,
which imply further statements that ultimately imply the conclusion. There is no trickery
here: what you see is what you get.

1.8 Rhombus

Definition A rhombus ABCD is the shape formed from four points A,B,C,D such that
any three of them are non-collinear with sides AB = BC = CD = DA.

Proposition The diagonals of a rhombus bisect each other, meaning split exactly in half,
and meet at right angles.

Proof : We draw an example rhombus and label the intersection point of the diagonals by P .

A

B

C

D

P

We now look at some of the constituent triangles formed by drawing in the diagonals:

� We see the congruence △ABD ≡ △BCD as a result of SSS.

� We see the congruence △APD ≡ △CPD as a result of SAS.

Now then, AP = CP since these sides are in correspondence when viewing the two congruent
triangles they belong to. In other words, the diagonal BD has bisected the diagonal AC. An
identical argument tells us that BP = DP . Moreover, ∠APD = ∠CPD because these are
the angles in correspondence when looking at the congruent triangles they belong to. However,
Lemma 1.7.2 tells us that they are supplementary: ∠APD + ∠CPD = π. Because they are
equal, they are both right angles. An identical argument applies to give us ∠BPA = ∠BPC
and these are also supplementary.
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1.9 Transversals and Alternate Angles

Definition 1.9.1 A line K is a transversal of the distinct lines L1 and L2 if it crosses them.

Note: It will be helpful to keep a picture in mind moving forward, and set-up some notation
for the various angles involved. We therefore draw the picture in Figure 8 below.

K

L1

L2

α1

β1
γ1

δ1

α2

β2
γ2

δ2

Figure 8: A transversal K of lines L1 and L2.

Theorem 1.9.2 (Alternate Angle Theorem) If L1 and L2 are distinct parallel lines with
transversal K, then each pair of alternate angles is equal, meaning α2 = γ1 and β1 = δ2.

Proof : Because we are assuming that L1 and L2 are parallel, we can draw a slightly different
picture to that in Figure 8. For ease, we only consider the four angles of interest to us here.

K

L1

L2

β1
γ1

α2 δ2

It suffices to prove only one of them, say β1 = δ2, because the same argument can be adapted to
show the other one. Indeed, assume to the contrary that β1 ⪈ δ2 (where I use the “greater than
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and not equal to” symbol ⪈ just this once instead of the equivalent > for emphasis). But now,

β1 + γ1 > δ2 + γ1.

However, β1 + γ1 = π by Lemma 1.7.2. Hence, we have δ2 + γ1 < π and Axiom (E5) guarantees
that L1 and L2 must therefore meet. But this contradicts the parallel assumption we made.

Note: This is an example of a proof by contradiction; this is where we assume the opposite
of the conclusion we are aiming for and show that this results in some nonsense.

Remark 1.9.3 In the above proof, we used the following interpretation of Axiom (E5): if a line
K meets two straight lines at two points P1 and P2 in such a way that the sum of the angles
between K and each ray stemming from P1 and P2 is less than π, each ray/line will meet.

Theorem 1.9.4 (Corresponding Angle Theorem) If L1 and L2 are distinct parallel lines with
transversal K, then each pair of corresponding angles are equal, meaning α1 = α2, β1 = β2,
γ1 = γ2 and δ1 = δ2.

Proof : Consider again the picture in Figure 8. Then, we know the Alternate Angle Theorem
(Theorem 1.9.2) guarantees α2 = γ1 and β1 = δ2. We can also use Proposition 1.7.5 to conclude
that every pair of vertically opposite angles is equal: α1 = γ1, β1 = δ1, α2 = γ2 and β2 = δ2.
Therefore, making the relevant substitutions produces the four equations we want.

1.10 Converses

Definition 1.10.1 Consider a statement of the form “if P , then Q”, where P and Q are
themselves statements. The converse of this statement is “if Q, then P”.

Note: Using the notation introduced at the beginning, the converse of P ⇒ Q is Q ⇒ P .
The fact one of these statements may be true has no impact on the truth of the other.

It turns out the converse to the Alternate Angle Theorem (Theorem 1.9.2) is actually true!

Proposition 1.10.3 Let L1 and L2 be distinct lines with a transversal K. If each pair of
alternate angles is equal, then L1 and L2 are parallel.

Proof : Omitted; we prove a stronger result below.

Proposition 1.10.4 Let L1 and L2 be distinct lines with a transversal K. If one pair of
alternate angles is equal, then L1 and L2 are parallel.
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Proof : Consider the same picture as in Figure 8 and, without loss of generality, let α2 = γ1 be
the pair of equal alternate angles we have by assumption (note that the same works if we let
β1 = δ2 just by swapping notation). Denote by P the intersection between L1 and K. By Axiom
(E5), there exists a unique line L3 through P that is parallel to L2. We denote the angle between
K and this new line L3 by γ3; this is all pictured below.

K

L1

L2

L3γ3

α1

β1
γ1

δ1

α2

β2
γ2

δ2

Because L1 and L3 are parallel, we can apply the Corresponding Angle Theorem (Theorem 1.9.4)
to conclude that the alternate angles are equal. This means α2 = γ3. Since we assumed that
α2 = γ1, we must have γ1 = γ3; this tells us that L3 = L1 and in fact the lines were parallel to
begin with.

Note: We said that Proposition 1.10.4 is “stronger” than Proposition 1.10.3 just before
it. This name is down to the fact that stronger results imply weaker results, and clearly
if Proposition 1.10.4 is true (it is, we just proved it), then Proposition 1.10.3 is also true.

Proposition 1.10.5 The sum of the angles in a triangle is π.

Proof : Let ABC be a triangle with angles α, β, γ at A, B, C respectively. By Axiom (E5), there
is a unique line through B which is parallel to AC. The picture of this set-up is drawn below.

A
B

C L

α β

γ

θ1
θ2

By the Alternate Angle Theorem (Theorem 1.9.2), we have θ1 = γ. But by the Corresponding
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Angle Theorem (Theorem 1.9.4), we also have θ2 = α. Finally, applying Lemma 1.7.2 produces

π = β + θ1 + θ2 = β + γ + α.

1.11 Bisectors and Perpendiculars

Definition 1.11.1 Let AB be a line segment. A bisector is a line through the midpoint
of AB, that is the line separating the segment into two segments of equal length. The
perpendicular bisector is the bisector that passes through AB at right angles.

Method – Finding a Perpendicular Bisector: Let AB be a line segment.
(i) Choose a number r > 0 such that it is greater than half the length of AB.
(ii) Construct two circles of radius r with centres A and B.
(iii) The perpendicular bisector is the line through the two intersection points.

A similar notion to that above is that of an angle bisector, which is a line that divides an angle
∠ABC formed by three distinct non-collinear points into two angles of equal size.

Method – Finding an Angle Bisector: Let ∠ABC be an angle.
(i) Construct a circle of some fixed radius r > 0 centred at B.
(ii) Label the intersection of this circle with AB and BC by X and Y , respectively.
(iii) Construct two circles of the same radius r with centres X and Y .
(iv) The angle bisector is the line through B and the intersection points of X and Y .

Theorem 1.11.2 Given a line L and a point P not on L, we can drop a perpendicular from
P to L, meaning there is a line segment PX, with X on L, that is perpendicular to L.

Proof : Draw a circle centred at P with radius large enough so that the circle intersects L at two
distinct points, A and B say. We then perpendicularly bisect the line segment AB to determine
the midpoint of this segment, namely X. This is pictured below.

L

P

AB X

It remains to conclude that the perpendicular bisector also passes through P ; this is done by
drawing line segments PA and PB. Because PAB is an isosceles triangle, we can use SSS to

11



conclude that △PXA ≡ △PXB. Because Lemma 1.7.2 guarantees that ∠PXA+ ∠PXB = π,
and the triangles are similar, it must be that ∠PXA = ∠PXB = π/2.

Note: We define the distance dist(P,L) from a point P to a line L as the length of PX.

Proposition 1.11.3 Let L1 and L2 be parallel lines. Then, the distance from any point on
L1 to L2 is the same (and coincides with the distance from any point on L2 to L1). This
is called the distance between the lines L1 and L2.

Proof : Draw the parallel lines L1 and L2, which we annotate with more labels explained below.

L1

L2

P1

P2X1

X2

Choose two points P1 and P2 on each of L1 and L2, respectively. By Theorem 1.11.2, we can
drop a perpendicular from P1 to L2 (and similarly from P2 to L1). We label the foot of each
perpendicular by X1 and X2, respectively. But we can now use the Angle-Angle-Side (AAS)
theorem to conclude that △P1P2X1 ≡ △P1P2X2. Indeed, ∠P1X1P2 = ∠P1X2P2 = π/2 since
they are dropped perpendiculars, and we know that ∠X1P1P2 = ∠X2P2P1 by the Alternate
Angle Theorem, and of course they share a side P1P2. Therefore, we conclude P1X1 = P2X2.
As we chose P1 and P2 arbitrarily, this argument works for any such points on each line.

1.12 Pythagoras’ Theorem and its Converse

Theorem 1.12.1 (Pythagoras’ Theorem) Let ABC be a right-angled triangle. Then, the
square of the hypotenuse is equal to the sum of the squares of the other two sides.

Proof : Let ABC be the right-angled triangle we work with as drawn and labelled below.

b

c
a

A

B

C
α

β

γ

Figure 9: The right-angled triangle ABC.
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We can now consider a square whose sides all have lengths b+ c. If we mark some points on each
side that separates each of them into two segments of lengths b and c, we can start to connect
these new points as in the picture below.

a
a

a
a

D E F

G

HIJ

K

b

b

b

b

c

c

c

c

We have △KDE ≡ △EFG ≡ △GHI ≡ △IJK ≡ △ABC by SAS, allowing us to label the
internal connecting lines all by a. But now, the area of the square can be computed in two ways:
the easy way is simply as (b + c)2, since this is its side length. The second way is to sum the
areas of the four triangles and the internal square. But these two things must be equal, so

(b+ c)2 = 4

(
1

2
bc

)
+ a2.

Expanding the left and simplifying the right tells us that a2 + 2bc = b2 + c2 + 2bc, from which
we conclude that a2 = b2 + c2. This is precisely the statement we wanted to show.

Note: An immediate corollary of Pythagoras’ Theorem is that the hypotenuse is longer
than either of the other two sides. Indeed, since a2 = b2 + c2, it is clear that a2 > b2 and
a2 > c2. The final step is to take the square root, from which we conclude what we stated.

Corollary 1.12.2 Let ABC be a right-angled triangle as in Figure 9. Then, b+ c > a.

Proof : Suppose to the contrary that b + c ≤ a. Because these letters are side lengths, they are
all positive. In particular, we have b+ c > 0. Thus, squaring both sides tells us that

(b+ c)2 ≤ a2 ⇒ b2 + c2 + 2bc ≤ a2.

We now invoke Pythagoras’ Theorem, which says a2 = b2 + c2. Substituting this above yields

b2 + c2 + 2bc ≤ b2 + c2 ⇒ 2bc ≤ 0.

But this is a contradiction: recall that b > 0 and c > 0, so we must have 2bc > 0.
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Theorem 1.12.3 (Converse of Pythagoras’ Theorem) Let ABC be a triangle with side
lengths a, b, c opposite vertices A, B, C respectively where a2 = b2 + c2. Then, ABC
is a right-angled triangle with right angle ∠CAB.

Proof : Let ABC be the following triangle, and consider also the right-angled triangle DEF which
has two side lengths the same as the sides in ABC. This is pictured and labelled as follows.

b

c
a

A

B

C
b

c
d

D

E

F

We can apply Pythagoras’ Theorem to triangle DEF in order to conclude that

d2 = b2 + c2.

