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1 General Systems of Linear Equations

1.1 Introduction to Linear Algebra?

Definition 1.1.1 The general system of m linear equations in n unknowns is

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2,

...

ai1x1 + ai2x2 + · · · + aijxj + · · · + ainxn = bi,

...

am1x1 + am2x2 + · · · + amjxj + · · · + amnxn = bm,

where aij and bj are real numbers for all integers 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition A solution to the system in Definition 1.1.1 is an n-tuple (x1, ..., xn) = (c1, ..., cn)
of real numbers such that every one of the m equations is satisfied.

1.2 Different Solution Possibilities

Note: There are three possibilities which can happen in general for a system of equations:
� There are no solutions.
� There is one unique solution.
� There are infinitely-many solutions.

1.3 Introducing Matrices

Definition 1.3.1 An m× n matrix is an array of numbers in m rows and n columns, i.e.
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Remark It is important to note that the first number m is always the number of rows, and the
second number n is always the number of columns. Furthermore, we use the shorthand notation
A = (aij) to mean the matrix whose entries are aij .
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Definition The coefficient matrix of a system of equations as in Definition 1.1.1 is the matrix
A = (aij) whose entries are the coefficients of the x-variables. Then, the augmented matrix
representing the system is the coefficient matrix with the column of constants b:

(A | b) =


a11 · · · a1m b1
a21 · · · a2m b2
...

. . .
...

...
am1 · · · amn bn

 .

1.4 Reduction by Elementary Row Operations to Echelon Form

Definition 1.4.1 An elementary row operation on an m× n matrix is one of the following:
(i) Adding and subtracting one row to/from another, e.g. R1 7→ R1− 3R2.
(ii) Multiplying a row by a constant, e.g. R3 7→ 2R3.
(iii) Swapping two rows, e.g. R2 ↔ R4.

Note: We write the symbol ∼ between matrices when we apply elementary row operations.

1.5 Row Echelon Form and Reduced Row Echelon Form

Definition 1.5.1 An m× n matrix is in row echelon form (REF) if these are true:
(i) Any all-zero rows are at the bottom of the matrix.
(ii) The first non-zero entry in each row is 1, called a leading one.
(iii) The leading one of a non-zero row is to the right of any leading one in rows above.

Definition An m× n matrix is in reduced row echelon form (RREF) if these are true:
(i) The matrix is in row echelon form (i.e. all conditions in Definition 1.5.1 are satisfied).
(ii) In each column containing a leading one, every other entry is zero.

1.6 An Algorithm for Reducing a Matrix to REF or RREF

Method – Gaussian Elimination: We can find a REF of a matrix A as follows:
(i) Find the first non-zero column.

� If the first non-zero entry is in R1, move to Step (ii).
� If the first non-zero entry is not in R1, swap the top row with the row containing
the first non-zero entry.

(ii) Multiply R1 by a constant so that the non-zero entry becomes 1.
(iii) Clear below it by adding/subtracting multiples of R1 to/from the other rows.
(iv) Fix this row and repeat Steps (i)-(iii) with those below, until all rows are covered.
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Note: Some mathematicians do not distinguish between Gaussian elimination and Gauss-
Jordan elimination (e.g. in this module). However, be aware that some people use these
names to mean different things: Gaussian for REF and Gauss-Jordan for RREF.

Method – Gauss-Jordan Elimination: We can find the RREF of a matrix A as follows:
(i) Transform A into a REF by applying the above method.
(ii) Starting at the rightmost column with a leading entry, clear above it.
(iii) Repeat Step (ii) by moving right-to-left through the leading entries.

Remark There isn’t a unique row echelon form for a general matrix. However, the reduced row
echelon form is unique. This is why we refer to them as “a REF” and “the RREF”.

1.7 Summary of the Matrix Method of Solving Systems of Linear Equations

Method – Solving Systems of Linear Equations:We can solve a system of linear equations
by applying the following procedure:
(i) Replace the equations by the augmented matrix (A | b).
(ii) Transform the left part of the augmented matrix, A, into REF.

[Note: Optionally, we can continue on to transform A into RREF.]
(iii) Read the solutions, or lack thereof, directly from the (R)REF.

Note: Suppose we write our system of equations as an augmented matrix, in its RREF.
� If there are as many leading ones as there are columns, we have a unique solution.
� If there are less leading ones as there are columns, then the variables corresponding
to the columns without said leading ones are free; this means they can be any real
number. This means there are infinitely-many solutions.

� If there is a row with zeros to the left of the augmented column but with a non-zero
in the augmented column, then there is no solution.

Remark We can do an identical process even if the coefficients of our system of linear equations
themselves includes some variables, e.g. a system like 3x+ ky = 4 and x− 2ky = −8.

1.9 Common Mistakes

These are some common mistakes encountered when performing row operations:

� Doing too many row operations at once.

� Using the wrong row to put the matrix into RREF.

� Getting the sign wrong of the coefficient of free variables.

Note: The best way to avoid these mistakes is to take your time and check your answers.
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2 Matrices and Matrix Algebras

2.1 Equality

Definition 2.1.1 Two matrices A = (aij) of size m×n and B = (bij) of size r× s are equal
if m = r, n = s and aij = bij for all i and j.

2.2 Addition

Definition 2.2.1 Let A = (aij) and B = (bij) be matrices of the same size m × n. Their
sum is the m× n matrix A+B = (aij + bij), that is we add the entries component-wise.

Note: The addition of two matrices is not defined if they are of different sizes.

Lemma Matrix addition is associative, that is for three matrices A,B,C of the same size,

(A+B) + C = A+ (B + C).

2.3 Scalar Multiplication

Definition 2.3.2 Let A = (aij) be an m×n matrix and k ∈ R. The scalar multiplication of
A by the number k is the matrix kA = (kaij), that is we multiply each entry by k.

2.4 Matrix Multiplication

Definition 2.4.2 Let A = (aik) be an m×n matrix and B = (bkj) be an n×p matrix. The
matrix multiplication of A and B is the matrix AB = (cij), where the entries are given by

cij =
n∑

k=1

aikbkj .

Remark So, cij is found by adding the multiplies of the ith row of A and the jth column of B.

Note:Notice in Definition 2.4.2 that matrix multiplication is only defined when the number
of rows of the first matrix is equal to the number of columns of the second.

Remark 2.4.3 We use boldface letters to denote vectors when typed, and underlined letters to
denote vectors when written by-hand, e.g. x and x are the same vector.
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Note: It is helpful to think of a column vector with n entries as an n× 1 matrix.

Proposition Matrix multiplication is not commutative in general, that is for matrices A,B,

AB ̸= BA,

assuming that each of these matrix multiplications is well-defined.

Definition 2.4.5 An m× n matrix A is square if m = n, meaning it is of size n× n.

Lemma Let A and B be matrices such that AB = BA. Then, A and B are both square.

Proof : Let A be an m × n matrix and B be an r × s matrix. Because AB is well-defined, we
know that n = r. Similarly, because BA is well-defined, we know that m = s. However, AB is a
matrix of size m× s and BA is a matrix of size r×n. Therefore, the equality AB = BA implies
that these are the same size, and thus m = n = r = s.

Definition 2.4.7 Let A = (aij) be an m×n matrix. The transpose is the matrix AT = (aji),
that is the n×m matrix obtained by interchanging the rows and columns.

Remark 2.4.9 Let x and y be vectors of the same size, say n. Recall that the dot product is the
number x ·y = x1y1+ · · ·+xnyn. We can re-write the dot product as this matrix multiplication:

x · y = xTy.

Proposition 2.4.10 For A an m× n matrix and B an n× p matrix, we have

(AB)T = BTAT .

