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1 The Set of Real Numbers

Reminder: We will use the following notation throughout the module:

N = {1, 2, 3, 4, ...} and N0 = {0, 1, 2, 3, 4, ...}.

1.1 Axiomatic Characterisation of the Real Numbers

Definition 1.1.1 A field is a set A with two binary operations + : A × A → A (addition)
and · : A×A → A (multiplication) such that the following axioms are all satisfied:
(A1) For all a, b, c ∈ A, (a+ b) + c = a+ (b+ c). (Associativity)
(A2) For all a, b, c ∈ A, a+ b = b+ a. (Commutativity)
(A3) There exists an element 0 ∈ A with 0 + a = a for all a ∈ A. (Identity)
(A4) For each a ∈ A, there exists y ∈ A with a+ y = 0. (Inverses)
(M1) For all a, b, c ∈ A, (a · b) · c = a · (b · c). (Associativity)
(M2) For all a, b, c ∈ A, a · b = b · a (Commutativity)
(M3) There exists an element 1 ∈ A with a · 1 = 1 for all a ∈ A \ {0}. (Identity)
(M4) For each a ∈ A \ {0}, there exists x ∈ A with a · x = 1. (Inverses)
(D1) a · (b+ c) = (a · b) + (a · c). (Distributivity)

Notation We relabel the additive and multiplicative inverses to reference the element they are
relate to: the additive and multiplicative inverses of a are denoted −a and a−1, respectively.

Theorem 1.1.2 Let A be a field. Then, we have the following:
(i) The additive identity 0 ∈ A that exists by Axiom (A3) is unique.
(ii) The multiplicative identity 1 ∈ A that exists by Axiom (M3) is unique.
(iii) The additive inverse −a of a ∈ A that exists by Axiom (A4) is unique.
(iv) The multiplicative inverse a−1 of a ∈ A that exists by Axiom (M4) is unique.

Proof : (i) Let x ∈ A such that a + x = a for all a ∈ A. In particular, this equality works for
a = 0, that is 0+x = 0. On the other hand, adding 0 to any element doesn’t change it by Axiom
(A3), so we know that x+0 = x. But commutativity in Axiom (A2) tells us that x+0 = 0+ x.
Hence, we can stitch these two equations together to obtain x = x+ 0 = 0 + x = 0.

(ii) Omitted; this is analogous to the proof of part (i).

(iii) Let a ∈ A be arbitrary and suppose that x, y ∈ A both satisfy Axiom (A4), that is a+x = 0
and a + y = 0. We can stitch these two equations together using Axioms (A3), (A1) and (A2)
to produce x = x+ 0 = x+ (a+ y) = (x+ a) + y = 0 + y = y.

(iv) Omitted; this is analogous to the proof of part (iii).

Note: Multiplication notation is often suppressed by writing ab := a · b without the dot.
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Theorem 1.1.3 Let A be a field. Then, we have the following for all a, b, c ∈ A:
(i) a+ c = b+ c implies a = b.
(ii) a · 0 = 0.
(iii) (−a)b = −(ab).
(iv) (−a)(−b) = ab.
(v) ac = bc with c ̸= 0 implies a = b.
(vi) ab = 0 implies a = 0 or b = 0.

Proof : (i) Starting from the equality in question, we have

a+ c = b+ c ⇒ a+ (c+ (−c)) = b+ (c+ (−c))

⇔ a+ 0 = b+ 0, by Axiom (A4),

⇔ a = b.

(ii) We just simply apply what we proved in part (i) to the following:

0 + (a · 0) = a · 0, by Axiom (A3),

= a · (0 + 0), by Axiom (A3) again,

= (a · 0) + (a · 0), by Axiom (D1).

(iii) Axiom (A4) and the uniqueness of inverses from Theorem 1.1.2(iii) imply the result from

(−a)b+ ab = ((−a) + a)b, by Axiom (D1),

= 0b, by Axiom (A3),

= 0, by Axiom (A2) and part (ii).