But we are assuming that a2 = b2 + c2, so combining these equations tells us a2 = d2. Since we
are dealing with side lengths, everything is positive and thus we have a = d. By SSS, we obtain
△ABC ≡ △DEF , so ABC is in fact a right-angled triangle with ∠CAB = ∠FDE = π/2.

Method – Determining Right-Angledness: Suppose we have the side lengths a, b and c of
a triangle, and assume without loss of generality that a is largest (if not, swap the labels).
(i) If a2 = b2 + c2, then it is right-angled by the converse of Pythagoras’ Theorem.
(ii) If a2 ̸= b2 + c2, then it’s not right-angled by Pythagoras’ Theorem.

1.13 Similar Triangles

Definition 1.13.1 Two triangles ABC and DEF are similar if the angles in ABC are the
same as the angles in DEF . We denote this by △ABC ∼ △DEF .

Note: Think of this as Angle-Angle-Angle (AAA); note it is not a congruence criteria.

Remark The notion of similar triangles is weaker than that of congruence. As such, two congruent
triangles are automatically similar to each other. However, these are different concepts: we can
find a pair of similar triangles that are not congruent.

Reminder: The area of any triangle is given by 1
2 × base length× perpendicular height.
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Proposition 1.13.2 Let ABC and DEF be similar triangles. Then,

AB

DE
=

BC

EF
=

AC

DF
.

Proof : Without loss of generality, let AB ≥ DE (if not, just swap the labels on the triangles to
make this argument work). The idea is to draw ABC and construct a triangle on it which is
congruent to DEF . Choose a point X on the line AB such that AX = DE; we proceed similarly
for a point Y on the line AC such that AY = DF . This is possible because AB ≥ DE, so we can
fit the length DE onto AB. This is pictured below, along with the triangle DEF for reference.

A

B C

X Y

D

E F

We know ∠CAB = ∠FDE because the triangles are similar, so one can conclude from SAS
that △DEF ≡ △AXY . In particular, we have ∠AXY = ∠DEF since these two triangles are
congruent. But again from our similarity assumption, we know ∠DEF = ∠ABC. So, we have
a pair of alternate angles that are equal, so Proposition 1.10.3 tells us XY and BC are parallel.
We now look at areas of some “sub-triangles” in this picture; we re-draw it and add more labels.

h1

h2

A

B C

X Y

h

Drop perpendiculars h1 from Y and h2 from X. By the formula for area of a triangle, we have

AB

DE
=

AB

AX
=

1
2ABh1
1
2AXh1

=
area(ABY )

area(AXY )
and

AC

DF
=

AC

AY
=

1
2ACh2
1
2AY h2

=
area(ACX)

area(AYX)
.

To conclude these are equal, it suffices to prove that area(ABY ) = area(ACX). Well, note that

area(ABY ) = area(AXY ) + area(XBY ) and area(ACX) = area(AYX) + area(Y CX),

so it is now sufficient to prove area(XBY ) = area(Y CX); this is true as XBY and Y CX have
the same base XY and height h. The same argument works for showing AB/DE = BC/EF .
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We will improve Proposition 1.13.2 in a moment, but first we will define another special type of
statement which comes up a lot in mathematics. Fortunately, there isn’t much to say because
we have already been introduced to the concept of a converse earlier.

Definition Let P and Q be statements. The statement P if and only if Q is defined as the
statement meaning both P ⇒ Q and its converse Q ⇒ P . We denote this by P ⇔ Q.

It turns out the converse to Proposition 1.13.2 is also true; we state them both together below.

Theorem 1.13.3 Let ABC and DEF be triangles. Then, they are similar if and only if

AB

DE
=

BC

EF
=

AC

DF
.

Proof : (⇒) This is Proposition 1.13.2.

(⇐) Suppose we have two triangles ABC and DEF where

AB

DE
=

BC

EF
=

AC

DF
. (†)

We will construct a new triangle XY Z such that the angles are equal to those in ABC (meaning
they are similar: △XY Z ∼ △ABC) and such that the side XY = DE. Since these triangles
are similar by construction, we can use Proposition 1.13.2 to conclude that

AB

XY
=

BC

Y Z
=

AC

XZ
. (‡)

Because XY = DE, we can combine (†) and (‡) at the first part in each equation to produce

BC

EF
=

BC

Y Z
=

AC

DF
=

AC

XZ
.

Therefore, we conclude that EF = Y Z and DF = XZ. As such, SSS implies △DEF ≡ △XY Z.
We already established that △XY Z ∼ △ABC, so we see that DEF is similar to ABC.

Note: In other words, Theorem 1.13.3 completely classifies similar triangles. Namely, two
triangles are similar precisely when we can scale one of them up to get the other; the
scale factor is the ratio in the statement of the theorem. Moreover, this is the only way to
generate a triangle similar to a given one: scale it up or down (just not be zero or one).

1.14 Definitions of the Trigonometric Functions

Definition 1.14.2 Let ABC be a right-angled triangle as in Figure 9 and call θ := ∠BCA.
The sine of the angle θ is the real number

sin(θ) :=
AB

BC
=

opposite

hypotenuse
.
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Proposition 1.14.1 Let ABC and DEF be right-angled triangles whose right angles are
∠CAB = ∠FDE = π/2, and where we also assume ∠BCA = ∠EFD. Then,

AB

BC
=

DE

EF
.

Proof : As the sum of the angles in a triangle is π (Proposition 1.10.5), we have ∠ABC = ∠DEF .
This means we have the similarity △ABC ∼ △DEF . Finally, Theorem 1.13.3 applies to give us

AB

DE
=

BC

EF
⇔ AB

BC
=

DE

EF
.

Note: Proposition 1.14.1 proves that sin(θ) is well-defined, which means that it doesn’t
matter which triangle we choose in the definition. In general, something is well-defined if
said thing seems like it depends on making a choice but, in reality, it does not.

We do the same for cosine and tangent, which we now introduce and prove are well-defined.

Definition Let ABC be a right-angled triangle as in Figure 9 and call θ := ∠BCA. The
cosine and the tangent of the angle θ are the respective real numbers

cos(θ) :=
AC

BC
=

adjacent

hypotenuse
and tan(θ) :=

AB

AC
=

opposite

adjacent
.

Proposition Let ABC and DEF be right-angled triangles whose right angles are ∠CAB =
∠FDE = π/2, and where we also assume ∠BCA = ∠EFD. Then,

AC

BC
=

DF

EF
and

AB

AC
=

DE

DF
.

Proof : As the sum of the angles in a triangle is π (Proposition 1.10.5), we have ∠ABC = ∠DEF .
This means we have the similarity △ABC ∼ △DEF . Finally, Theorem 1.13.3 applies to give us

BC

EF
=

AC

DF
⇔ AC

BC
=

DF

EF
and

AB

DE
=

AC

DF
⇔ AB

AC
=

DE

DF
.

Remark The above definitions work when θ is an acute angle, so what about when it is a right-
angle or an obtuse angle? Well, if θ = π/2, we naturally define sin

(
π/2

)
= 1 and cos

(
π/2

)
= 0;

think about what happens in the above definitions when θ → π/2 (and notice that tan
(
π/2

)
is

undefined). Secondly, if θ is obtuse, this means it satisfies π/2 < θ < π. Then, we can define a
new angle Θ := π− θ, the so-called supplement of θ. Notice that 0 < Θ < π/2 is an acute angle,
so we already have definitions for sin(Θ), cos(Θ) and tan(Θ). Hence, we use these definitions:

sin(θ) := sin(Θ), cos(θ) := − cos(Θ), tan(θ) := − tan(Θ).
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1.15 Cosine Rule

Theorem 1.15.1 (Cosine Rule) Let ABC be a triangle wit side lengths a, b, c opposite
vertices A, B, C respectively with α := ∠CAB the angle at vertex A. Then,

a2 = b2 + c2 − 2bc cos(α).

Proof : (i) Assume first that all angles in ABC are acute; this allows us to draw a nice picture
of the triangle. From here, we drop a perpendicular from C to AB and label its foot by P . For
notation, let h := CP and label x := AP . This means that BP = c− x. This is sketched below.

x c− x

a
b

A B

C

h

P

α

We now have two right-angled triangles ACP and BCP , to which we apply Pythagoras’ Theorem:

b2 = h2 + x2 and a2 = h2 + (c− x)2 ⇒ a2 − b2 = c2 − 2cx.

But using the definition of cos(α) = x/b, we get an expression in terms of the cosine for x which
we can substitute above. Indeed, x = b cos(α) and the above becomes

a2 = b2 + c2 − 2cbc cos(α).

(ii) Assume next that α is obtuse; this allows us to draw a slightly different picture of the
triangle. We then ‘complete it’ to a right-angled triangle by extending the base and dropping a
perpendicular from C to the extended AB. This is drawn here.

b
a

cA
B

C

x

h

P

α

We again apply Pythagoras’ Theorem, this time to both ACP and BCP :

b2 = h2 + x2 and a2 = h2 + (c+ x)2 ⇒ a2 − b2 = c2 + 2cx.
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But now, the definition of cosine applies to triangleACP to give us the expression x = b cos(π − α).
Using what we talked about in the previous remark, we see that cos(π − α) = − cos(α). Substi-
tuting this into the above equation produces

a2 = b2 + c2 − 2bc cos(α).

(iii) Assume finally that α = π/2. Then, cos(α) = 0 so this reduces to Pythagoras’ Theorem.
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2 Coordinate Geometry

2.1 Introduction

Reminder: The Cartesian product of sets A and B is A×B := {(a, b) : a ∈ A and b ∈ B},
that is the set consisting of pairs where the first entry lives in A and the second entry lives
in B. If we take the Cartesian product of a set with itself a number of times, we write

An := A×A× · · · ×A.

Instead of using axioms to discuss geometry, we can choose a coordinate system to specify points
in the plane. One of the most common systems we see is the Cartesian coordinate system, named
after René Déscartes who played an important role in the development of this theory.

Definition A coordinate system consists of making the following choices:
� Choose an origin, O.
� Choose perpendicular axes through O.
� Choose scales on each axis.
� Choose an orientation, that is an ordering on the axes.

For us, we work with a plane which can be described in coordinates by the Cartesian product

R2 = R× R = {(x, y) : x, y ∈ R}.

Here, the origin O = (0, 0) and we have two axes: the x-axis consisting of the points (x, 0) and
the y-axis consisting of the points (0, y). We can associate to any point in the plane a coordinate
description (x, y) simply by dropping perpendiculars to each of the axes. On the other hand, we
can construct a point (x, y) from any two real numbers by intersecting the perpendicular to the
x-axis through (x, 0) and the perpendicular to the y-axis through (0, y).

x-axis

y-axis

(x, y)

(x, 0)

(0, y)

Figure 10: Cartesian coordinates for the plane R2.

2.2 Lines

Definition A (Cartesian) line in R2 is given by the equation ax+ by+ c = 0 for a, b, c ∈ R.
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Note: You have probably seen the equation y = mx + c before as having defined a line.
This isn’t bad, but there is no way to write vertical lines x = k for k ∈ R in this form.
The point of the definition above is that we can write all such lines; we show this below:

� To describe x = k, take a = 1, b = 0 and c = k in the definition.
� To describe y = mx+ c, take a = m, b = −1 and c = c in the definition.