Proof : Let A = (aik) and B = (bkj). From Definition 2.4.2, we know that the ijth entry of the
product AB is

∑n
k=1 aikbkj . Taking the transposition swaps rows and columns (i and j) to give

n∑
k=1

ajkbki.

Via similar reasoning, the ijth entry of BTAT is
∑n

k=1 b
′
ika

′
kj , where b′ik is the ikth entry of BT

and a′kj is the kj
th entry of AT . From Definition 2.4.7, we conclude that b′ik = bki and a′kj = ajk.

Substituting these into the formula for the ijth entry of BTAT produces the same sum as above:

n∑
k=1

bkiajk =
n∑

k=1

ajkbki.
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2.5 Identity Matrices and Inverses

Definition 2.5.1 The n×n identity matrix In is the matrix with ones on the main diagonal
and zeros everywhere else, i.e. In = (δij) with δij the so-called Kronecker delta function:

δij =

{
1, if i = j

0, if i ̸= j
.

Lemma Let A be an m× n matrix. Then, we have that

AIn = A = ImA.

Definition 2.5.2 Let A and B be two n×n matrices. If AB = In = BA, then we say that
A and B are multiplicative inverses of each other. We denote this by writing B = A−1.

Remark 2.5.3 Strictly speaking, we must show that AB = In and BA = In in order to conclude
that the two matrices are inverse to one another. However, it turns out that showing only one
of these is enough to guarantee the other.

Definition 2.5.6 Let A be a square matrix.
(i) If A has a multiplicative inverse, we call it invertible or non-singular.
(ii) If A doesn’t have a multiplicative inverse, we call it non-invertible or singular.

Theorem 2.5.9 Let A be an n× n matrix. If A is invertible, then its inverse is unique.

Proof : Assume that B and C are both inverses of A. By definition, we have that AB = In = BA
and that AC = In = CA. The goal is to show that B = C (that is the two inverses are actually
one in the same). Notice we have AB = AC (= In). If we multiply on the left by B, we obtain

BAB = BAC ⇒ InB = InC ⇒ B = C,

using the fact BA = In and that multiplying by In changes nothing via the above lemma.

Theorem 2.5.10 Let A and B be invertible n× n matrices. Then, the matrix product AB
is invertible, and has inverse (AB)−1 = B−1A−1.

Proof : It suffices to check that B−1A−1 is the inverse of AB (and we check both equalities):

(i) (AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In.

(ii) (B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In.

Consequently, the result follows from Definition 2.5.2.
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Corollary 2.5.11 Let A1, A2, ..., At be invertible n× n matrices. The product is such that

(A1A2 · · ·At)
−1 = A−1

t · · ·A−1
2 A−1

1 .

Proof : This is an induction argument following from Theorem 2.5.10. Indeed, the base case t = 1
is just Definition 2.5.2 and the less-trivial ‘second base’ case t = 2 is simply Theorem 2.5.10.
Now, assume the result holds for t = k. We must prove that, under this hypothesis, the result
holds for t = k + 1. Well,

(A1A2 · · ·AkAk+1)
−1 =

(
(A1A2 · · ·Ak)Ak+1

)−1

= A−1
k+1(A1A2 · · ·Ak)

−1

= A−1
k+1A

−1
k · · ·A−1

2 A−1
1 ,

using the previous theorem to get the second equality and using the induction hypothesis to get
the third equality. Hence, by mathematical induction, the result holds for every t ≥ 1.

Notation Let A be a matrix. We use the following notation, where k ≥ 1 is an integer:

� Ak = AA · · ·A, with A appearing k times in the product.

� A−k = A−1A−1 · · ·A−1, with A−1 appearing k times in the product.

Note: If A is invertible, so too is Ak by Corollary 2.5.11. Therefore, we can write this:

(Ak)−1 = A−k = (A−1)k.

Lemma 2.5.12 Let A be an invertible n× n matrix. Then, the transpose AT is invertible,
and has inverse (AT )−1 = (A−1)T .

Proof : By Proposition 2.4.10, we know that (AB)T = BTAT . Applying this result with B = A−1

tells us that (AA−1)T = (A−1)TAT , but we clearly see that the left-hand side of this is

(AA−1)T = In.

Combining these immediately implies that the inverse of AT is (A−1)T , as required.

2.7 Summary of the Method of Finding Matrix Inverses

Method – Finding the Inverse of a Matrix: To find the inverse of the n × n matrix A,
if it exists, we form the augmented matrix (A | In) and apply Gauss-Jordan elimination;
this will get it into the form (In | A−1), from which we can read-off the inverse matrix.
In the case that we get a zero row on the left of the vertical line during this process, we
conclude that A is not invertible.

8



Theorem 2.7.3 If an n×n matrix A has an all-zero row/column, then it is non-invertible.

Proof : Suppose A = (aij) has every entry in the mth row zero, i.e. amj = 0 for all 1 ≤ j ≤ n.
For any n×n matrix B = (bij), we know that the mjth entry in the product AB is the following:

n∑
k=1

amkbkj = 0,

because of the fact that amk = 0. Because this is true for any j, we know now that the entire
mth row of AB is zero. Consequently, AB can never equal the identity matrix In, a requirement
for A to have an inverse B. A similar argument works if instead the mth column of A is all-zero;
the mth column of BA will also be all-zero in this case.

2.8 Elementary Matrices

Definition 2.8.1 An elementary matrix is a matrix obtained by applying one single elemen-
tary row operation to the identity matrix In.

Proposition Let E be the elementary matrix corresponding to the elementary row operation
R. Applying R to some matrix A is equivalent to doing the matrix multiplication EA.

Note: Note that the elementary matrix appears on the left in the above proposition; if
we instead multiplied on the right, we would see that this actually corresponds to an
elementary column operation instead of a row operation.

Remark 2.8.7 Every elementary matrix is invertible. In fact, the inverse matrix is the elementary
matrix corresponding to doing the opposite row operation.

2.9 Why Our Method of Finding Matrix Inverses Works

Theorem 2.9.1 Let A be an n× n matrix. If its reduced row echelon form is the identity
matrix, then A is invertible. Furthermore, this implies that both A and A−1 are products
of elementary matrices.

Proof : We begin by forming the augmented matrix (A | In). Since the RREF of A is the identity,
we know that there is a finite sequence of row operations (corresponding to elementary matrices)
taking the left part to the identity. Indeed, suppose it takes k row operations to do this. Then,

Start: (A | In),
Row Operation 1: (E1A | E1In),

Row Operation 2: (E2E1A | E2E1In),
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...
...

Row Operation k: (Ek · · ·E2E1A | Ek · · ·E2E1In),

where we assumed that Ek · · ·E2E1A = In. In other words, this tells us thatA = (Ek · · ·E2E1)
−1.

Because each elementary matrix Ei is invertible, we know that their product is invertible by
Corollary 2.5.11. Consequently, we see that

A = E−1
1 E−1

2 · · ·E−1
k .

Ergo, we know that A is invertible by the same corollary and that its inverse is

A−1 = Ek · · ·E2E1.

In fact, the converse to Theorem 2.9.1 is true and we will state and prove this below.

Theorem 2.9.2 If A is an invertible n×n matrix, then its reduced row echelon form is In.

Proof : Assume to the contrary J ̸= In is the RREF of A and suppose E1, E2, ..., Ek is the
sequence of elementary matrices corresponding to the row operations taking A to its RREF, i.e.

Ek · · ·E2E1A = J.

Because J is in RREF which is not the identity, and as it is an n×n matrix, we know that there
are strictly less than n leading ones. As such, it contains an all-zero row. But by Theorem 2.7.3,
this means J is non-invertible. However, the left-hand side of the equation above is a product of
invertible matrices, so J is invertible; this is a contradiction.