(iv) Let’s work from the left-hand side to the right in the following way:

(−a)(−b) = (−a)(−b) + 0, by Axiom (A3),

= (−a)(−b) + 0b, by part (ii),

= (−a)(−b) + ((−a) + a)b, by Axiom (A4),

= (−a)(−b) + (−a)b+ ab, by Axiom (D1),

= (−a)((−b) + b) + ab, by Axiom (D1),

= ((−a) · 0) + ab, by Axiom (A4),

= 0 + ab, by part (ii),

= ab, by Axiom (A3).

(v) All one must do is multiply on the right by c−1 and cancel.

(vi) Let ab = 0. If b = 0, we are done. On the other hand, if b ̸= 0, we multiply by b−1 on the
right. In this way, we see that abb−1 = 0b−1 = 0, but part (ii) and Axiom (M3) gives us the
alternate expression abb−1 = a · 1 = a. Equating allows us to immediately conclude a = 0.
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Reminder: A binary relation on a set X is a subset R ⊆ X ×X of the Cartesian product
of the set with itself. For x, y ∈ X, we say that x is related to y if the pair (x, y) ∈ R.

Definition 1.1.4 An ordered field is a field A together with a binary relation ≤ on A that
satisfies the following for all a, b, c ∈ A:
(O1) a ≤ b or b ≤ a.
(O2) a ≤ b and b ≤ c implies a ≤ c.
(O3) a ≤ b and b ≤ a implies a = b.
(O4) a ≤ b implies a+ c ≤ b+ c.
(O5) a ≤ b and c ≥ 0 implies ac ≤ bc.

Note: We will use the notation x < y to denote the fact that x ≤ y and x ̸= y.

Theorem 1.1.5 For any a, b, c ∈ A elements of an ordered field, we have the following:
(i) a ≤ b implies −b ≤ −a.
(ii) a ≤ b and c ≤ 0 implies ac ≥ bc.
(iii) a ≤ 0 and b ≤ 0 implies ab ≥ 0.
(iv) a2 ≥ 0.
(v) 1 > 0.
(vi) a > 0 implies a−1 > 0.
(vii) 0 < a < b implies 0 < b−1 < a−1.

Sketch of Proof : (i) Add (−a) + (−b) to both sides and use Axiom (O4).

(ii) Use the fact −c ≥ 0 from part (i) and combine Axiom (O5) with part (i) again.

(iii) Use Axiom (O5) to obtain −ba ≤ 0 and then use part (i).

(iv) The case where a ≥ 0 follows from Axiom (O5), and a ≤ 0 follows from part (iii).

(v) Assume to the contrary that 1 ̸> 0, that is 1 ≤ 0. Then, part (iii) implies that 0 ≤ 1 · 1
(substituting a = b = 1), which violates Axiom (O3) because 0 ̸= 1.

(vi) Assume to the contrary that a > 0 but a−1 ≤ 0. Then, part (iii) implies that 1 = aa−1 ≤ 0
which contradicts part (v).

(vii) From part (vi), we know a−1 > 0. Multiplying the inequality by this and using Axiom (O5)
gives us 0a−1 < aa−1 < ba−1, which is equivalent to 0 < 1 < ba−1. But because b−1 > 0 again
by part (vi), we can multiply this neq inequality by this to conclude that 0b−1 < 1b−1 < ba−1b−1

which is 0 < b−1 < a−1 by using commutativity from Axiom (M3).

Although you should take care to remember these results, they should be very familiar; this is
the sort of thing we have been working with since high school (or even before) except now we are
interested in any ordered field, not just R. We haven’t proved that R is an ordered field though!
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Definition 1.1.7 Let A be an ordered field and S ⊆ A a subset.
� We say S is bounded above if there exists M ∈ A such that s ≤ M for all s ∈ S.
� We say S is bounded below if there exists L ∈ A such that s ≥ L for all s ∈ S.
� We say S is bounded if it is both bounded above and below.

In these cases, we call M an upper bound and L a lower bound for S.

Remark 1.1.8 For a subset S ⊆ A of an ordered field, we can define the following new subset:

−S := {−s : s ∈ S} ⊆ A.