Remark Notice we say that ax+ by + c = 0 can be used to define any line. But is the converse
true, that is does every equation define a line? The answer turns out to be no. Indeed, if a = 0
and b = 0, we either get the empty set ∅ if c ̸= 0 or we get all of R2 if c = 0. Except for these
strange cases, it turns out that it is indeed always a line.

Lemma 2.2.1 Let L be a line with gradient m in R2, and suppose θ is the angle between
L and the x-axis (measured anti-clockwise starting from the x-axis). Then, m = tan(θ).

Proof : (i) If θ = 0, then L is the x-axis and m = 0. Because tan(0) = 0, we do have m = tan(θ).

(ii) Assume that 0 < θ < π/2. Let (x0, 0) be the point where L crosses the x-axis and let
(x1, y1) be another point on L where x1 > x0, meaning it lies to the right of (x0, 0). We drop a
perpendicular from (x1, y1) to the x-axis; it hits the x-axis at (x1, 0). We now draw this below.

x-axis

L

(x0, y0)

(x1, y1)

(x1, 0)

θ

By definition, the gradient is the quotient of the change in y by the change in x, which here is

m =
y1

x1 − x0
.

Since the points (x0, y0), (x1, y1), (x1, 0) form a right-angled triangle, the definition of the tangent
tells us that tan(θ) is precisely the above fraction, that is tan(θ) = m.

(iii) Assume that π/2 < θ < π. We can look at the supplement of θ, namely the angle Θ := π−θ
between the x-axis and L on the other side (which is acute). Proceeding like we did for (ii) above
with Θ, we see that tan(Θ) = −m. However, since tan(θ) = − tan(Θ), we get the result.

Note: We essentially only “sketched” the proof of (iii) above, meaning we didn’t write all
the details in full. This is perfectly fine, but you are encouraged to go through it with a
fine-toothed comb to really understand what we are doing (and draw a picture to help).
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Theorem 2.2.2 Consider some line L in the plane R2.
(i) If it is non-vertical, contains (x1, y1) and has gradient m, then L satisfies

y − y1 = m(x− x1).

(ii) If it is non-vertical and contains distinct (x1, y1), (x2, y2), then L\{(x1, y1)} satisfies

y − y1
x− x1

=
y2 − y1
x2 − x1

.

(iii) If it contains (p, 0) and (0, q) for p, q ̸= 0, then L satisfies

x

p
+

y

q
= 1.

Proof : (i) Using the y = mx + c form, since L is assumed non-vertical, it can be described by
y1 = mx1 + c, implying that the y-intercept c = y1 −mx1. Therefore, the equation of the line is
y = mx+ y1 −mx1; this easily rearranges to the desired formula.

(ii) Since L is non-vertical, it satisfies (i), i.e. it is described by the equation y− y1 = m(x−x1).
Therefore, assuming that x ̸= x1, we can divide this to get the following expression:

m =
y − y1
x− x1

.

Alternatively, we can write the gradient in terms of the two distinct points (x1, y1) and (x2, y2) as
the change in y-coordinate over the change in x-coordinate, so equating this with our expression
for m above gives the result.

(iii) Consider the general equation of a line ax + by + c = 0. We can substitute (x, y) = (p, 0)
and (x, y) = (0, q) in turn into this equation. Doing so produces the following equalities:

ap+ c = 0 and bq + c = 0.

We assumed that p, q ̸= 0, so we can rearrange these to get a = −c/p and b = −c/q. Hence, the
equation of our line is −cx/p − cy/q + c = 0. We can factorise this to −c(x/p + y/q − 1) = 0.
Because c ̸= 0 (if it was, (0, 0) would be on the line but the intercepts are assumed to not be at
the origin), this final equation holds precisely when x/p+ y/q = 1.

2.3 Perpendicular Lines

Theorem 2.3.1 If L1 and L2 are perpendicular lines with gradients m1 ̸= 0 and m2, then

m2 = − 1

m1
.

Proof : Let θ be the angle between L1 and the x-axis, measured anti-clockwise from the x-axis.
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(i) Assume that 0 < θ < π/2. Because L1 and L2 are assumed perpendicular, this means rotating
L1 by π/2 about their point of intersection will transform it onto L2. This is pictured below.

x-axis

L1

L2

θ

θ + π
2

We may now apply Lemma 2.2.1 to these two lines to give us the below chain of equalities:

m2 = tan
(
θ + π/2

)
=

sin
(
θ + π/2

)
cos
(
θ + π/2

)
=

sin(θ) cos
(
π/2

)
+ cos(θ) sin

(
π/2

)
cos(θ) cos

(
π/2

)
− sin(θ) sin

(
π/2

)
=

cos(θ)

− sin(θ)

= − 1

tan(θ)

= − 1

m1
.

(ii) Assume that π/2 < θ < π. We proceed as above except with the supplement Θ := π − θ:

m2 = tan
(
θ − π/2

)
= tan

(
π −Θ− π/2

)
= tan

(
−Θ+ π/2

)
=

sin
(
−Θ+ π/2

)
cos
(
−Θ+ π/2

)
=

sin(−Θ) cos
(
π/2

)
+ cos(−Θ) sin

(
π/2

)
cos(−Θ) cos

(
π/2

)
− sin(−Θ) sin

(
π/2

)
=

cos(−Θ)

− sin(−Θ)

=
− cos(θ)

sin(θ)

= − 1

tan(θ)

= − 1

m1
.
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Theorem 2.3.2 If L1 and L2 be lines with gradients m1 and m2 such that m1m2 = −1,
then L1 and L2 are perpendicular.

Proof : By assumption, we know that m2 = −1/m1. Appealing to Lemma 2.2.1, we can write

m1 = tan(θ1) and m2 = −1/m1 = tan(θ2).

Combining these together produces −1/ tan(θ1) = tan(θ2) which means 1− tan(θ1) tan(θ2) = 0.
From a compound-angle formula, we know that tan(θ1 + θ2) is undefined, but this can only be
the case when θ1+θ2 = π/2 (or an odd-multiple of it, but our angles are restricted to 0 < θi < π).
Hence, the angle between L1 and L2 is a right angle, as required.

2.4 Distance from a Point to a Line

Reminder: The distance from a point to a line is the length of the dropped perpendicular.

We now deduce a formula in Cartesian coordinates for the distance between a point and a line.

Proposition 2.4.1 Let P be a point (x0, y0) not on the line L given by ax + by + c = 0,
where a and b are not both zero. Then, the distance from P to L is given by

dist(P,L) =
|ax0 + by0 + c|√

a2 + b2
.

Proof : (i) Suppose a, b ̸= 0 are both non-zero. Because L has gradient −a/b, it follows from
Theorem 2.3.1 that the gradient of the line M which is perpendicular to L is b/a. Therefore, we
can use Theorem 2.2.2(i) to write down the equation of M :

y − y0 =
b

a
(x− x0).

This can be rearranged into the usual form of an equation of a line, namely as

bx− ay + ay0 − bx0 = 0.

The aim of the game is to deduce the intersection point X, which in coordinates we call (x1, y1),
of L and M . We then use Pythagoras’ Theorem to get the formula we want. This is drawn here.

L

M

P

X
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In order to find X, it amounts to solving the following equations simultaneously:

ax1 + by1 + c = 0

bx1 − ay1 + ay0 − bx0 = 0

}
⇒


x1 =

b2x0 − aby0 − ac

a2 + b2

y1 =
a2y0 − abx0 − bc

a2 + b2

.

We can work out the length of PX by using Pythagoras’ Theorem, noting that the base of the
triangle in the above picture has length x0−x1 and the height has length y0− y1. Consequently,

dist(P,L) =
√

(x0 − x1)2 + (y0 − y1)2

=

√(
a

a2+b2
(ax0 + by0 + c)

)2
+
(

b
a2+b2

(ax0 + by0 + c)
)2

=

√
a2 + b2

(a2 + b2)2
(ax0 + by0 + c)2

=
1√

a2 + b2

√
(ax0 + by0 + c)2

=
1√

a2 + b2
|ax0 + by0 + c|.

Note: The final equality above uses the fact that
√
z2 = |z| for any real number z ∈ R.

(ii) If a = 0, the line L is a horizontal line. Therefore, the distance between P and X will be the
difference between the y-coordinate of P and any point lying on the line. One can easily verify
this agrees with the formula in the statement.

(iii) If b = 0, the line L is a vertical line. Therefore, the distance between P and X will be the
difference between the x-coordinate of P and any point lying on the line. One can easily verify
this agrees with the formula in the statement.

Method – Distance from a Point to a Line: Let L be a line and P a point not on L.
(i) Rewrite the equation of the line L in the form ax+ by + c = 0.
(ii) Substitute a, b, c and the coordinates x0, y0 of point P into Proposition 2.4.1.

2.5 Circles

Definition 2.5.1 Let θ ∈ R and, starting at the point (1, 0) ∈ R2, let P be the point arrived
at by rotating (1, 0) by angle θ about the origin. The convention is that the rotation is
anti-clockwise for θ > 0 and clockwise for θ < 0. The cosine and sine of the angle is the x-
and y-coordinate of P , respectively.
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Note: We call such angles signed angles since they can be both positive and negative. In
this way, we can sketch a picture of the situation described in Definition 2.5.1; see below.

x

y

P = (cos θ, sin θ)

P =
(
cos(−φ), sin(−φ)

)

O

θ

−φ

Figure 11: The sine and cosine of signed angles.

We will prove now that Definition 2.5.1 coincides with the one for triangles in the case 0 ≤ θ < π.

Proposition 2.5.2 The two definitions of sin and cos agree with each other.

Proof : Let P be the point achieved by rotating (1, 0) about the origin by θ, as in Figure 11. If
θ = 0 or θ = π/2, this is clear. We therefore split into the acute and obtuse cases. But let’s
first establish some notation: denote by X the foot of the perpendicular dropped from P to the
x-axis, and use sinold(θ) and cosold(θ) for the original definitions of sine and cosine, respectively.

(i) Assume that 0 < θ < π/2. Then, the old versions of cosine and sine are

cosold(θ) =
OX

OP
=

cos(θ)

1
= cos(θ) and sinold(θ) =

PX

OP
=

sin(θ)

1
= sin(θ)

(ii) Assume that π/2 < θ < π. Then, for Θ := π − θ, we have P = (− cosΘ, sinΘ) and so

cosold(θ) = − cos(Θ) = cos(θ) and sinold(θ) = sin(Θ) = sin(θ).

Theorem 2.5.3 Let θ be a signed angle. Then, the following equalities hold:
(i) sin(θ + 2π) = sin(θ).
(ii) cos(θ + 2π) = cos(θ).
(iii) sin(π − θ) = sin(θ).
(iv) cos(π − θ) = − cos(θ).
(v) sin(−θ) = − sin(θ).
(vi) cos(−θ) = cos(θ).
(vii) sin2(θ) + cos2(θ) = 1.
(viii) sin

(
θ + π/2

)
= cos(θ).
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Proof : (i)/(ii) These both follow from Definition 2.5.1, since if we wind around the origin by 2π,
we end precisely at the point where we started.

(iii)/(iv) Suppose that 0 < θ < π/2. Then, this follows from the original definitions of sine and
cosine for triangles (and therefore for the new definition by Proposition 2.5.2). We can write a
similar argument for 0 ≤ θ < 2π, and extend to θ ∈ R via (i) and (ii).

(v)/(vi) Suppose that 0 < θ < π/2. Then, we obtain two right-angled triangles drawn here.

x

y

P1 = (cos θ, sin θ)

P2 =
(
cos(−θ), sin(−θ)

)

X

O

θ

−θ

Looking at the coordinates of P2 in the right-angled triangle P2OX, we get the equalities we
want. We can write a similar argument for 0 ≤ θ < 2π, and extend to θ ∈ R via (i) and (ii).