Note: If we start with an augmented matrix (A | In) and, when doing row operations to
find the RREF of the left part A, if we end up with a non-identity matrix, we now know
from the contrapositive of Theorem 2.9.2 that A is non-invertible.

Theorem 2.9.4 Let A be an n×n matrix and b ∈ Rn be a column vector. Then, the linear
system Ax = b has a unique solution if and only if A is invertible.

Proof : (⇒) Assume that Ax = b has a unique solution. It must be that the RREF of A is
the identity matrix. If it was not, then the RREF would have strictly less than n leading ones,
implying either infinitely-many or no solutions. Hence, A is invertible by Theorem 2.9.1.

(⇐) Assume that A is invertible. Then, we can re-write the linear system Ax = b as follows:
A−1Ax = A−1b, which clearly tells us that a solution is x = A−1b. Suppose the system has
another solution Ay = b. The same trick implies y = A−1b = x, so uniqueness is proven.

Theorem 2.9.5 Let A be a non-invertible n× n matrix. Then, the matrix product AB is
non-invertible for any n× n matrix B.
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Proof : Let E1, E2, ..., Ek be the sequence of elementary matrices corresponding to the row oper-
ations taking A to its RREF J , that is Ek · · ·E2E1A = J. Because A is non-invertible, we know
from the contrapositive of Theorem 2.9.1 that J ̸= In. In particular, J contains at least one
all-zero row.

Now, the equation ABx = 0 has the same set of solutions as the equation E1ABx = E10 = 0,
which in turn has the same set of solutions as the equation E2E1ABx = E20 = 0, and so forth.
We can conclude that this equation has the same set of solutions as

Ek · · ·E2E1ABx = 0.

However, the left-hand side is precisely JBx; because J has an all-zero row, it follows that JB has
an all-zero row (and is therefore non-invertible) and thus there are infinitely-many solutions, by
Theorem 2.9.4. Hence, ABx = 0 has infinitely-many solutions, so AB is also non-invertible.

Note: In practice, one can find the inverse and get the unique solution x = A−1b (assuming
the matrix is invertible). However, it is often quicker to do the row reduction method.

2.10 Extra Material

We discuss when AB = AC implies B = C. Of course, if A is square and invertible, this holds
rather straightforwardly. However, if A is non-invertible, this may not be true. Well, the next
result tells us precisely when this cancellation is possible.

Theorem 2.10.2 Let A be an m × n matrix and B,C be two n × p matrices. Then,
AB = AC implies B = C if and only if Ax = 0 has a unique solution, namely x = 0.

Proof : Note first that x = 0 is always a solution to the system Ax = 0, meaning that it is never
inconsistent. Hence, there are either infinitely-many solutions or a unique solution.

(⇒) Suppose that AB = AC implies B = C. We take B = x ∈ Rn a column vector (n × 1
matrix) and C = 0 ∈ Rn the zero column vector. Then, substituting says that Ax = A0 = 0
implies that x = 0, as required.

(⇐) Suppose that Ax = 0 has the unique solution x = 0. Well, AB = AC is equivalent to
AB − AC = 0m×p, where 0m×p is the m × p matrix containing all-zeros. We can factorise the
left-hand side: A(B −C) = 0m×p. The matrix B −C is an n× p matrix with columns v1, ...,vp

(so the vi ∈ Rn are column vectors in their own right). Therefore, for each 1 ≤ i ≤ p, we have

A(B − C) = 0m×p ⇒ Avi = 0

⇒ vi = 0

⇒ B − C = 0n×p

⇒ B = C.
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3 Determinants

3.1 An Inductive Definition of the Determinant

Definition Let A be an m× n matrix. The ijth minor Aij is the (m− 1)× (n− 1) matrix
we obtain by deleting the ith row and the jth column from A.

Definition 3.1.1 Let A = (aij) be an n× n matrix. The determinant is the number

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j),

where we assume that the determinant of a 1× 1 matrix is simply its entry.

Remark We just need to pick a row and move along it, computing the minors at each step. We
then multiply each minor by the number in that position of the matrix and then do an alternating
sum (“plus, minus, plus, minus, etc.” or “ minus, plus, minus, plus, etc.”). In fact, the formula
above is the expansion along the first row, but really we could do it along any row, or indeed
down any column.

Note: Be careful with the definition of a minor if you read elsewhere; some authors use
the minor Aij to mean the determinant of a minor, not just the sub-matrix itself.

Notation 3.1.2 We can write the determinant of a matrix A either as det(A) or as |A|. Thus,

det


a11 · · · a1n
...

. . .
...

an1 · · · ann

 =

∣∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣∣ .

Note: Geometrically, the determinant of the matrix A tells us the volume of the paral-
lelepiped (the generalisation of a parallelogram to any number of dimensions) whose sides
are the vectors given by the rows of A.

3.2 Evaluating Determinants

Definition 3.2.1 Let A = (aij) be an n× n matrix.
(i) The diagonal entries aii form the so-called main diagonal.
(ii) A is upper triangular if all entries below the main diagonal are zero.
(iii) A is lower triangular if all entries above the main diagonal are zero.
(iv) A is triangular if it is either upper triangular or lower triangular.
(v) A is diagonal if all entries not on the main diagonal are zero.
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Lemma We have the following properties of the transpose:
(i) The transpose of an upper triangular matrix is lower triangular.
(ii) The transpose of a lower triangular matrix is upper triangular.
(iii) The transpose of a diagonal matrix is diagonal.

Theorem 3.2.5 (Properties of Determinants) Let A be an n× n matrix.
(i) Applying the row operation Ri ↔ Rj changes the determinant to −det(A).
(ii) Applying the row operation Ri 7→ kRi changes the determinant to k det(A).
(iii) Applying the row operation Ri 7→ Ri + kRj does not change the determinant.
(iv) If A is triangular, the determinant is the product of the main diagonal entries, i.e.

det(A) = a11a22 · · · ann.

Note: Using (ii) in Theorem 3.2.5, we see that for A an n×n matrix and a number k ∈ R,

det(kA) = kn det(A).

3.3 An Algorithm for Computing Determinants

Method – Finding the Determinant: Let A be an n× n matrix.
(i) If A is triangular, it is obvious. Otherwise, go to Step (ii).
(ii) If A is not triangular, perform a sequence of row operations to transform it to an

triangular matrix, which we now call A′.
(iii) Determine det(A′) by using Theorem 3.2.5(iv).
(iv) Compute the changes made to the determinant of A by performing the sequence of

row operations in Step (ii) by using Theorem 3.2.5(i)–(iii).
(v) Finally, we can write det(A) by dividing det(A′) by the number we find in Step (iii).

Remark 3.3.2 If, during the above process, it is clear that the triangular matrix we obtain will
have a zero on the main diagonal, we know immediately that det(A) = 0.

Theorem 3.3.5 Let A be an n× n matrix. If det(A) ̸= 0, then A is invertible.

Proof : If det(A) ̸= 0, then the (upper) triangular matrix formed from A during the above method
has no zeros on the main diagonal. Hence, a REF of A has leading ones down the main diagonal,
so its RREF will be the identity matrix. We know from Theorem 2.9.1 that this means A is
invertible.

Note: In fact, the converse to Theorem 3.3.5 is also true, and we will prove it a bit later.
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3.4 Proofs of Some of the Properties of Determinants

This section is used to prove Theorem 3.2.5(ii) and (iv). The proofs are non-examinable and
therefore are omitted, but there are some useful corollaries that should be known.