Then, S is bounded above if and only if −S is bounded below (and vice versa). As one may
expect, an upper/lower bound on −S will turn out to be a lower/upper bound on S, respectively.

Definition 1.1.9 Let A be an ordered field and S ⊆ A a subset. The supremum is the least
upper bound on the set S, that is an upper bound M with the property that for all x ∈ A
which is also an upper bound on S, we have M ≤ x. We denote this by M = sup(S).

Remark In practice, we often use the contrapositive of the second condition in Definition 1.1.9,
namely to show some M is the least upper bound on S ⊆ A, it suffices to prove the following:
“for any x ∈ A such that x < M , then x is not an upper bound on S”.

Proposition 1.1.11 If a subset S ⊆ A of an ordered field contains an upper bound M ∈ S,
then said upper bound M = sup(S).

Proof : By assumption, M is an upper bound so we need only show it is the least upper bound.
To that end, it suffices to show that any x ∈ A with x < M is not an upper bound on S. But
this is clear because x < M is equivalent to x ̸≥ M , so x is not an upper bound on S because
there exists an element of this subset (namely M) which is larger than x.

Note: If S is finite, a least upper bound always exists, namely the largest element of S.

Definition 1.1.13 Let A be an ordered field and S ⊆ A a subset. The infimum is the
greatest lower bound on the set S, that is a lower bound L with the property that for all
x ∈ A which is also a lower bound on S, we have L ≥ x. We denote this by L = inf(S).

Remark Again, we often use the contrapositive of the second condition in Definition 1.1.13,
namely to show some L is the greatest lower bound on S ⊆ A, it suffices to prove the following:
“for any x ∈ A such that x > M , then x is not a lower bound on S”.

Definition 1.1.14 An ordered field A is called complete if every non-empty subset that is
bounded above has a supremum in A.
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Remark 1.1.15 We can actually rephrase completeness in terms of lower bounds and infima: “an
ordered field is complete if every non-empty subset that is bounded below has an infimum in A”.
It turns out that this is completely equivalent to Definition 1.1.14.

Axiom (Axiom of Completeness) R with the usual operations is a complete ordered field.

The Axiom of Completeness implies the infimum-version of completeness from Remark 1.1.15.

Proposition 1.1.16 Every non-empty subset of R bounded below has an infimum in R.

Proof : Let S ⊆ R be non-empty and bounded below by L ∈ R. Then, Remark 1.1.8 tells us that
−S = {−s : s ∈ S} ⊆ R is bounded above by −L. Indeed, we have L ≤ s all s ∈ S, and any
y ∈ −S can be written as y = −s for some s ∈ S. Hence, y = −s ≤ −L by Theorem 1.1.5(i).
By the Axiom of Completeness, we know that −S has a least upper bound (a supremum), say
M = sup(−S). We claim that −M is the infimum of S. Well, because M is an upper bound on
−S, we know that −s ≤ M for all s ∈ S. But this is equivalent to s ≥ −M for all s ∈ S, so we
know that −M is a lower bound on S. It remains to show that any number greater than it is
not a lower bound. Indeed, let x ∈ R with x > −M . This means that −x < M but because M
is the greatest upper bound on −S, −x is not an upper bound. Hence, there exists s ∈ S such
that −x < −s ∈ −S; this is equivalent to x > s ∈ S so x is not a lower bound on S.

Reminder: The set of rational numbers is the set of quotients of integers, that is

Q =
{a
b
: a, b ∈ Z with b ̸= 0

}
.

Proposition 1.1.17 Q with the usual operations is a non-complete field.

Sketch of Proof : Showing it is a field is not too challenging. As for the lack of the completeness
property, it suffices to show that the subset S = {x ∈ Q : x2 < 2} does not have a supremum in
the rationals.

1.2 Properties of the Real Field

Theorem 1.2.2 (Archimedean Property of R) For all x ∈ R, there exists N ∈ N with N > x.