(vii) This is immediate from Pythagoras’ Theorem.

(viii) Suppose 0 < θ < π/2. Then, θ + π/2

x

y

P = (cos θ, sin θ)

O

θ

Definition A circle with centre A = (a, b) ∈ R2 and radius r > 0 is the set of points whose
distance from A is precisely equal to r. We denote a circle by the calligraphic letter C.
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Proposition A circle in R2 centred at (a, b) with radius r > 0 is given by the locus equation

(x− a)2 + (y − b)2 = r2.

Proof : Let P = (x, y) ∈ R2 be any point in the Cartesian plane. Then, Pythagoras’ Theorem
tells us that the squared distance from the circle’s centre A = (a, b) is

AP 2 = (x− a)2 + (y − b)2.

Hence, as every point on a circle is exactly distance r from A, we obtain the result.

Proposition 2.5.4 A point (x, y) lies on the circle in R2 centred at (a, b) with radius r > 0
if and only if there exists some number θ where 0 ≤ θ < 2π such that

(x, y) = (a+ r cos θ, b+ r sin θ).

Proof : (⇐) Suppose that such θ exists and (x, y) has the given form. Then,

(x− a)2 + (y − b)2 = (a+ r cos θ − a)2 + (b+ r sin θ − b)2

= r2 cos2(θ) + r2 sin2(θ)

= r2(cos2 θ + sin2 θ)

= r2.

(⇒) Suppose that P = (x, y) lies on the circle, and let Q be the point on the circle with the same
y-coordinate as the centre A = (a, b), that is Q = (a + r, b). Then, the radius AP is obtained
from AQ by rotating through a signed angle 0 ≤ θ < 2π. The picture when θ is acute is this.

P = (x, y)

Q = (a+ r, b)A = (a, b)
θ

From the triangle definition of cosine and sine, we have cos(θ) = (x−a)/r and sin(θ) = (y−b)/r,
which rearrange to x = a+ r cos(θ) and y = b+ r sin(θ) respectively. A similar argument works
for other values of θ (by using the facts established in Theorem 2.5.3).

Note: The expression in Proposition 2.5.4 is known as the parametric equation of a circle.
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3 Conic Sections

3.1 Introduction

Definition 3.1.1 A conic (or conic section) is the locus of a point in the plane whose
distance from a fixed point is a positive constant multiple of its distance from a fixed line
not containing said point.

Don’t worry if this doesn’t paint a nice picture in your mind; we will draw one now. Indeed, let
P be a point on some conic. Then, label the fixed point referred to above F (called the focus),
the positive constant e ∈ R+ (called the eccentricity) and the fixed line L (called the directrix).

P

F

L

Figure 12: A point P on a conic with focus F and directrix L.

Note: The equation to have in mind with this description of a conic is PF = e dist(P,L).

The goal is to describe these conics using Cartesian coordinates. We will do this by considering
different values of the eccentricity and studying the resulting conics. The values are as follows:

0 < e < 1, e = 1, e > 1.

Remark We could allow e = 0 b replacing “positive constant multiple” in Definition 3.1.1 with
“non-negative constant multiple” to cover this situation. However, it turns out we have already
looked at this case before: when e = 0, the conic in question is nothing more than a circle!

3.2 The Parabola

Definition The parabola is the conic we obtain by setting e = 1, meaning PF = dist(P,L).

Here, we choose a coordinate system suitable for the parabola, namely the following:

� The origin O will be halfway between F and L.

� The x-axis will be the line through F and O, perpendicular to L.

� The y-axis will be the line through O, parallel to L.

Definition 3.2.1 The standard equation of the parabola is y2 = 4ax where a ̸= 0.
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Remark We can derive the above equation by using the fact PF = dist(P,L) and interpreting
this equality in Cartesian coordinates. Indeed, let F = (a, 0), meaning the directrix L is of the
form x = −a (in the coordinate system we established just above). Then,

PF = dist(P,L) ⇔
√
(x− a)2 + y2 = |x+ a|

⇔ x2 − 2ax+ a2 + y2 = (x+ a)2

⇔ y2 = 4ax.

x

y

L

O F

Figure 13: The standard parabola y2 = 4ax with its focus and directrix.

Note: If we change a ̸= 0, we obtain parabolas of slightly different shapes than that in
Figure 13. In particular, if a is smaller, the parabola looks vertically squashed. Of course,
if a is negative, then the parabola would face the other way (reflected across the y-axis).

3.3 Change of Coordinates

If a conic is given by a locus equation, the choice of axes might not be as convenient as we have
above for the parabola. We may want to alter the coordinates so that they do become simpler.

Definition A translation from (x, y) coordinates to (X,Y ) coordinates is a transformation

x = X + c

y = Y + d
for any c, d ∈ R.

The motivation is this: (c, d) in (x, y) coordinates becomes (0, 0) in the new (X,Y ) coordinates.

Remark We picture the translation in Figure 14 below. Note that other so-called rigid transfor-
mations (ones that preserve distances) are possible, such as rotations and reflections, as well as
combinations of these with translations.
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x

y

(0, 0)

X

Y

(c, d)

Figure 14: Translation from (x, y) coordinates to (X,Y ) coordinates.

Method – Sketching a Parabola: Assume we have a locus equation of a parabola.
(i) Complete the square in y to obtain something like (y + d)2 = 4a(x+ c).
(ii) Apply the translation change of coordinates X = x+ c and Y = y + d.
(iii) Sketch the standard parabola Y 2 = 4aX and determine its focus and directrix.
(iv) Reverse the change of coordinates to get everything in the original (x, y) system.

3.5 Parametric Form of the Parabola

Theorem 3.5.1 Let a ̸= 0. Then, a point P = (x, y) in the plane lies on the standard
parabola y2 = 4ax if and only if there exists t ∈ R such that P = (at2, 2at).

Proof : (⇒) Given y2 = 4ax, take t = y/2a. Hence, y = 2at and x = y2/4a = 4a2t2/4a = at2.

(⇐) Given (x, y) = (at2, 2at) for some t ∈ R, we have y2 = 4a2t2 = 4a(at2) = 4ax, as needed.

Proposition Consider the standard parabola y2 = 4ax with a ̸= 0 and let P = (ap2, 2ap)
be a point on it where p ̸= 0. Then, the tangent to the parabola at P is given by

y =
1

p
x+ ap.

Proof : As is the usual story, we differentiate (implicitly, here) in order to find the gradient:

d

dx
[y2] =

d

dx
[4ax] ⇒ 2y

dy

dx
= 4a ⇒ dy

dx
=

2a

y
.

We substitute the coordinates of P into the above derivative to conclude the gradient of the
tangent line is 1/p. Consequently, we use Theorem 2.2.2(i) to determine the tangent’s equation:

y − y1 = m(x− x1) ⇒ y − 2ap =
1

p
(x− ap2) ⇒ py = x+ ap2.

Finally, we divide through by p (recall we assume p ̸= 0) to get the expression we are after.
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Remark Where does the name “focus” come from? Well then, it turns out that parabolas reflect
parallel lines to a point (they focus them). It is this principle why mirrors that form part of the
headlight of a car are parabolic. To prove this mathematically, take any line parallel K to the
x-axis and suppose it intersects the parabola at point P = (ap2, 2ap). The angle θ between the
line K and the tangent to the parabola at P is given by

tan(θ) =
1

p
,

where 1/p we recall is the gradient of the tangent line. The angle α between PF and the x-axis
satisfies a similar condition, namely taking the tan of the angle is the gradient of the line:

tan(α) =
2ap

ap2 − a
=

2p

p2 − 1
=

2/p

1− 1/p2
=

2 tan(θ)

1− tan2(θ)
= tan(2θ).

Because 0 ≤ α ≤ π and 0 ≤ 2θ ≤ π, we conclude from above that α = 2θ. Next, suppose β is
the angle between PF and the tangent line to the parabola at P . We can now use the fact that
vertically opposite angles are equal (Proposition 1.7.5) to conclude

α = β + θ ⇒ β = θ.

x

y

O F

α

β

θ K
P

The picture above frames all this mathematics geometrically. But the point is that our line K
was completely arbitrary, so in fact all parallel lines reflect from the parabola at the same angle.

Definition 3.5.3 A chord of a parabola is a line segment between two distinct points on it.

Proposition 3.5.4 Let y2 = 4ax be the standard parabola containing two distinct points
P = (ap2, 2ap) and Q = (aq2, 2aq) for p, q ∈ R and let L be the line through P and Q.

(i) If p+ q ̸= 0, then L has gradient
2

p+ q
.

(ii) The equation of L is (p+ q)y = 2x+ 2apq.

Proof : (i) Since p± q ̸= 0, by assumption and because P and Q are distinct, the gradient of L is

2ap− 2aq

ap2 − aq2
=

2(p− q)

(p− q)(p+ q)
=

2

p+ q
.

32



(ii) If we use Theorem 2.2.2(i) along with the gradient from above, the equation of L is

y−2ap =
2

p+ q
(x−ap2) ⇔ (p+q)(y−2ap) = 2(x−ap2) ⇔ (p+q)y = 2x+2apq.

On the other hand, if p + q = 0 (note we do not omit this possibility in the statement of the
proposition for this part), then P = (ap2, 2ap) and Q = (ap2,−2ap). This tells us the line L is
vertical (since it passes through both P and Q) and is given by x = ap2. But this is equivalent
to (p+ q)y = 2x+ 2apq is we substitute p = −q.

3.6 The Ellipse

Definition The ellipse is the conic we obtain by setting 0 < e < 1.

Lemma 3.6.1 Consider a conic with eccentricity e ̸= 1. It is possible to make a change of
variables from (x, y)-coordinates to (X,Y )-coordinates such that the focus F becomes the
origin and the directrix L is parallel to the Y -axis, that is of the form X = −h for some
h ∈ R. Then, the conic itself satisfies(

X − he2

1− e2

)2

+
Y 2

1− e2
=

h2e2

(1− e2)2
.

Proof : Again, we use the earlier note which tells us a point P = (X,Y ) lies on a conic if and
only if it satisfies PF = e dist(P,L). All we need do is apply the relevant distance formulae and
tweak things with a bit of algebraic manipulation:

dist(P, F ) = e dist(P,L) ⇔
√

X2 + Y 2 = e|X + h|
⇔ X2 + Y 2 = e2(X2 + 2Xh+ h2)

⇔ X2(1− e2) + Y 2 − 2Xhe2 = h2e2

⇔ X2 +
Y 2

1− e2
− 2Xhe2

1− e2
=

h2e2

1− e2

⇔

(
X − he2

1− e2

)
− h2e4

(1− e2)2
+

Y 2

1− e2
=

h2e2

1− e2

⇔

(
X − he2

1− e2

)
+

Y 2

1− e2
=

h2e4

(1− e2)2
+

h2e2

1− e2

⇔

(
X − he2

1− e2

)
+

Y 2

1− e2
=

he2

(1− e2)2
.

Note: The only assumption in Lemma 3.6.1 is e ̸= 1, so it will apply also when e > 1.
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Theorem 3.6.2 There exist axes in the coordinates (x, y) and real numbers a > b > 0 such
that the equation of the ellipse is

x2

a2
+

y2

b2
= 1.