Corollary 3.4.2 If a matrix A has an all-zero row, then det(A) = 0.

Proof : If A has an all-zero row, then we can take zero as a common factor from that row. Hence,
Theorem 3.2.5(ii) implies that det(A) = 0 det(A) = 0.

Corollary 3.4.4 The determinant of the identity matrix det(In) = 1.

Proof : The identity matrix is diagonal. In particular, it is triangular. Hence, Theorem 3.2.5(iv)
applies, but each entry on the diagonal is one, so det(In) = 1n = 1.

3.5 Extra Material

This section is used to prove Theorem 3.2.5(i) and (iii). The proofs are non-examinable and
therefore are omitted, but is a useful corollary that should be known.

Corollary 3.5.3 If a matrix A has two identical rows, then det(A) = 0.

Proof : If we swap the two identical rows, A remains unchanged. Now, Theorem 3.2.5(iii) implies
that det(A) = −det(A), and the only way this equation is satisfied is if det(A) = 0.

3.6 The Determinant is Multiplicative

Theorem 3.6.1 For any matrix A and E an elementary matrix, det(EA) = det(E) det(A).

Proof : Recall that EA is the matrix obtained from A by applying the row operation encoded
by E. Therefore, the statement is proven if we simply consider the three different types of row
operation that E can describe. Indeed, this is a case-by-case proof.

(i) Suppose that E corresponds to Ri ↔ Rj . Then, we can conclude that

det(E) = −det(I), by Theorem 3.2.5(i),

= −1, by Corollary 3.4.4.

Theorem 3.2.5(i) also implies det(EA) = −det(A), and thus det(EA) = det(E) det(A).

(ii) Suppose that E corresponds to Ri 7→ kRi. Then, we can conclude that

det(E) = k det(I), by Theorem 3.2.5(ii),

= k, by Corollary 3.4.4.

Theorem 3.2.5(ii) also implies det(EA) = k det(A), and thus det(EA) = det(E) det(A).
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(iii) Suppose that E corresponds to Ri 7→ Ri + kRj . Then, we can conclude that

det(E) = det(I), by Theorem 3.2.5(iii),

= 1, by Corollary 3.4.4.

Theorem 3.2.5(iii) also implies det(EA) = det(A), and thus det(EA) = det(E) det(A).

Theorem 3.6.2 Let A be an n×n matrix. Then, A is invertible if and only if det(A) ̸= 0.

Proof : (⇒) Suppose A is invertible. Then, we know there is a sequence of elementary matrices
taking it to its RREF, namely Ek · · ·E2E1A = In by Theorem 2.9.2. We appeal to Corollary
3.4.4 to conclude that det(Ek · · ·E2E1A) = det(In) = 1. We then use Theorem 3.6.1 repeatedly
to conclude that det(Ek) · · · det(E2) det(E1) det(A) = 1. Since both sides are real numbers, we
must have that det(A) ̸= 0.

(⇐) This is Theorem 3.3.5.

Theorem 3.6.3 Let A and B be n× n matrices. Then, det(AB) = det(A) det(B).

Proof : If A is non-invertible, it follows that AB is non-invertible by Theorem 2.9.5. Hence, by
Theorem 3.6.2, we know that det(A) = 0 and det(AB) = 0, so the result holds true. On the other
hand, if A is invertible, we can write it as a product of elementary matrices A = E1E2 · · ·Ek.
Thus, we see can repeatedly apply Theorem 3.6.1 to see that

det(AB) = det(E1E2 · · ·EkB)

= det(E1) det(E2 · · ·EkB)

...

= det(E1) det(E2) · · · det(Ek) det(B).

But we can also see that det(A) = det(E1E2 · · ·Ek) = det(E1) det(E2) · · · det(Ek). Substituting
this into the final line above indeed shows that det(AB) = det(A) det(B).

Corollary 3.6.4 Let A be an invertible n× n matrix. Then, det(A−1) = 1/ det(A).

Proof : Since AA−1 = In, taking determinants tells us that det(AA−1) = 1, by Corollary 3.4.4.
Then, by Theorem 3.6.3, this becomes det(A) det(A−1) = 1, and the result follows.

3.7 Column Operations and Determinants

Theorem 3.7.1 Let A be an n× n matrix. Then, det(AT ) = det(A).
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Proof : By Lemma 2.5.12, the inverse of the transpose is the transpose of the inverse. Hence, AT is
invertible if and only if A is invertible. In particular, if A is non-invertible, det(A) = 0 = det(AT ).

Suppose now that A is invertible. As usual, we can write it as a product of elementary matrices:
A = E1E2 · · ·Ek. By repeatedly applying Proposition 2.4.10, we see that

AT = (E1E2 · · ·Ek)
T = ET

k · · ·ET
2 E

T
1 .

Thus, by repeatedly applying Theorem 3.6.3, we can conclude that

det(AT ) = det(ET
k ) · · · det(ET

2 ) det(E
T
1 ).

But also, the same theorem tells us that det(A) = det(E1) det(E2) · · · det(Ek). Therefore, it is
sufficient to prove that det(ET ) = det(E) for any elementary matrix E. Indeed, if E corresponds
to either Ri ↔ Rj or Ri 7→ kRi, then ET = E and this result is trivial. Otherwise, if E
corresponds to Ri 7→ Ri+kRj , then both E and ET are triangular matrices with all-ones on the
main diagonal. Thus, Theorem 3.2.5(iv) tells us that det(ET ) = 1 = det(E).

Note: This result now allows us to translate between row and column operations, since
taking the transpose interchanges rows and columns. Moreover, it justifies why we talk
about triangular matrices when discussing determinants (making no distinction between
upper and lower): the transpose doesn’t affect the determinant and taking the transpose
simply interchanges upper for lower (and lower for upper).

Corollary 3.7.2 Let A be an n × n matrix. Applying the column operation Ci 7→ kCi

changes the determinant to k det(A).

Proof : Suppose B is the matrix obtained from A via the column operation Ci 7→ kCi. Then, B
T

will be the matrix obtained from AT via the corresponding row operation Ri 7→ kRi. Hence, we
see that det(B) = det(BT ) = k det(AT ) = k det(A).

Corollary 3.7.3 If a matrix A has an all-zero column, then det(A) = 0.

Proof : If A has an all-zero column, then AT has an all-zero row. So, det(A) = det(AT ) = 0 by
Corollary 3.4.2.

Corollary 3.7.4 Let A be an n×n matrix. Applying the column operation Ci ↔ Cj changes
the determinant to −det(A).

Proof : Suppose B is the matrix obtained from A via the column operation Ci ↔ Cj . Then, B
T

will be the matrix obtained from AT via the corresponding row operation Ri ↔ Rj . Hence, we
see that det(B) = det(BT ) = −det(AT ) = −det(A).
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Corollary 3.7.5 If a matrix A has two identical columns, then det(A) = 0.

Proof : If A has two identical columns, then AT has two identical rows. So, det(A) = det(AT ) = 0
by Corollary 3.5.3.

Corollary 3.7.6 Let A be an n× n matrix. Applying the column operation Ci 7→ Ci + kCj

does not change the determinant.

Proof : Suppose B is the matrix obtained from A via the column operation Ci 7→ Ci+kCj . Then,
BT will be the matrix obtained from AT via the corresponding row operation Ri 7→ Ri + kRj .
Hence, we see that det(B) = det(BT ) = det(AT ) = det(A).

3.8 General Inductive Formula for the Determinant

When we introduced the determinant in Definition 3.1.1, the sum was specific to expanding
minors along the first row (hence why A1j has a fixed number one). However, we can be more
general and this still gives us the same notion of determinant as we have in our definition.