Proof : Assume to the contrary this is not the case, i.e. there exists x ∈ R such that, for all
N ∈ N, we have N ≥ x. In other words, this says the set N is bounded above by x. By the
Axiom of Completeness, N has a least upper bound y ∈ R. By definition, y − 1 is not an upper
bound on N, which means there is an element of the naturals larger than it; there exists M ∈ N
with M ≥ y − 1. This is equivalent to y ≤ M + 1, but M + 1 ∈ N, so y is not an upper bound
on N, a contradiction to it being the least upper bound.
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Corollary 1.2.3 For all ε > 0, there exists N ∈ N with 0 < 1
N < ε.

Proof : By the Archimedean Property of R, we can choose N ∈ N such that 1
ε < N .

Corollary 1.2.4 For all δ > 0 and x > 0, there exists N ∈ N with Nδ > x.

Proof : By the Archimedean Property of R, we can choose N ∈ N such that x
δ < N .

Proposition 1.2.1 There exists y ∈ R such that y2 = 2.

Proof : Let S = {x ∈ R : x2 < 2}, y := sup(S) and assume to the contrary that y2 ̸= 2.

� Let y2 < 2. We aim to find an element of S which is larger than y as to contradict the fact
y is an upper bound on S. One way to do this is to find N ∈ N with (y + 1

N )2 < 2. Well,(
y +

1

N

)2

= y2 +
2y

N
+

1

N2
≤ y2 +

2y

N
+

1

N
≤ y2 +

5

N

since y < 2 (this is an upper bound on S). Therefore, to ensure that (y + 1
N )2 < 2, it

suffices to pick N ∈ N such that y2 + 5
N < 2. Rearranging this inequality tells us that

N >
5

2− y2

which exists by the Archimedean Property of R. Hence, we have such an element of S and
y is not an upper bound; this is a contradiction.

� Let y2 > 2. We aim to find an upper bound on S larger than y as to contradict the fact y
is the least upper bound on S. For this, we can find N ∈ N with (y − 1

N )2 > 2. Indeed,(
y − 1

n

)2

= y2 − 2y

N
+

1

N2
≥ y2 − 2y

N
≥ y2 − 4

N

again since y < 2. In order to ensure that (y − 1
N )2 > 2, we can simply find N ∈ N such

that y2 − 4
N > 2. Rearranging this inequality tells us that

N >
4

y2 − 2

which also exists by the Archimedean Property of R. Hence, y − 1
N is an upper bound on

S but clearly y − 1
N < y; this is a contradiction.

Lemma 1.2.6 (Well-Ordering of N) Every non-empty subset of N has a smallest element.

7



Proof : Let S ⊆ N be non-empty. Because S is bounded below by zero, the infimum x := inf(S)
exists (Proposition 1.1.16). Since this is the greatest lower bound, x+1 is not a lower bound on
S. Hence, there exists n ∈ S such that x ≤ n < x+ 1. This implies that x > n− 1. If n is not
the least element, there exists m ∈ S with m < n which means m ≤ n− 1 < x, a contradiction
to the fact that x is a lower bound on S.

Theorem 1.2.5 (Density of Q in R) Between two distinct real numbers, there is a rational.

Proof : Let x, y ∈ R such that x < y without loss of generality. This implies y − x > 0, so
Corollary 1.2.3 can be used to find N ∈ N with 0 < 1

N < y − x. We next define the subset

S :=
{
n ∈ N :

n

N
> x

}
⊆ N.

This set is non-empty by Corollary 1.2.4. By the well-ordering of the naturals (Lemma 1.2.6),
there exists a smallest element M ∈ S. By definition, this means x < M

N and, since M is the
smallest element, M − 1 /∈ S, that is x ̸< M−1

N . This is equivalent to saying M−1
N ≤ x. But now,

M

N
=

M − 1

N
+

1

N
<

M − 1

N
+ y − x ≤ x+ y − x = y.

Combining things together, we have x < M
N < y, and clearly M

N ∈ Q is a rational number.