Proof : Because the eccentricity 0 < e < 1, we can use Lemma 3.6.1 to conclude that there are
coordinates (X,Y ) such that the ellipse has equation(

X − he2

1− e2

)2

+
Y 2

1− e2
=

h2e2

(1− e2)2

and the directrix is given by X = −h. If we set a := he/(1− e2), the above equation becomes

(X − ae)2 +
Y 2

1− e2
= a2 ⇔ (X − ae)2

a2
+

Y 2

a2(1− e2)
= 1.

Translating to new coordinates x := X−ae, y := Y and set b :=
√
a2(1− e2), the above becomes

x2

a2
+

y2

b2
= 1.

If a < 0, we can replace it with −a to ensure it is positive. Then, b > 0 and we again have that
b < a since 0 < e < 1 so the equation still holds.

Theorem 3.6.3 Let a > b > 0 be real numbers. Then, the curve defined by the equation

x2

a2
+

y2

b2
= 1

is an ellipse with eccentricity e =
√
1− b2/a2, foci (±ae, 0) and directrices x = ±a/e.

Proof : Since a > b, let e :=
√

1− b2/a2. Then, b2 = a2(1− e2) so we re-write the equation as

x2

a2
+

y2

a2(1− e2)
= 1.

To show this is a conic (specifically an ellipse), we wish to write it in the form PF = edist(P,L).
This will also allow us to determine the foci and directrices. Indeed,

x2

a2
+

y2

a2(1− e2)
= 1 ⇔ x2(1− e2) + y2 = a2(1− e2)

⇔ x2 − 2aex+ a2e2 + y2 = e2x2 − 2aex+ a2

⇔ (x− ae)2 + y2 = e2(x− a/e)2

⇔
√

(x− ae)2 + y2 = e
∣∣x− a/e

∣∣.
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The above is precisely the form we want: it says that the distance between (x, y) and (ae, 0)
is equal to e multiplied by the distance from (x, y) to the line x = a/e. Note that the second
line comes from expanding, rearranging and artificially subtracting 2aex from both sides so that
it has a nice factorisation. On the other hand, we could add 2aex to both sides to obtain the
following alternate equation: √

(x+ ae)2 + y2 = e
∣∣x+ a/e

∣∣.
Hence, the foci are (±ae, 0) and the directrices are x = ±a/e as we expected.

Definition 3.6.4 The standard equation of the ellipse is x2

a2
+ y2

b2
= 1 where a > b > 0.

� The centre is the point (0, 0).
� The vertices are the points (a, 0) and (−a, 0).
� The major axis is the line from (−a, 0) to (a, 0).
� The minor axis is the line from (0,−b) to (0, b).
� The semi-axis lengths are a and b.

Remark 3.6.5 The standard ellipse is symmetric about the x- and y-axes; note that reflecting
in either of them sends foci to foci and directrices to directrices. Furthermore, since a > b, the
ellipse is wider than it is high (as is clear from Figure 15). Note that it also lies in the rectangle
of width 2a and height 2b, that is it is a subset of {(x, y) ∈ R2 : |x| ≤ a and |y| ≤ b}.

x

y

L+L−

F+F− O

Figure 15: The standard ellipse x2

a2
+ y2

b2
= 1 with its foci and directrices.

Note: A circle can be thought of as the degenerate ellipse where a = b. Be aware

Method – Sketching an Ellipse: Assume we have a locus equation of an ellipse.

(i) Complete the square and rearrange to obtain something like (x+ c)2

a2
+ (y+ d)2

b2
= 1.

(ii) Apply the translation change of coordinates X = x+ c and Y = y + d.

(iii) Sketch the standard ellipse X2

a2
+ Y 2

b2
= 1 and determine its foci and directrices.

(iv) Reverse the change of coordinates to get everything in the original (x, y) system.
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3.7 Parametric Form of the Ellipse

Theorem 3.7.1 Let a > b > 0. Then, a point P = (x, y) in the plane lies on the standard

ellipse x2

a2
+ y2

b2
= 1 if and only if there exists 0 ≤ t < 2π such that P = (a cos t, b sin t).

Proof : (⇒) Suppose (x, y) satisfies the equation and consider new coordinates (X,Y ) given by

X = x and Y =
a

b
y.

The equation we have then becomes X2 + Y 2 = a2, meaning that (X,Y ) lies on a circle centred
at O with radius a. Therefore, we know from Proposition 2.5.4 that there exists t ∈ R with
0 ≤ t < 2π such that (X,Y ) = (a cos t, a sin t). If we revert back to the (x, y) coordinates, this
becomes (x, y) = (a cos t, b sin t) as expected.

(⇐) Suppose (x, y) = (a cos t, b sin t). Then, substituting into the equation tells us

x2

a2
+

y2

b2
= cos2(t) + sin2(t) = 1.

Note: The change of variables for the “only if” direction of Theorem 3.7.1 is not a rigid
motion: because it changes the ellipse to a circle, it clearly doesn’t preserve distances.
However, this argument is valid because we reversed the transformation at the end.

Lemma 3.11.2 Let a > b > 0. If P is a point on the standard ellipse with foci F±, then

PF+ + PF− = 2a.

Sketch of Proof : We can use the parametric form of the ellipse along with Pythagoras’ Theorem
to see that PF± = a(∓e cos t+ 1). We have to be careful when square-rooting here: since e < 1
and −1 ≤ cos(t) ≤ 1, we take the negative root for PF+ and the positive root for PF−. Hence,
it is a straightforward observation that PF+ +PF− = −ae cosh(t)+ a+ ae cosh(t)+ a = 2a.

3.9 The Hyperbola

Definition The hyperbola is the conic we obtain by setting e > 1.

Theorem 3.9.1 Let a, b > 0 be real numbers. Then, the curve defined by the equation

x2

a2
− y2

b2
= 1

is aa hyperbola with eccentricity e =
√
1 + b2/a2, foci (±ae, 0) and directrices x = ±a/e.
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Proof : Since a, b > 0, let e :=
√

1 + b2/a2. Then, b2 = a2(e2 − 1) so we re-write the equation as

x2

a2
− y2

a2(e2 − 1)
= 1.

To show that this is a conic (specifically a hyperbola), we wish to write it as PF = e dist(P,L).
This will also allow us to determine the foci and directrices. Indeed,

x2

a2
− y2

a2(e2 − 1)
= 1 ⇔ x2(e2 − 1)− y2 = a2(e2 − 1)

⇔ x2 − 2aex+ a2e2 + y2 = e2x2 − 2aex+ a2

⇔ (x− ae)2 + y2 = e2(x− a/e)2

⇔
√

(x− ae)2 + y2 = e
∣∣x− a/e

∣∣.
The above is precisely the form we want: it says that the distance between (x, y) and (ae, 0)
is equal to e multiplied by the distance from (x, y) to the line x = a/e. Note that the second
line comes from expanding, rearranging and artificially subtracting 2aex from both sides so that
it has a nice factorisation. On the other hand, we could add 2aex to both sides to obtain the
following alternate equation: √

(x+ ae)2 + y2 = e
∣∣x+ a/e

∣∣.
Hence, the foci are (±ae, 0) and the directrices are x = ±a/e as we expected.

Definition 3.9.2 The standard equation of the hyperbola is x2

a2
− y2

b2
= 1 where a, b > 0.

� The centre is the point (0, 0).
� The vertices are the points (a, 0) and (−a, 0).

Reminder: An asymptote of a curve is a line such that the distance between the curve and
the line approaches zero as one (or both) of the coordinates tends to infinity.

Remark 3.9.5 We can factorise the left-hand side of the standard hyperbola as follows:

x2

a2
− y2

b2
= 1 ⇔

(
x

a
− y

b

)(
x

a
+

y

b

)
= 1.

We see that if x and y are both large and have the same sign, then the second factor x/a+y/b is
also very large, meaning that the first factor x/a− y/b must be very small. Therefore, the point
(x, y) in this case is close to the line x/a−y/b = 0. On the other hand, if they are both large with
opposite signs, then the opposite argument works and (x, y) is close to the line x/a+ y/b = 0.

Definition 3.9.6 The asymptotes of the standard hyperbola are the lines given by x
a±

y
b = 0.
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x

y

L+L−
x
a
+ y

b
= 0x

a
− y

b
= 0

F+F− O

Figure 16: The standard hyperbola x2

a2
− y2

b2
= 1 with foci, directrices and asymptotes.

Method – Sketching a Hyperbola: Assume we have a locus equation of a hyperbola.

(i) Complete the square and rearrange to obtain something like (x+ c)2

a2
− (y+ d)2

b2
= 1.

(ii) Apply the translation change of coordinates X = x+ c and Y = y + d.

(iii) Sketch the standard ellipse X2

a2
− Y 2

b2
= 1 and determine its foci and directrices.

(iv) Reverse the change of coordinates to get everything in the original (x, y) system.

3.11 Parametric Form of the Hyperbola

Theorem 3.11.1 Let a, b > 0. Then, a point P = (x, y) in the plane lies on the standard

hyperbola x2

a2
− y2

b2
= 1 if and only if one of the following occurs:

(i) There exists −π ≤ t < π with t ̸= π/2 such that P = (a sec t, b tan t).
(ii) There exists t ∈ R such that (x, y) = (a cosh t, b sinh t).

Proof : Omitted; this is very similar to the proofs of Theorems 3.5.1 and 3.7.1.

Note: The parametrisation in Theorem 3.11.1(ii) only gives the right-hand branch of the
hyperbola. Of course, since the standard hyperbola is symmetric about the y-axis, we can
cover both by saying that P is given by precisely one of (x, y) = (±a cosh t, b sinh t).

Remark We can use the second parametric form of the hyperbola to give an alternate definition
of the hyperbola in terms of distances from a point on the hyperbola to each foci, namely

PF+ − PF− = −2a,

where F± are the foci. Indeed, we use Pythagoras’ Theorem to see that PF± = a(e cosh t ∓ 1).
This requires the fact that e > 1 and cosh(t) ≥ 1; this allows us to take only the positive square
root. It is now an easy observation that PF+−PF− = ae cosh(t)−a−ae cosh(t)+ (−a) = −2a.
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3.12 Summary

We now provide a summary of the three conics we have introduced and their important properties.

Parabola Ellipse Hyperbola

Eccentricity Value e = 1 0 < e < 1 e > 1

Equation y2 = 4ax x2

a2
+ y2

b2
= 1 x2

a2
− y2

b2
= 1

Restrictions a ̸= 0 a > b > 0 a, b > 0

Centre — (0, 0) (0, 0)

Vertices (0, 0) (±a, 0) (±a, 0)

Foci (a, 0) (±ae, 0) (±ae, 0)

Directrices x = −a x = ±a
e x = ±a

e

Asymptotes — — x
a ± y

b = 0

Eccentricity Formula — e =
√
1− b2

a2
e =

√
1 + b2

a2

Table 1: A summary of the important properties of each conic.

Remark The name “conic” comes from the following interpretation: consider a cone and intersect
it with a plane. The orientation of the plane will change what the intersection looks like: the
circle is contained on a horizontal plane; the ellipse is contained on an angled plane through both
sides of the cone; the parabola is contained on an angled plane through one side and the base of
the cone; the hyperbola is contained on a vertical plane. We can see that the hyperbola is the
only conic with more than a single one piece. This is all pictured in Figure 17 below.

circle →

ellipse → ← parabola

← hyperbola

← hyperbola

Figure 17: The conics arising from the intersection of a cone with various planes.
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4 Polar Coordinates and Axis Rotation

4.1 Introduction

A common alternative to the Cartesian coordinate system is the so called polar system, which is
now introduced. We will soon show that there is a relatively hassle-free way to convert between
the Cartesian and polar systems.