Proposition 3.8.1 Let A be an n×n matrix. Then, the determinant satisfies the following:

det(A) =
n∑

j=1

(−1)ℓ+jaℓj det(Aℓj), expanding along the ℓth row,

det(A) =

n∑
i=1

(−1)i+ℓaiℓ det(Aiℓ), expanding down the ℓth column.

Sketch of Proof : (Non-examinable) The idea is to use the formula from Definition 3.1.1 in order
to express the determinant of B, the matrix obtained from A via the row operation R1 ↔ Rℓ.
We then transform the minor B1j into the minor Aℓj via a sequence of row operations, just swaps
in fact. This gives us the first formula.

The second formula is a consequence of the first; this boils down to taking the transpose and
using the fact that this will not affect the determinant (Theorem 3.7.1).
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4 Linear Transformations on Rn and Matrices

4.1 Real Linear Transformations

Recall that the Cartesian plane R2 is given by pairs of real numbers:

R2 = {(x1, x2) : x1, x2 ∈ R}.

Similarly, the Euclidean space R3 is given by triples of real numbers:

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}.

In general, we have an n-dimensional Euclidean coordinate system as follows:

Rn = {(x1, x2, ..., xn) : x1, x2, ..., xn ∈ R}.

Note: If we take the set Rn and define upon it an addition rule (i.e. how to add two
elements) and a scalar multiplication rule (i.e. how to multiply an element by a real
number), then what we get is a real vector space. Indeed, here is an example of each rule:
(i) (x1, x2, ..., xn) + (y1, y2, ..., yn) := (x1 + y1, x2 + y2, ..., xnyn).
(ii) λ(x1, x2, ..., xn) := (λx1, λx2, ..., λxn).

Definition 4.1.1 A real linear transformation is a map T : Rn → Rm satisfying the following:
(i) T (x+ y) = T (x) + T (y) for any x,y ∈ Rn. (Additivity)
(ii) T (λx) = λT (x) for all x ∈ Rn and λ ∈ R. (Homogeneity)

Remark Geometrically, a linear transformation takes straight lines to straight lines, and paral-
lelograms to parallelograms. Recall that matrices had something to do with parallelograms, so
is there a link here...? Spoiler alert: yes.

Lemma A linear map T : R2 → Rm is completely determined by its values on the vectors

e1 = (1, 0) and e2 = (0, 1).

Proof : First, note that any vector x = (x1, x2) ∈ R2 can be written as a linear combination of
the vectors in the result, namely x = x1e1 + x2e2. Consequently, we see that

T (x) = T (x1e1 + x2e2)

= T (x1e1) + T (x2e2)

= x1T (e1) + x2T (e2),

where we use additivity for the second equality and homogeneity for the third inequality.

Note: This result actually generalises to T : Rn → Rm on any so-called basis of Rn.
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If we know T (1, 0) = (a11, a21) and T (0, 1) = (a12, a22), our linear transformation is given by

T (x) = x1(a11, a21) + x2(a12, a22) = (a11x1 + a12x2, a21x1 + a22x2).

Writing this up using column vectors (instead of row vectors) will show us that

T

(
x1
x2

)
=

(
a11x1 + a12x2
a21x1 + a22x2

)
=

(
a11 a12
a21 a22

)(
x1
x2

)
.

Definition The vector ei = (0, ..., 0, 1, 0, ..., 0) ∈ Rn with one in the ith place and zeros
elsewhere is called a standard basis vector for Rn. This concept is discussed further later.

Proposition 4.1.5 If T : Rn → Rm is a linear transformation, then T (x) = Ax, where A
is an m × n matrix whose columns are the vectors T (ei). We then refer to the matrix A
as the matrix of T with respect to the basis e1, ..., en.

Sketch of Proof : Follow a near-identical argument for what we did in the previous lemma and
what we did immediately above for T (1, 0) and T (0, 1).

Proposition 4.1.6 If T : Rn → Rm is given by T (x) = Ax for an m× n matrix A, then T
is a linear transformation.

Proof : We need to check the linearity conditions in Definition 4.1.1 for any x,y ∈ Rn and λ ∈ R:

(i) T (x+ y) = A(x+ y) = Ax+Ay = T (x) + T (y), so additivity is satisfied.

(ii) T (λx) = A(λx) = λAX = λT (X), so homogeneity is satisfied.

Note: In words, all linear transformations can be expressed by matrices (Proposition 4.1.5)
and all matrices give rise to linear transformations (Proposition 4.1.6).
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4.2 Types of Linear Transformation in R2

Definition We define the following linear transformations T : R2 → R2 where T (x) = Ax:
(i) T is a rotation of angle θ anti-clockwise about the origin if

A =

(
cos θ − sin θ
sin θ cos θ

)
.

(ii) T is a reflection in the line through the origin at angle θ with the x-axis if

A =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

(iii) T is a projection if A2 = A, for example

A =

(
0 0
7 1

)
.

(iv) T is a shear of scale factor k in the x-direction if

A =

(
1 k
0 1

)
.

(v) T is a shear of scale factor v in the y-direction if

A =

(
1 0
v 1

)
.

(vi) T is a scaling of scale factors k in the x-direction and v in the y-direction if

A =

(
k 0
0 v

)
.

Theorem Every linear transformation T : R2 → R2 is a combination of those listed above.

4.3 Composing Linear Transformations

Proposition 4.3.1 Let T1 : Rp → Rn and T2 : Rn → Rm be linear transformations. Then,
their composition T2 ◦ T1 : Rp → Rm is a linear transformation. Also, if A1 is the n × p
matrix for T1 and A2 is the m×n matrix for T2, then A2A1 is the m×p matrix for T2◦T1.
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Proof : The first part is a simple case of checking linearity, for x,y ∈ Rp and λ ∈ R.

(T2 ◦ T1)(x+ y) = T2(T1(x+ y))

= T2(T1(x) + T1(y))

= T2(T1(x)) + T2(T1(y))

= (T2 ◦ T1)(x) + (T2 ◦ T1)(y),

and

(T2 ◦ T1)(λx) = T2(T1(λx))

= T2(λT1(x))

= λT2(T1(x))

= λ(T2 ◦ T1)(x).

Hence, the composition is linear. Finally, assume that T1(x) = A1x and T2(x) = A2x. Then,

(T2 ◦ T1)(x) = T2(T1(x))

= T2(A1x)

= A2(A1x)

= (A2A1)x.

4.4 Eigenvalues and Eigenvectors

Definition 4.4.1 Let A be an n× n matrix. If Av = λv for some non-zero vector v ∈ Rn

and a scalar λ ∈ R, then we call v an eigenvector of A with corresponding eigenvalue λ.

Remark 4.4.2 The prefix eigen is German and translates to “own” or “particular to”.

Note: Geometrically, the idea is that the linear transformation defined by the matrix A
has fixed a line in Rn. Indeed, Av = λv tells us that, when we apply the transformation
to v, it is just a scaling of v. This works for the line through v (i.e. tv for t ∈ R) because

A(tv) = t(Av) = tλv = λ(tv).

Hence, applying A to the line just scales it up by a factor of λ.

4.5 How to Find Eigenvalues and Eigenvectors

Definition 4.5.1 Let A be an n × n matrix. The characteristic polynomial is the degree n
polynomial in one variable λ defined as CA(t) = det(A− tIn).

Lemma The roots of CA(t) are precisely the eigenvalues of A.
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Proof : The defining equation for an eigenvalue is Av = λv, that is Av − λv = (A− λIn)v = 0.
Because A − λIn is a square matrix, the equation has non-trivial solutions for v if and only if
det(A−λIn) = 0, by Theorems 2.9.4 and 3.6.2. But this is precisely the condition CA(λ) = 0.