1.3 The Absolute Value

Definition Let x ∈ R. The absolute value of x is the real number |x| ∈ R defined as

|x| =

{
x, if x ≥ 0

−x, if x < 0
.

Note: We can also define |x| = max{x,−x}, from which we see x ≤ |x| and −x ≤ |x|.

Theorem 1.3.1 For all x, y ∈ R, the absolute value has the following properties:
(i) |x| ≥ 0 with equality if and only if x = 0. (Non-Negativity)
(ii) |−x| = |x|. (Evenness)
(iii) |xy| = |x||y|. (Multiplicativity)
(iv) |x+ y| ≤ |x|+ |y|. (Triangle Inequality)
(v) |x− y| ≥ ||x| − |y||. (Reverse Triangle Inequality)

Proof : (i) This is immediate from the definition of the absolute value.

(ii) This is also immediate from the definition of the absolute value.

(iii) Multiplicativity can be checked by considering the four cases of possible signs for x and y:
x > 0 and y > 0; x > 0 and y < 0; x < 0 and y > 0; x < 0 and y < 0. Of course, if any of x and
y are zero, the result is trivial.
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(iv) We know from the above note that x ≤ |x| and y ≤ |y|; adding these inequalities tells us
that x + y ≤ |x| + |y|. Similarly, −x ≤ |x| and −y ≤ |y|; adding these inequalities gives us
−(x+ y) ≤ |x|+ |y|. Combining these statements is precisely that |x+ y| ≤ |x|+ |y|.

(v) This follows from the usual Triangle Inequality in the following context:

|y| = |x+ (y − x)| ≤ |x|+ |y − x| and |x| = |(x− y) + y| ≤ |x− y|+ |y|.

The first of the above inequalities implies that |y|−|x| ≤ |y − x|, and the second implies |x|−|y| ≤
|x− y|. But the right-hand sides of each of these inequalities are equal by part (ii). Since the
left-hand sides are opposite signs of each other, we can also apply part (ii) to conclude that

||x| − |y|| ≤ |x− y|.

Note: We can replace y with −y to get an equivalent inequality to the Triangle Inequality:

|x− y| ≤ |x|+ |y|.

This implies the following inequality, for all x, y, z ∈ R:

|x− y| ≤ |x− z|+ |y − z|.
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2 Sequences and Convergence

2.1 Sequences of Real Numbers

Definition A sequence of real numbers is a function a : N → R where we denote the output
an (instead of the usual notation a(n) for functions). A term in the sequence is denoted
by an, whereas the whole sequence is denoted by (an)n∈N, or just (an) for short.

In practice, we think of a real sequence as an infinite ordered list (an) = (a1, a2, a3, ...) of numbers.

2.2 Convergence of Sequences

Definition 2.2.3 A real sequence (an) converges to a real number L ∈ R if, for each ε > 0,
there exists N ∈ N such that, for all n ≥ N , we have |an − L| < ε. In this case, we call L
the limit of (an) and we write either an → L or lim

n→∞
an = L. Here, we call (an) convergent.

Remark Let’s take a breather; Definition 2.2.3 is the first rigorous definition of a limit we have
encountered, and later definitions will have a similar flavour. Therefore, it is important you have
an idea of what this definition says. We will try to stimulate this intuition now.

Given a sequence (an), we can show that it ‘approaches’ the number L as n ∈ Z+ gets large by
showing that for any positive number (ε > 0), there exists a point in the sequence aN (there
exists N ∈ Z+) for which it and every subsequent term in the sequence (for all n ≥ N) lies within
distance that positive number of the number L (|an − L| < ε). Because this needs to work for
any ε, the idea is that the distance can be as large or as small as you like and we should still be
able to find N ∈ Z+ to make this work. Geometrically, if we plot n against an, every point for
n ≥ N will live inside a rectangle with width 2ε centred on the line an = L; see Figure 1 below.

n

an

2εL

N

Figure 1: The geometric interpretation of the convergence of a real sequence (an).