Definition The polar coordinate system consists of the following choices:
� Choose a pole, O.
� Choose a polar axis X through O.
� Choose a scale on the polar axis.

In this system, a point P is specified by the distance r away from the pole and the angle θ between
the line segment PO and the polar axis. By convention, we measure the angle anti-clockwise
from X (regarded as a signed angle, so a negative corresponds to a clockwise measurement).

X

r

O

P

θ

Figure 18: The plane as described by polar coordinates.

Definition 4.1.1 The polar coordinates of a point P are [r, θ] where r ≥ 0 and 0 ≤ θ < 2π.

Notation We use square brackets for polar coordinates to distinguish from Cartesian coordinates.

Note: The point (0, 0) is given by [0, θ] for any θ in polar coordinates (in particular, [0, 0]).

Remark 4.1.3 We often impose (and did so in Definition 4.1.1) r ≥ 0. However, we can allow
r < 0 because this just means that our point [r, θ] is distance |r| away from the pole O at an
angle of θ + π still measured anti-clockwise from X.

4.2 Converting Between Polar and Cartesian Coordinates

Lemma 4.2.1 If P has polar coordinates [r, θ], it has Cartesian coordinates (x, y) with

x = r cos(θ) and y = r sin(θ).

Proof : All the way from Definition 2.5.1, the point arrived at by doing an anti-clockwise rotation
of (1, 0) about the origin by angle θ has coordinates (cos θ, sin θ). Since P is arrived at by rotating
(r, 0) in this way, the coordinates are simply (r cos θ, r sin θ).
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Reminder: In general, tan−1(x) isn’t well-defined since if tan(θ) = x, then tan(θ + nπ) = x
for all n ∈ Z. Therefore, we restrict to the interval −π

2 < θ < π
2 to compute tan−1(x).

Lemma 4.2.2 If P has Cartesian coordinates (x, y), it has polar coordinates [r, θ] with

r =
√
x2 + y2 and θ =



tan−1(y/x), if x > 0

tan−1(y/x) + π, if x < 0

π/2, if x = 0 and y > 0

−π/2, if x = 0 and y < 0

undefined, if x = 0 and y = 0

.

Proof : There are a number of cases to consider.

(i) If P is in quadrant one (x > 0, y > 0), then 0 ≤ θ < π
2 which is simply tan−1(y/x).

(ii) If P is in quadrant two (x < 0, y > 0), then π
2 < θ ≤ π. We can now define an acute angle

α = π − θ. One needs to substitute α = tan−1(y/− x) = − tan−1(y/x) and rearrange.

(iii) If P is in quadrant three (x < 0, y < 0), then π ≤ θ < 3π
2 . We can now define an acute

angle α = θ−π. One needs to substitute α = tan−1(−y/−x) = tan−1(y/x) and rearrange.

(iv) If P is in quadrant four (x > 0, y < 0), then 3π
2 < θ ≤ 2π. We can now define an acute angle

α = 2π − θ. One needs to substitute α = tan−1(−y/x) = − tan−1(y/x) and rearrange.

Now, tan−1(y/x) is undefined when x = 0, meaning θ = ±π/2 depending on the orientation.
Finally, the fact that r =

√
x2 + y2 is a straightforward application of Pythagoras’ Theorem.

Note: An alternate way to find θ from the Cartesian coordinates is to first find r and solve
the system of simultaneous equations cos(θ) = x/r and sin(θ) = y/r.

4.3 Rotation of Axes

Given a Cartesian coordinate system (x, y), it is possible to rotate the axes anti-clockwise through
a (signed) angle to obtain new axes (X,Y ), giving us a new coordinate system. We can use polar
coordinates to describe this.

Theorem 4.3.1 Let (x, y) be Cartesian coordinates and (X,Y ) the coordinates obtained by
rotating the x- and y-axes through an angle α. Then, the new coordinates are

X = x cos(α) + y sin(α) and Y = −x sin(α) + y cos(α).

Proof : Let P be a point in the plane with Cartesian coordinates (x, y) and polar coordinates
[r, θ]. Suppose that [R,Θ] are the polar coordinates of P where we take the polar axis to be the
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X-axis. Then, R = r and Θ = θ − α. With this information, we can use some compound-angle
formulae with Lemma 4.2.1 to get the desired result:

X = R cos(Θ)

= r cos(θ − α)

= r(cos θ cosα+ sin θ sinα)

= x cos(α) + y sin(α)

and

Y = R sin(Θ)

= r sin(θ − α)

= r(sin θ cosα− cos θ sinα)

= y cos(α)− x sin(α).

Corollary 4.3.2 Let (x, y) be Cartesian coordinates and (X,Y ) the coordinates obtained by
rotating the x- and y-axes through an angle α. Then, the original coordinates are

x = X cos(α)− Y sin(α) and y = X sin(α) + Y cos(α).

Proof : We can use Theorem 4.3.1 in the context of starting with (X,Y ) and rotating by −α
to get to (x, y); this would require us to interchange the lowercase and uppercase letters in
the theorem. Substituting −α would then produce precisely the expressions we are after, since
cos(−α) = cos(α) and sin(−α) = − sin(α).

Reminder: An m× n matrix is an array of numbers that has m rows and n columns.

Remark 4.3.3 In matrix language, we can write Theorem 4.3.1 rather succinctly as(
X
Y

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
.

We call the 2×2 matrix above the rotation matrix and it has determinant (whatever that means)
cos2+sin2 = 1. Therefore, we can invert it; this is precisely what Corollary 4.3.2 says:(

x
y

)
=

(
cosα − sinα
sinα cosα

)(
X
Y

)
.

Note: We will not be using the matrix approach here, so ignore Remark 4.3.3 if you wish.

Remark 4.3.5 Rotating a shape through an angle of −α while keeping the axes fixed is exactly
the same as keeping the shape fixed while rotating the axes through an angle of α.
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4.4 Eliminating the xy-Term

Throughout, consider the following general equation in two variables where A,B,C,D,E, F ∈ R:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (∗)

Lemma 4.4.1 Consider the curve defined by (∗) where A ̸= C and let α be defined by

tan(2α) =
B

A− C
.

Then, after rotating the axes by α, the equation in the new coordinates is of the form

aX2 + cY 2 + dX + eY + f = 0,

where a, c, d, e, f ∈ R are possibly different from A,C,D,E, F ∈ R respectively.

Proof : Recall the rotation of axes formulae from Corollary 4.3.2, which apply here:

x = X cos(α)− Y sin(α) and y = X sin(α) + Y cos(α).

If we focus only on the second-order terms in the curve defined by (∗), namely Ax2+Bxy+Cy2.
Note that because we wish to eliminate xy, we don’t need to consider lower-order terms; of course
they are affected but for the purposes of the proof, they play no role. Using the rotation of axes
and expanding, we obtain the following expression where we don’t care about the coefficients of
X2 and Y 2 (hence why we label them a and c respectively):

Ax2 +Bxy + Cy2 = aX2 +
(
−2A sinα cosα+B(cos2 α− sin2 α) + 2C cosα sinα

)
XY + cY 2.

This tells us that in order to eliminate the XY -term, we must choose the angle α such that

−2A sin(α) cos(α) +B(cos2 α− sin2 α) + 2C cos(α) sin(α) = 0

⇒ 2(C −A) sin(α) cos(α) +B(cos2 α− sin2 α) = 0

⇒ (C −A) sin(2α) +B cos(2α) = 0

⇒ sin(2α)

cos(2α)
=

B

A− C
,

as we want. However, in the case that cos(2α) = 0, we have sin(2α) ̸= 0. Because we assume
that A ̸= C, there are no solutions with cos(2α) and thus we can eliminate the XY -term again
by choosing α such that the above is satisfied.

Note: If A = C in (∗), we can eliminate the xy-term simply by a rotation through α = π/4.
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5 Curves in Polar Coordinates

Note:We use the convention that r < 0 means we rotate by an angle of θ+π anti-clockwise.

5.1 Straight Lines in Polar Coordinates

Theorem 5.1.1 Let L be a line at distance d > 0 from O and suppose the perpendicular
from O to L meets the polar line at an angle α. Then, the equation of L is

r cos(θ − α) = d.

Proof : Let Z be the foot of the perpendicular from O to L. If P is an arbitrary point on the line
L with polar coordinates [r, θ], then the coordinates with respect to the polar axis (that contains
the line segment) OZ are [r, θ − α]. This situation is pictured in the below diagram.

L

X

Z

P

O

r

α

θ
−
α

Thus, the Cartesian coordinates of P with respect to the OZ-axis are
(
r cos(θ − α), r sin(θ − α)

)
.

Because L consists of the points whose first coordinate in this system is d, this means that

r cos(θ − α) = d.

Remark If r < 0 and r cos(θ − α) = d, then the point [r, θ] is plotted at [−r, θ−α+π]. You may
wonder if when we restrict to r ≥ 0 we are missing some points on our line, but this is not the
case. Indeed, we do not get any new points when r < 0 and this is made clear by the following:

(−r) cos(θ − α+ π) = r cos(θ − α) = d.

5.2 Conics in Polar Coordinates

Theorem 5.2.1 Consider a conic of eccentricity e, directrix L and focus F at a distance
d > 0 away from L. Then, the equation of the conic in polar coordinates is

r(1− e cos θ) = ed.
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Proof : Suppose first that r ≥ 0 and let P = [r, θ] be a point in polar coordinates on the conic.
Then, PF = r and dist(P,L) = |d+ r cos θ|. Hence, the equation of the conic is

PF = e dist(P,L) ⇔ r = e|d+ r cos θ|.

We can re-write this as r = ±e(d+ r cos θ) = r(±1− e cos θ) = ed, were this holds because r ≥ 0.
Consider now the curve r(1− e cos θ) = ed and allow r < 0 as well as r ≥ 0. If [r, θ] is a solution
to this equation with r < 0, we can define s := −r > 0 and φ := θ + π. Then, notice that

s(−1− e cosφ) = −r
(
−1− e cos(θ + π)

)
= r(1− e cos θ)

= ed.

This explains the presence of the ± in the equation we wrote in the above paragraph. Hence,
it follows that the equation of the conic is r(1 − e cos θ) = ed where we now included r < 0
values.

5.3 Sketching Curves in Polar Coordinates

Definition A cardioid is the curve r = a(1 + cos θ) for 0 ≤ θ < 2π and a > 0.

O

2a

Figure 19: A sketch of a cardioid.

Definition A rose is either r = a sin(nθ) or r = a cos(nθ) for 0 ≤ θ < 2π, a ̸= 0 and n ∈ Z.

a

Figure 20: A sketch of the rose r = a sin(nθ) for even n.

Note: If n is even, the rose curve has 2n petals and if n is odd, the curve has only n petals.
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Definition The Archimedean spiral is the curve r = θ where θ ≥ 0.

The branches of the Archimedean spiral are a fixed distance of 2π apart, meaning that if [r, θ]
lies on the curve, then so too does the point [r + 2π, θ].

O

2π 4π 6π 8π

Figure 21: A sketch of the Archimedean spiral.

Definition The logarithmic spiral is the curve r = eθ where θ ≥ 0.

If the logarithmic spiral is scaled down by e2π, then the curve appears unchanged; this is a
so-called fractal property of this curve. In other words, if [r, θ] lies on the curve, then so too does
the point [re−2π, θ]. Furthermore, as r → 0, we have θ → −∞. But there is no value of θ for
which r = 0; the curve nears the pole and winds tighter and tighter around it.

O

Figure 22: A sketch of the logarithmic spiral.