Method – Finding the Eigenvectors of a Matrix: Let A be an n× n matrix.
(i) Find the eigenvalues λ1, ..., λk of A by solving det(A− λIn) = 0.
(ii) Choose one of the eigenvalues, say λ1.
(iii) Solve the system (A− λ1In)v = 0 to get a family of solutions for v.
(iv) Repeat this for each of the other eigenvalues λ2, ..., λk in Step (i).

Note: Surprisingly, the eigenvalues of a triangular matrix are just the diagonal entries!

4.6 Determinants and Eigenvalues

Lemma 4.6.1 Let A be an n× n matrix with complex eigenvalues λ1, ..., λn ∈ C counted
with multiplicities (i.e. some may be listed more than once). Then, det(A) = λ1λ2 · · ·λn.
Moreover, det(A) is the constant term in the characteristic polynomial CA(t).

Proof : The only reason we work over C instead of R is that we can use the Fundamental Theorem
of Algebra to factorise the characteristic polynomial as

CA(t) = (λ1 − t)(λ2 − t) · · · (λn − t).

We can find the constant term by substituting t = 0 into the characteristic polynomial, that is
CA(0) = det(A− 0In) = det(A) from Definition 4.5.1. On the other hand, if we substitute t = 0
into the above factorised form, we obtain precisely that which we want:

det(A) = CA(0) = λ1λ2 · · ·λn.

Corollary 4.6.2 A matrix A is invertible if and only if all its eigenvalues are non-zero.

4.7 Polynomial Equations and Eigenvectors

Lemma 4.7.1 Let A be an n × n matrix with eigenvalue λ paired with the eigenvector v.
Then, Amv = λmv for every integer m ≥ 1.

Proof : The base case m = 1 is trivial. We next assume the result is true for m = k, that is
Akv = λkv. We must prove it holds true for m = k + 1 under this hypothesis. To that end,

Ak+1v = A(Akv)

= A(λkv)
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= λk(Av)

= λk(λv)

= λk+1v,

where we use the inductive hypothesis for the second equality and the fact that Av = λv fir the
fourth equality. By the principal of mathematical induction, the result is true.
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5 Real Vector Spaces and Subspaces

5.1 Real Vector Spaces

Definition A vector space is a set V with binary operations + and · called vector addition
and scalar multiplication, respectively, satisfying these for all u,v,w ∈ V and λ, µ ∈ R:
(i) u+ (v +w) = (u+ v) +w. (Associativity)
(ii) u+ v = v + u. (Commutativity)
(iii) There exists 0 ∈ V such that v + 0 = v for all v ∈ V . (Additive Identity)
(iv) For all v ∈ V , there exists −v ∈ V such that v + (−v) = 0. (Additive Inverses)
(v) λ(µv) = (λµ)v. (Compatability)
(vi) 1v = v. (Scalar Identity)
(vii) λ(u+ v) = λu+ λv. (Distributivity)
(viii) (λ+ µ)v = λv + µv. (Distributivity)

Recall Rn is a real vector space with defined addition and scalar multiplication operations.

Remark 5.1.1 Because our vector space operations for Rn are component-wise, there is no practi-
cal difference (here) as to whether we use column vectors or row vectors. However, when we talk
about linear transformations and matrix multiplication, we will always assume that the elements
of Rn are column vectors.

5.2 Subspaces

Definition 5.2.1 Let V be a vector space. We call U ⊆ V a vector subspace of V if the
following are satisfied:
(i) U ̸= ∅.
(ii) For all u,v ∈ U , we have u+ v ∈ U . (Closed under Vector Addition)
(iii) For all u ∈ U and λ ∈ R, we have λu ∈ U . (Closed under Scalar Multiplication)

Note: Hence, U ⊆ V is a vector space in its own right with operations inherited from V .

Lemma 5.2.3 If U is a subspace of V , then 0 ∈ U .

Proof : As U ̸= ∅, there exists u ∈ U . Let λ = 0 in Definition 5.2.1(iii), so 0u = 0 ∈ U .

Method – Proving a Subset is a Subspace: Let V be a vector space and U ⊆ V a subset.
(i) Show that 0 ∈ U (this is sufficient for non-emptiness).
(ii) Show that U is closed under vector addition.
(iii) Show that U is closed under scalar multiplication.
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Proposition Let A be an n× n matrix. The solution set to Ax = 0 is a subspace of Rn.

Proof : We proceed with showing the required properties.

(i) Clearly, A0 = 0, so 0 lives inside the set of solutions and thus the set is non-empty.

(ii) Let x and y be solutions to the equation, meaning Ax = 0 and Ay = 0. Then, we see that
A(x + y) = Ax + Ay = 0 + 0 = 0, so x + u lives inside the set of solutions and thus the
set is closed under vector addition.

(iii) Let x be a solution to the equation, meaning Ax = 0, and take some scalar λ ∈ R. Then,
A(λx) = λ(Ax) = λ0 = 0, so λx lies inside the set of solutions and thus the set is closed
under scalar multiplication.

Note: The trivial subspace of V is {0} and the non-proper subspace of V is V itself.

Remark We can describe some subspaces geometrically.

� The only subspaces of R are the trivial and non-proper subspaces.

� The non-trivial proper subspaces of R2 are lines through the origin.

� The non-trivial proper subspaces of R3 are planes and lines through the origin.

5.3 Spans and Linear Combinations

Definition 5.3.1 Let v1, ...,vk ∈ V be a collection of vectors. A linear combination of them
is a vector of the form λ1v1 + · · ·+ λkvk, where λ1, ..., λk ∈ R are scalars.

Definition 5.3.3 The set of all vectors in a vector space V that are linear combinations of
v1, ...,vk ∈ V is called the (linaer) span of v1, ...,vk and is denoted span{v1, ...,vk}.

Note: If U ⊆ V such that U = span{v1, ...,vk}, we say U is spanned by v1, ...,vk.

Remark The vector (a, b, c) ∈ R3 can be written as a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1). Therefore,
every vector in R3 lives in the set span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Moreover, this linear span is
actually equal to the whole of R3. This generalises to Rn = span{e1, ..., en}.

Method – Vectors Belong to a Span: We want to see if x ∈ span{v1, ...,vk}.
(i) In other words, we want to find λ1, ..., λk ∈ R satisfying x = λ1v1 + · · ·+ λkvk.
(ii) Transform this into a system of equations where the λ1, ..., λk are the unknowns.
(iii) Solve this system; there being no solutions means x is not in the spanning set.
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Note: Specifically for R3, the span of two vectors corresponds to a plane through the
origin containing each of those vectors. Moreover, we can get the equation of this plane
by computing the cross product of the vectors. Indeed, for span{v,w}, the cross product
will have the form v ×w = (a, b, c), corresponding to the plane ax+ by + cz = 0.

5.4 Linear Dependence and Independence

Definition 5.4.1 A set of vectors {v1, ...,vk} ⊆ V is called linearly independent if

λ1v1 + · · ·λkvk = 0 ⇒ λ1 = · · · = λk = 0,

that is the only way that a linear combination of them can be the zero vector is if each
scalar is itself zero. If this is not the case, the we call the set of vectors linearly dependent.

Remark As a matter of convention, we define the empty set ∅ to be linearly independent.

Method – Linear Independence: We want to see if {v1, ...,vk} are linearly independent.
(i) In other words, we want to find λ1, ..., λk ∈ R satisfying λ1v1 + · · ·+ λkvk = 0.
(ii) Transform this into a system of equations where the λ1, ..., λk are the unknowns.
(iii) Solve this system; we have independence if the unique solution is λ1 = · · · = λk = 0.

Lemma Any set of vectors containing 0 is automatically linearly dependent.

Proof : Suppose we have {v1, ...,vk−1,0}. The linear combination we are interested in is

λ1v1 + · · ·λk−1vk−1 + λk0 = 0.

Note that this is solved by λ1 = · · · = λk−1 = 0 and λk = 24, for example. Because there is not
a unique only-zero solution for the λi (since the final scalar can be any number we want), we
know that we have linear dependence.

Theorem 5.4.5 The set {v1, ...,vk} is linearly dependent if and only if at least one vector
vi is a linear combination of its predecessors, that is vi ∈ span{v1, ...,vi−1}.

Proof : (⇒) Suppose that the vectors are linearly dependent, meaning there exist λj ∈ R not
all zero such that λ1v1 + · · · + λkvk = 0. Suppose that i is the largest index such that λi ̸= 0
(meaning that λj = 0 if j > i). Then, we can re-write this linear combination as

λ1v1 + · · ·+ λivi = 0.

Because λi ̸= 0, we can divide by this number and rearrange to obtain a linear combination
expressing vi in terms of its predecessors:

vi = −λ1

λi
v1 − · · · − λi−1

λi
vi−1.
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(⇐) Assume there is an i such that vi is a linear combination of its predecessors of the form

vi = λ1v1 + · · ·+ λi−1vi−1,

with some of the λj ∈ R non-zero. But now, we see that

λ1v1 + · · ·+ λi−1vi−1 − vi + 0vi+1 + · · ·+ 0vk = 0,

which shows linear dependence because not all the scalars are zero.

Lemma 5.4.6 Let v1, ...,vk ∈ V be vectors. Then, we have the following:
(i) span{αv1, ...,vk} = span{v1, ...,vk} for any non-zero α ∈ R.
(ii) span{v1 + αv2, ...,vk} = span{v1, ...,vk} for any α ∈ R.

Proof : (i) Let x ∈ span{αv1, ...,vk}, meaning that for some λi ∈ R,

x = λ1αv1 + · · ·+ λkvk.

But we can define new scalars as follows: µ1 = λ1α and µi = λi for 2 ≤ i ≤ k. Thus, we see that

x = µ1v1 + · · ·+ µkvk,

which is precisely that x ∈ span{v1, ...,vk}. This gives us span{αv1, ...,vk} ⊆ span{v1, ...,vk}.
Conversely, let x ∈ span{v1, ...,vk}, meaning that for some λi ∈ R,

x = λ1v1 + · · ·+ λkvk.

We again define new scalars as follows: ν1 = λ1/α and νi = λi for 2 ≤ i ≤ k. Thus, we see that

x = ν1αv1 + · · ·+ νkvk

which is precisely that x ∈ span{αv1, ...,vk}. This gives us span{v1, ...,vk} ⊆ span{αv1, ...,vk}.
Because we have both inclusions, we have equality.

(ii) Let x ∈ span{v1 + αv2, ...,vk}, meaning that form some λi ∈ R,

x = λ1(v1 + αv2) + λ2v2 + · · ·+ λkvk

= λ1v1 + (λ1α+ λ2)v2 + · · ·+ λkvk

= µ1v1 + µ2v2 + · · ·+ µkvk,

where we define the new scalars as µ2 = λ1α + λ2 and µi = λi for all i ̸= 2. This implies
that x ∈ span{v1, ...,vk} and gives us the inclusion span{v1 + αv2, ...,vk} ⊆ span{v1, ...,vk}.
Conversely, let x ∈ span{v1, ...,vk}, meaning that for some λi ∈ R,

x = λ1v1 + λ2v2 + · · ·+ λkvk

= λ1(v1 + αv2) + (λ2 − λ1α)v2 + · · ·+ λkvk

= ν1(v1 + αv2) + ν2v2 + · · ·+ νkvk,

where we define the new scalars as ν2 = λ2 − λ1α and νi = λi for all i ̸= 2. This implies that
x ∈ span{v1 + αv2, ...,vk} and gives us the inclusion span{v1, ...,vk} ⊆ span{v1 + αv2, ...,vk}.
Because we have both inclusions, we have equality.
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Definition 5.4.7 We say two matrices are row-equivalent if each can be obtained from the
other via a sequence of elementary row operations.

Definition 5.4.8 Let A be an m × n matrix. The row space is the vector subspace of Rn

spanned by the vectors whose entries are the rows of A.

Theorem 5.4.9 Let A and B be row-equivalent m× n matrices.
(i) The set of rows of A is linearly independent if and only if the set of rows of B is

linearly independent.
(ii) The set of rows of A is linearly dependent if and only if the set of rows of B is

linearly dependent.
(iii) The row space of A is the same as the row space of B.

Proof : (of (iii) only) It suffices to prove the result in the case that B is obtained from A via one
elementary row operation, that is B = EA for some elementary matrix E. Suppose the set of
rows of A is {r1, ..., rn}, meaning that the row space of A is span{r1, ..., rn}.

(a) If E corresponds to Ri ↔ Rj , it is clear that the row space of B is precisely that of A.

(b) If E corresponds to Ri 7→ kRi, then the set of rows of B is {r1, ..., ri−1, kri, ri+1, ..., rn},
meaning that the row space of B is span{r1, ..., ri−1, kri, ri+1, ..., rn}. But by Lemma
5.4.6(i), we know that this is precisely span{r1, ..., rn}.

(c) If E corresponds to Ri 7→ Ri+kRj , the set of rows of B is {r1, ..., ri−1, ri+krj , ri+1, ..., rn},
meaning that the row space of B is span{r1, ..., ri−1, ri + krj , ri+1, ..., rn}. But by Lemma
5.4.6(ii), we know that this is precisely span{r1, ..., rn}.

Method – Linear Independence Redux: We now have another method for testing if a
set of vectors is linearly independent. Namely, construct the matrix whose rows are those
vectors and reduce it to REF. If there is at least one all-zero row, then we have linear
dependence. If not, then we have linear independence.

5.5 Bases and Dimensions of Vector Spaces

Definition 5.5.1 A basis for a vector space V is a set B = {v1, ...,vn} satisfying these:
(i) B is linearly independent.
(ii) B spans V .

Note: This means that not only can every element of V be written as a linear combination
of the elements of B (via the spanning property), but that B is the smallest-sized set where
this occurs (by linear independence).

28



Method – Proving a Set is a Basis: To prove that a set B is a basis for V , it suffices to
use the previous methods to show each part of Definition 5.5.1 in turn. Indeed, show that
the elements of B are linearly independent via the previous method(s) and show that any
v ∈ V is such that v ∈ span(B).

Theorem 5.5.6 Let V be a vector space with basis B = {v1, ...,vn}. Every vector v ∈ V
can be written uniquely as a linear combination of the basis vectors:

v = λ1v1 + · · ·+ λnvn, λi ∈ R.

Proof : Because B is a basis, we have V = span(B) by Definition 5.5.1(ii). Hence, every v ∈ V
can be written in the form v = λ1v1 + · · ·+ λnvn for some λi ∈ R. It remains to prove that this
is unique. Suppose we also have v = µ1v1 + · · ·+ µnvn for some µi ∈ R. It is now clear that

0 = v − v

= (λ1v1 + · · ·+ λnvn)− (µ1v1 + · · ·+ µnvn)

= (λ1 − µ1)v1 + · · ·+ (λn − µn)vn.

By linear independence of B, it must be that each of these scalars is zero, that is λi − µi = 0.
Consequently, λi = µi and so the linear combination is unique.