Method – Sketching Polar Curves: Suppose we want to sketch some polar equation.
(i) Try converting to Cartesian coordinates to see if it is easy to sketch there.
(ii) Consider r ≥ 0 separately to r < 0 in order to simplify things.
(iii) Look for periodicity; this allows us to sketch part of the curve and then just rotate

it to get a sketch of the entire curve.
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6 Classification of Conics

6.1 Introduction

Reminder: A two-variable degree one curve has the form ax+by+c = 0 for some a, b, c ∈ R.

Recall that a degree one curve in two variables defines a straight line, except in the degenerate
case where a = b = 0, in which there are two possibilities:

� If c = 0, then 0x+ 0y + c = 0 is satisfied by the entire plane, i.e. the curve is R2.

� If c ̸= 0, then 0x+ 0y + c = 0 is satisfied by no point in the plane, i.e. the curve is ∅.

6.2 Classification via the Discriminant

Theorem 6.2.1 Consider the curve defined by (∗) and suppose we apply a rotation of axes
by α so that the equation of the conic transforms into

aX2 + bXY + cY 2 + dX + eY + f = 0

for some a, b, c, d, e, f ∈ R possibly different from A,B,C,D,E, F ∈ R respectively. Then,
the discriminant B2 − 4AC of the conic remains unchanged, that is

b2 − 4ac = B2 − 4AC.

Proof : Recall the rotation of axes formulae from Corollary 4.3.2, which again apply here:

x = X cos(α)− Y sin(α) and y = X sin(α) + Y cos(α).

Note that we want to compute the discriminant, which requires only the coefficients of the
second-order terms. Therefore, substituting the rotation of axes formulae into (∗) as we did in
the proof of Lemma 4.4.1, the second-order terms we obtain are

A(X cosα− Y sinα)2 +B(X cosα− Y sinα)(X sinα+ Y cosα) + C(X sinα+ Y cosα)2,

which we can expand and simplify so it has the form aX2 + bXY + cY 2, where

a = A cos2(α) +B sin(α) cos(α) + C sin2(α),

b = 2(C −A) sin(α) cos(α) +B(cos2 α− sin2 α),

c = A sin2(α)−B sin(α) cos(α) + C cos2(α).

It remains to simply compute the discriminant; after some calculations, we obtain this:

b2 − 4ac = (B2 − 4AC)(sin4 α+ 2 sin2 α cos2 α+ cos4 α)

= (B2 − 4AC)(sin2 α+ cos2 α)2

= B2 − 4AC.
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Note: In the degenerate case where B = 0 in (∗), we have the following types of curve:

Circle: x2 + y2 = 1.

Point: x2 + y2 = 0.

Empty Set: x2 + y2 = −1.

Parallel Lines: x2 = 1.

One Line: x2 = 0.

Empty Set: x2 = −1.

Intersecting Lines: x2 − y2 = 0.

The first three are degenerate ellipses, the next three parabolas and the last a hyperbola.

Proposition 6.2.2 Consider the curve defined by (∗) where B = 0, that is

Ax2 + Cy2 +Dx+ Ey + F = 0

with the extra assumption that A and C are not both zero. Then, we have the following:
(i) The curve is an ellipse if A and C have the same sign.
(ii) The curve is a hyperbola if A and C have opposite signs.
(iii) The curve is a parabola if one of A and C is zero.

Proof : Assume first that A,C ̸= 0. We can complete the square in both x and y to obtain

A(x+ P )2 + C(y +Q)2 = R

for some P,Q,R ∈ R. If we make the change of coordinates X = x + P and Y = y + P , the
equation of the curve above becomes AX2 + CY 2 = R. We now have the following cases.

� Suppose A and C have the same sign. We assume (multiplying through by −1 if necessary)
that A,C > 0. If R < 0, we obtain the empty set. If R = 0, we obtain a single point. If
R > 0 and A = C, we obtain a circle. Otherwise, we obtain a standard ellipse.

� Suppose A and C have opposite signs. If R = 0, we obtain two intersecting lines. Otherwise,
we obtain a standard hyperbola.

The final case is to assume that one of A = 0 and C = 0, with the other being non-zero.

� If A = 0 and C ̸= 0, we can complete the square in y and divide through by C to obtain

Y 2 = PX +Q

for some P,Q ∈ R. If P = 0 and Q < 0, we obtain the empty set. If P = 0 and Q = 0, we
obtain one line. If P = 0 and Q > 0, we obtain two parallel lines. Otherwise, if P ̸= 0, we
obtain a standard hyperbola.

� If A ̸= 0 and C = 0, we can argue identically to the above.
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Theorem 6.2.3 (Classification of Conics) Any equation of the form (∗) with at least one of
A,B,C being non-zero describes a (possibly degenerate) conic.
(i) If the discriminant B2 − 4AC < 0, the conic is an ellipse.
(ii) If the discriminant B2 − 4AC = 0, the conic is a parabola.
(iii) If the discriminant B2 − 4AC > 0, the conic is a hyperbola.

Proof : By Lemma 4.4.1, we can rotate the axes so that the mixed second-order term disappears,
producing for us the equation aX2 + cY 2 + dX + eY + f = 0. If a = c = 0, we know there can
be no second-order terms since X and Y are linear in x and y, a contradiction. Therefore, a and
c are not both zero. By Theorem 6.2.1, the discriminant is invariant under a rotation of axes,
so the result follows from Proposition 6.2.2.
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7 Three-Dimensional Geometry

7.1 Introduction

In three dimensions, we require an additional axis compared to the usual situation of a plane.
Indeed, here we introduce the z-axis. In this way, a point in three-dimensional space can be
described in Cartesian coordinates as a triple of real numbers; this is analogous to how a point
in the plane is a pair of real numbers.

Note: Three-dimensional space, as a set, is R3 = R× R× R = {(x, y, z) : x, y, z ∈ R}.

An element of R3 can be thought of either as a point or a vector; we use both throughout.

7.2 Parametric Equation of a Line

Definition 7.2.1 A line in R3 is a subset consisting of (x, y, z) where, for some t ∈ R,

(x, y, z) = (x0, y0, z0) + t(u, v, w).

Here, (x0, y0, z0) is a fixed point in R3 and the vector (u, v, w) is the direction of the line.
We call t the parameter and the whole expression above the parametric equation of a line.

Notation We sometimes use the following notation for the parametric equation of a line:

X = X0 + tU,

where X = (x, y, z), X0 = (x0, y0, z0) is the fixed point and U = (u, v, w) is the direction vector.

Lemma 7.2.2 Let X0 = (x0, y0, z0) and X1 = (x1, y1, z1) be distinct points in R3. Then,
the line through X0 and X1 is given by

X = X0 + t(X1 −X0).

Proof : By Definition 7.2.1, the line has the form X = X0 + sU where s ∈ R is the parameter
and U is the direction vector. Since X1 lies on the line, there is a value s = s′ such that

X1 = X0 + s′U.

Since X0 and X1 are distinct, we know that s′ ̸= 0. This allows us to rearrange this to get

U =
1

s′
(X1 −X0).

Hence, substituting this and setting t := s/s′, we get X = X0 + t(X1 −X0) as expected.
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7.3 Implicit Equation of a Plane

Definition 7.3.1 A plane in R3 is a set of points (x, y, z) that satisfy the equation

ax+ by + cz = d

for some a, b, c, d ∈ R where a, b, c are not all zero.

Remark Like with some of the degenerate cases we have seen before, note that if a = b = c = 0,
the above equation describes the whole space R3 when d = 0, and the empty set ∅ when d ̸= 0.

Method – Equation of a Plane: Suppose we have three specified points and we wish to
determine the equation of the plane that contains all of these points. Then, we simply
substitute each of the points (x, y, z) into the equation ax + by + cz = d and then solve
the resulting simultaneous equations for a, b, c, d ∈ R.

Note: For all k ̸= 0, ax+ by + cz = d and kax+ kby + kcz = kd define the same plane.

7.4 Distance, Angles and the Dot Product

Definition 7.4.1 The distance between two points X0 and X1 is the length of the line
segment between them, which we denote by dist(X0, X1) or d(X0, X1) or |X1 −X0|.

Notation If X0 = O = (0, 0, 0) is the origin, the distance between X0 and X1 is written |X1|.

Theorem 7.4.2 Let X0 = (x0, y0, z0) and X1 = (x1, y1, z1) be points in R3. Then,

|X1 −X0| =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2.

Proof : Let X0 = (0, 0, 0) for the moment; the general case is similar. In this situation, we must
show the distance to the origin is |X1| =

√
x21 + y21 + z21 . Now, consider the following diagram.

y

x

z

O

X1

X2X3

|X1|

z1

|X2|x1

y1
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Here, we have defined some new points X2 := (x1, y1, 0) and X3 := (x1, 0, 0) (the sketch applies
when x1, y1, z1 > 0 but similar drawings can be made for the other situations). Because OX1X2

and OX2X3 are each right-angled triangles, Pythagoras’ Theorem implies

|X1|2 = |X2|2 + z21 and |X2|2 = x21 + y21.

Substituting the second into the first and taking the square root gives the result.

Definition 7.4.3 The dot (or scalar) product of X0 = (x0, y0, z0) and X1 = (x1, y1, z1) is

X0 ·X1 := x0x1 + y0y1 + z0z1.

Lemma 7.4.5 These properties of the dot product hold for any vectors X0, X1, X2 in R3:
(i) X0 ·X0 = |X0|2.
(ii) (−X0) ·X1 = −(X0 ·X1) = X0 · (−X1). (Homogeneity)
(iii) X0 ·X1 = X1 ·X0. (Commutativity)
(iv) (X0 +X1) ·X2 = (X0 ·X2) + (X1 ·X2). (Distributivity)

Sketch of Proof : (i) Recall that the magnitude |X0| =
√

x20 + y20 + z20 by Theorem 7.4.2. If we
square this, it gives us precisely x20 + y20 + z20 , which is just Definition 7.4.3 with X2 = X1.

(ii) Just apply the definition with X0 = (x0, y0, z0) and X1 = (x1, y1, z1).

(iii) This follows from the fact that multiplication of two real numbers is commutative.

(iv) Just apply the definition with X0 = (x0, y0, z0), X1 = (x1, y1, z1) and X2 = (x2, y2, z2).

Theorem 7.4.6 Let X0 and X1 be points in R3 distinct from the origin and θ be the angle
between the line segments OX0 and OX1, meaning that 0 ≤ θ < π. Then,

X0 ·X1 = |X0||X1| cos(θ).

Proof : Let a be the vector OX0 and b be the vector OX1. This means the vector X0X1 is
defined as c = b − a. If a and b are parallel, meaning a = kb for some non-zero k ∈ R, the
result is immediate since θ = 0. Otherwise, we turn to the set-up pictured below.

O

X0

X1

a

b

c

θ
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If we apply the Cosine Rule (Theorem 1.15.1) to triangle OX0X1, we see that

|a|2 + |b|2 − 2|a||b| cos(θ) = |c|2

= |b− a|2

= (b− a) · (b− a)

= b · (b− a)− a · (b− a)

= (b · b)− (b · a)− (a · b) + (a · a)
= |a|2 − 2(a · b) + |b|2,

where we use the properties in Lemma 7.4.5. Consequently, we can rearrange this to get

a · b = |a||b| cos(θ).

All that remains is to note that we can alternatively denote a = X0 and b = X1.

Note: If instead X0 and X1 are vectors (not just points), then the angle between them
is still defined as the angle between OX0 and OX1 where we regard X0 and X1 here as
points. This is a technicality; we often not distinguish between points and vectors in R3.