Theorem 5.5.9 Let V be a vector space with basis B = {v1, ...,vn}.
(i) If a subset of V has strictly more than n elements, then it is linearly dependent.
(ii) If a subset of V has strictly less than n elements, then it can’t span V .

Proof : (Non-examinable) The proof can be found in the lecture notes for the course.

Corollary 5.5.10 Let V be a vector space with basis B = {v1, ...,vn} and S ⊆ V .
(i) If S is linearly independent, then |S| ≤ n.
(ii) If S spans V , then |S| ≥ n.
(iii) If S is a basis for V , then |S| = n.

Proof : This is just the contrapositive of Theorem 5.5.9.

Theorem 5.5.7 Every basis for a vector space V has the same size.

Definition 5.5.8 The dimension dim(V ) of a vector space V is the size of a basis for V .

Note: These results show that the dimension is encoded into every basis for a vector space,
and that this number is well-defined because all bases have the same size.
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Remark 5.5.11 A natural question to ask is the following: does the trivial space {0} have a
basis? For the notion of dimension to be reasonable, we would expect that dim({0}) < 1, i.e.
the zero vector space has dimension less than that of a line. Hence, the basis of {0} should be
of size zero and this is true if the basis is ∅.

Corollary 5.5.13 (to Theorem 5.5.7) Let U be a subspace of V . Then, dim(U) ≤ dim(V )
with equality if and only if U = V .

Definition 5.5.15 The row rank of a matrix A is the dimension of its row space.

Corollary 5.5.16 (to Theorem 5.4.9(iii)) Let A and B be row-equivalent matrices. Then,
the row rank of A is the same as the row rank of B.

Remark We now know that the dimension of the row space of a matrix A is precisely the number
of linearly independent vectors required to span it. Therefore, we have the following:

� If the number of rows is equal to the row rank, then the rows are linearly independent.

� If the number of rows is greater than the row rank, then the rows are linearly dependent.

Corollary 5.5.17 Let A be an n × n matrix. Then, the rows of A form a basis for Rn if
and only if the reduced row echelon form of A is the identity matrix In.

Proof : Well, the n rows form a basis for Rn if and only if the row rank of A is n, which is
equivalent to saying that the RREF is In.

Corollary 5.5.18 Let A be an n× n matrix. Then, the rows of A are linearly independent
if and only if det(A) ̸= 0.

Proof : Per Corollary 5.5.17, the n rows are linearly independent if and only if the RREF is In,
which is equivalent to det(A) ̸= 0.

Method – Basis for the Row Space: Suppose we want a basis for the row space of anm×n
matrix A. We simply perform row reduction on A and the non-zero rows are precisely the
vectors in the basis for the row space.
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6 Eigenspaces and Diagonalising Matrices

6.1 Diagonalising Matrices

Definition 6.1.1 Let A be an n × n matrix. We call it diagonalisable if there exists an
invertible matrix P such that D := P−1AP is a diagonal matrix.

Method – Diagonalising a Matrix: We want to diagonalise A (assuming it possible).
(i) Find the eigenvalues λ1, ..., λk of A.
(ii) Find the corresponding eigenvectors v1, ...,vk using the previous method.
(iii) The diagonal matrix D is that with the eigenvalues on the diagonal.
(iv) The invertible matrix P is that with the eigenvectors as its columns.
We need to have the eigenvalues and corresponding eigenvectors in the same order, so

D =


λ1

λ2

. . .

λk

 means that P =

 ↑ ↑ ↑
v1 v2 · · · vk

↓ ↓ ↓

 .

Remark 6.1.2 If a matrix has too few linearly independent eigenvectors, then it is not possible
to diagonalise the matrix. Indeed, the method above tells us that the columns of P are precisely
the eigenvectors, and notice that

P is invertible ⇔ P T is invertible (Lemma 2.5.12)

⇔ the rows of P T are linearly independent (Corollary 5.5.18)

⇔ the columns of P are linearly independent.

6.2 Some Properties of Eigenvectors

Definition 6.2.1 Let A be an n× n matrix with eigenvalue λ. The eigenspace of λ is

Uλ := {v ∈ Rn : Av = λv}.

Note: The eigenspace is the set of eigenvectors associated to λ together with 0.

Lemma 6.2.2 The eigenspace Uλ is a subspace of Rn.

Proof : We proceed with showing the required properties.

(i) Clearly, A0 = 0 = λ0, which is to say 0 ∈ Uλ.
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(ii) Let v,w ∈ Uλ, meaning Av = λv and Aw = λw. Then, we see that

A(v +w) = Av +Aw = λv + λw = λ(v +w),

which is to say v +w ∈ Uλ.

(iii) Let v ∈ Uλ, meaning Av = λv, and take some scalar µ ∈ R. Then, we see that

A(µv) = µ(Av) = µλv = λ(µv),

which is to say µv ∈ Uλ.

Theorem 6.2.3 Let A be an n×n matrix with at least m distinct eigenvalues λ1, ..., λm with
corresponding eigenvectors v1, ...,vm. Then, the set {v1, ...,vm} is linearly independent.

Proof : We proceed by induction. Indeed, if m = 1, the set {v1} is trivially linearly independent,
so the base case holds true. Next, assume that the result holds for m ≤ k; we will prove that the
result holds for m = k+1 under this hypothesis. Indeed, let {v1, ...,vk} be linearly independent
and assume to the contrary that {v1, ...,vk,vk+1} is not linearly independent. As the first k
eigenvectors are linearly independent, we know from Theorem 5.4.5 that this means vk+1 is a
linear combination of its predecessors:

vk+1 = µ1v1 + · · ·+ µkvk, µi ∈ R not all zero. (1)

If we multiply the above on the left by the matrix A, we obtain the following expression:

Avk+1 = A(µ1v1 + · · ·+ µkvk) = µ1Av1 + · · ·+ µkAvk.

Taking into account the eigenvalue equation, we see that this is precisely the same as

λk+1vk+1 = µ1λ1v1 + · · ·+ µkλkvk. (2)

If λk+1 = 0, then we know that the other λi ̸= 0 since we assume the eigenvalues are distinct.
But this would mean that the left-hand side and, therefore, right-hand side of equation (2) is
zero. This is a contradiction because we assume that the set {v1, ...,vk} are linearly independent.
Hence, λk+1 ̸= 0. We can therefore divide equation (2) by this eigenvalue:

λk+1vk+1 = µ1
λ1

λk+1
v1 + · · ·+ µk

λk

λk+1
vk. (3)

If we subtract equation (3) from equation (1), we obtain the following:

µ1

(
1− λ1

λk+1

)
v1 + · · ·+ µk

(
1− λk

λk+1

)
vk = 0.

Again, by linear independence of {v1, ...,vk}, we know that µi(1 − λi/λk+1) = 0 for each i.
Because the µi are not all zero, there is at least one index such that 1 − λi/λk+1 = 0, that is
λi = λk+1. This is a contradiction to distinctiveness. Therefore, the inductive step is proven (by
contradiction). Hence, by the principal of mathematical induction, the result follows.

Theorem 6.2.4 Let A be an n × n matrix with at least m distinct eigenvalues λ1, ..., λm.
Let Bi be a basis for the eigenspace Uλi

. Then, S := B1∪ · · · ∪Bm is linearly independent.
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6.3 Calculating Powers of Matrices

Method – Powers of a Matrix: Suppose we wish to find Am for any integer m ∈ Z.
(i) Diagonalise the matrix, so that P−1AP = D.
(ii) Rearrange the equation in Step (i) so that we have A = PDP−1.
(iii) Notice that Am = (PDP−1)m = PDmP−1.
(iv) Finally, the entries of Dm are just the entries of D raised to the power of m.
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