Definition 7.4.7 Two vectors X0 and X1 are orthogonal if their dot product X0 ·X1 = 0.

Remark 7.4.8 By Theorem 7.4.6, two non-zero vectors are orthogonal if and only if the angle
between them is θ = π/2. Be careful when calculating dot products: if we have X0 · X1 = k,
then we cannot write something like X0 = k/X1. This is because it doesn’t make sense to divide
a number by a vector; the dot product is not multiplication, but a special type of operation.

Method – Angle Between Vectors: Let us find the angle between the vectors U and V .
(i) Compute their dot product U · V and their magnitudes |U | and |V |.
(ii) Substitute these into Theorem 7.4.6.
(iii) Rearrange and apply cos−1 to obtain the angle θ between U and V .

7.5 Angle Between Two Lines

Definition 7.5.1 Let X = X0 + tU0 and X = X1 + tU1 be parametric equations of two
lines in R3. The angle between the lines is the angle between direction vectors U0 and U1.

Method – Angle Between Lines: To find the angle between two lines, just apply the
above method for the direction vectors; this is immediate from Definition 7.5.1.

Remark There are two angles between a pair of lines, namely θ and π − θ. However, we will
always take θ as the angle given in the parametric form as i Definition 7.5.1. For −1 ≤ a ≤ 1,
we also adopt the convention that cos−1(a) is the unique number 0 ≤ θ ≤ π where cos(θ) = a.
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7.6 The Cross Product

Definition 7.6.1 The cross (or vector) product of A = (a1, a2, a3) and B = (b1, b2, b3) is

A×B := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Remark 7.6.2 We can ‘build’ R3 from the vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) in
the sense that any (x, y, z) ∈ R3 can be written as xi + yj + zk. This is an example of a set of
so-called basis vectors. This particular set is called the standard basis of R3. Using these, we can
re-write the cross product as a matrix determinant (if you haven’t seen this yet, don’t worry):

A×B =

∣∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ .

Note: The so-called “right-hand rule” tells us in which way the cross product will point.
Indeed, point your thumb upwards and extend your index finger forwards and middle
finder to the left. If those fingers represent A and B, your thumb represents A×B.

Remark 7.6.4 Notice that the dot product is also called the scalar product (because it produces
a scalar) and, similarly, the cross product is called the vector product (since it produces a vector).

Theorem 7.6.5 These properties of the cross product hold for any vectors A,B in R3:
(i) A · (A×B) = 0.
(ii) B · (A×B) = 0.
(iii) A×B = −B ×A.
(iv) |A×B|2 = |A|2|B|2 − (A ·B)2.

Sketch of Proof : Simply use the formula in Definition 7.6.1 (and Definition 7.4.3).

Remark 7.6.6 In words, Theorem 7.6.5(i) and (ii) tell use that A × B is orthogonal to both A
and B (as is suggested by the “right-hand rule”). More over, we immediately see from Theorem
7.6.5(iii) that A × A = (0, 0, 0). This generalises to a slightly stronger statement: the cross
product of two parallel vectors is zero, meaning A× (λA) = (0, 0, 0) for any λ ∈ R.

Proposition 7.6.7 Let A and B be vectors in R3 and θ be the angle between them. Then,

|A×B| = |A||B| sin(θ).

Proof : From Theorem 7.6.5(iv) combined with Theorem 7.4.6, we see that

|A×B|2 = |A|2|B|2 − (A ·B)2 = |A|2|B|2 − |A|2|B|2 cos2(θ) = |A|2|B|2 sin2(θ).

Finally, we can take the square root since sin(θ) ≥ 0 since we assume 0 ≤ θ ≤ π.
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7.7 A Better Way to Find the Equation of a Plane

Definition 7.7.1 A normal vector to the a is a non-zero vector N which is orthogonal to
every vector in the plane, meaning N · (P1−P2) = 0 for any points P1 and P2 in the plane.

Lemma 7.7.2 If a plane is given by ax+ by+ cz = d with a, b, c not all zero, then (a, b, c)
is a normal vector to the plane.

Proof : Let N = (a, b, c), meaning the equation of the plane is N · P = d where P = (x, y, z) is a
general point. If P1 and P2 are two points in the plane, we know that N ·P1 = d and N ·P2 = d.
Subtracting the second from the first tells us N · (P1−P2) = 0. Hence, N is a normal vector.

Theorem 7.7.3 Let P1, P2 and P3 be distinct points in a plane that are not collinear.
Then, any normal vector N to the plane is a non-zero multiple of the vector

(P2 − P1)× (P3 − P1).

Proof : Since the points are distinct, we know that P2 − P1 and P3 − P1 are non-zero. Because
the points are not collinear, the angle between the vectors is not 0 nor π. If we now define
M := (P2 −P1)× (P3 −P1), we know from Theorem 7.6.5 that M is orthogonal to both P2 −P1

and P3 − P1. But by Definition 7.7.1, we have N · (P2 − P1) = 0 and N · P3 − P1 = 0. Thus, N
will also be proportional to M .

Method – Equation of a Plane: Suppose we have three specified points P1, P2 and P3

and we wish to determine the equation of the plane that contains all of these points.
(i) Subtract one of the vectors from each of the others, e.g. P2 − P1 and P3 − P1.
(ii) Use the formula in Definition 7.6.1 to compute (P2 − P1)× (P3 − P1) = (a, b, c).
(iii) Substitute one of the points into ax+ by + cz = d to compute d.
(iv) If necessary, divide through by hcf(a, b, c, d) to get it in the simplest form.

Note: To find the angle θ between a line and plane that intersect, simply compute the
angle α between the line’s direction vector and the plane’s normal vector as discussed
earlier and then subtract it from π/2. This can be pictured in Figure 23 below.

N

α

θ

L

Figure 23: Finding the angle between a line L and a plane.
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8 Polyhedra

8.1 Introduction

Definition 8.1.1 A polygon is a cyclic path in the plane consisting of line segments with
no self-intersections and where no two successive line segments are parallel. Such a line
segment is called an edge and the place where two successive line segments meet is called
a vertex. If there are n edges, we call the shape an n-gon.

Definition A polygon is called convex if the line segment between any two points on its
edges lies within the interior of the polygon.

(a) A convex polygon. (b) A non-convex polygon.

Figure 24: Convexity of some n-gons.

Theorem 8.1.2 The interior angles of a convex n-gon sum to (n− 2)π.

Proof : Let X be a point in the interior of the n-gon and draw line segments from X to each of
the vertices of the polygon; this divides the polygon into n triangles. We know from Proposition
1.10.5 that the sum of the angles in each triangle is π. But this is also equal to the sum S of the
interior angles and the sum of the angles around X. In other words,

S + 2π = nπ ⇒ S = (n− 2)π.

Note: It turns out Theorem 8.1.2 holds for non-convex polygons (but we don’t need this).

Definition 8.1.3 A polygon is called regular if both of the following hold true:
(i) All sides are the same length.
(ii) All interior angles are equal.

Theorem 8.1.4 A single interior angle of a regular n-gon is equal to n−2
n π.

Proof : Let α be an interior angle. By Theorem 8.1.2, we have nα = (n−2)π and so α = n−2
n π.

56



8.2 Platonic Solids

Definition 8.2.1 A polyhedron is a closed figure in three-dimensional space with a boundary
consisting of a finite number of (non-parallel) polygons. We call each of these polygons
a face, and still use “vertex” and “edge” in the way introduced in Definition 8.1.1. The
intersection of any two faces must either be a common vertex, a common edge or empty.

Figure 25: An example of a polyhedron built from eight triangles (3-gons).

Definition 8.2.2 A polyhedron is called convex if the line segment between any two points
on its boundary lies within the inside of the polyhedron.

Definition 8.2.3 A polyhedron is called regular if both of the following hold true:
(i) All faces are pairwise congruent regular polygons.
(ii) The number of faces meeting each vertex is the same.

We can classify all polyhedrons that are both convex and regular just be counting certain things.

Theorem 8.2.4 There are only five Platonic solids (polyhedra that are convex and regular),
which are described in the below table where v is the total number of vertices, e is the total
number of edges, f is the total number of faces, p is the number of edges on each face and
q is the number of faces meeting each vertex:

v e f p q

Tetrahedron 4 6 4 3 3

Cube 8 12 6 4 3

Octahedron 6 12 8 3 4

Dodecahedron 20 30 12 5 3

Icosahedron 12 30 20 3 5
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Proof : The idea here is to find a numerical condition that all Platonic solids must satisfy; we
then go through all possibilities satisfying this condition. Indeed, suppose that the faces are
p-gons and q of them meet at each vertex. Because the polyhedron is convex, the angles at a
vertex sum to less than 2π. Note each of the angles is equal to p−2

p π by Theorem 8.1.4. Hence,(
p− 2

p
π

)
q < 2π

⇔ (p− 2)q < 2p

⇔ pq − 2q − 2p < 0

⇒ pq − 2q − 2p+ 4 < 4

⇔ (p− 2)(q − 2) < 4.

This tells us we must have that (p − 2)(q − 2) ∈ {1, 2, 3}, but p, q ≥ 3 are positive integers so
there are not too many possibilities that need to be considered.

(i) If (p− 2)(q− 2) = 1, this means that p− 2 = q− 2 = 1 and thus p = q = 3. In other words,
we have equilateral triangles with three at a vertex. This forms a tetrahedron.

(ii) If (p− 2)(q − 2) = 2, there are two possibilities:

� p− 2 = 2 and q − 2 = 1, meaning p = 4 and q = 3. This forms a cube.

� p− 2 = 1 and q − 2 = 2, meaning p = 3 and q = 4. This forms an octahedron.

(iii) If (p− 2)(q − 2) = 3, there are two possibilities:

� p− 2 = 3 and q − 2 = 1, meaning p = 5 and q = 3. This forms a dodecahedron.

� p− 2 = 1 and q − 2 = 3, meaning p = 3 and q = 5. This forms an icosahedron.

8.3 Euler’s Formula

Theorem 8.3.1 (Euler’s Formula) If we have a polyhedron that deforms into a sphere, then

v − e+ f = 2,

where v is the number of vertices, e is the number of edges and f is the number of faces.

Proof : (Non-examinable) Suppose we construct a polyhedron one face at the time. The key
idea is that we can do this in such a way that whenever we add a new face, it is glued to the
old faces along a chain of consecutive edges. Suppose vk and ek are the respective numbers of
vertices and edges after adding the kth face. We will consider ek − vk.

If the first face is an n-gon, it has n vertices and n edges, then e1 − v1 = 0. Whenever we add
a face (other than the last one), we join it with the precious faces along a chain of consecutive
edges; this adds a new chain of edges. Hence, the number of edges added is one more than the
number of vertices. This means for 2 ≤ k ≤ f − 1, we have

ek − vk = ek−1 − vk−1 + 1.
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It follows that ef−1 − vf−1 = f − 2. But for the final face, we add no new edges or vertices,
meaning ef − vf = f − 2. But since vf = v and ef = e, this rearranges to give the result.

Note: The part in Euler’s Formula where we impose that our polyhedron must deform
into a sphere is necessary to exclude some strange examples with ‘holes’. One such case
of a polyhedron which does not deform into a sphere is that of a toroid as drawn below.

59


	Elementary Plane Geometry
	Coordinate Geometry
	Conic Sections
	Polar Coordinates and Axis Rotation
	Curves in Polar Coordinates
	Classification of Conics
	Three-Dimensional Geometry
	Polyhedra