Note: Thus, (an) converges if and only if there are a finitely-many an /∈ (L− ε, L+ ε).
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Theorem 2.2.6 (Uniqueness of Limits) The limit of a convergent sequence is unique.

Proof : Let (an) be convergent and suppose that an → L and an → K. We must prove L = K.
Indeed, suppose ε > 0 is given. By Definition 2.2.3 applied to each of these convergences in turn,
there exist N1, N2 ∈ N such that, for all n ≥ N1, |an − L| < ε

2 and, for all n ≥ N2, |an −K| < ε
2 .

Let’s now pick N = max{N1, N2}. Then, for all n ≥ N , we see that

|L−K| = |L− an + an −K|
≤ |L− an|+ |an −K|, by the Triangle Inequality,

= |an − L|+ |an −K|, by properties of the absolute value,

<
ε

2
+

ε

2
, by the inequalities above,

= ε.

This shows that the ‘distance’ between the real numbers L and K is less than the positive number
ε, but this works for any ε, so we must have |L−K| = 0. In other words, L = K as required.

Definition 2.2.8 A sequence (an) is constant if there exists c ∈ R with an = c for all n.

Proposition 2.2.9 A constant sequence an ≡ c → c.

Proof : Let ε > 0 be given and (an) be a constant sequence whereby an = c for all n. Then, for
all n (in particular, n ≥ N for any choice of N ∈ N), we see that |an − c| = |c− c| = 0 < ε.

Proposition 2.2.10 A sequence an → L if and only if the sequence an − L → 0.

Proof : This is basically a tautology, but nevertheless we argue in full. Let ε > 0 be given. Then,

an → L

⇔ there exists N ∈ N such that, for all n ≥ N , we have |an − L| < ε

⇔ there exists N ∈ N such that, for all n ≥ N , we have |(an − L)− 0| < ε

⇔ an − L → 0.

Proposition 2.2.11 (Dominating Sequences) Let (an) and (bn) be sequences with bn → 0
and, for some N ∈ N, |an| ≤ |bn| for every n ≥ N . Then, an → 0.

Proof : By definition, for any ε > 0, there exists K ∈ N such that |bn| < ε for all n ≥ K. But
then, we know that |an| ≤ |bn| < ε for all n ≥ max{N,K}, which is precisely to say an → 0.
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Theorem 2.2.12 (Squeeze Theorem) Let (an), (bn), (cn) be sequences where an ≤ bn ≤ cn
for all n ∈ N. If an → L and cn → L, then bn → L.

Proof : By assumption, for any ε > 0, there exists N ∈ N such that, for all n ≥ N , |an − L| < ε
and |cn − L| < ε (we can use the same N ; if not, we can choose N to be the larger of the two
naturals that ensures each of these inequalities holds). By the properties of the absolute value,
this means in particular that L− ε < an and cn < L+ ε. Consequently, for all n ≥ N , we have

L− ε < an ≤ bn and bn ≤ cn < L+ ε ⇒ L− ε < bn < L+ ε.

This is equivalent to −ε < bn−L < ε, that is |bn − L| < ε. Consequently, bn → L as required.

2.3 Boundedness and Monotonicity

Definition 2.3.1 Let (an) be a sequence.
(i) It is bounded above if there exists M ∈ R where an ≤ M for all n ∈ N. In this case,

we call the number M an upper bound for the sequence.
(ii) It is bounded below if there exists K ∈ R where an ≥ K for all n ∈ N. In this case,

we call the number K a lower bound for the sequence.
(iii) It is bounded if it is both bounded above and below.

Note: Boundedness of sequences can be rephrased in terms of boundedness of sets (from
Definition 1.1.7) by instead considering the subset {an : n ∈ N} ⊆ R.

Proposition 2.3.2 A sequence (an) is bounded if and only if there exists M ∈ R such that

|an| ≤ M for all n.

Proof : If (an) is bounded, it means it is bounded below (by K, say) and above (by L, say), that
is K ≤ an ≤ L for all n. But it is clear that |an| ≤ max{|K|, |L|} =: M . Conversely, if |an| ≤ M ,
this is equivalent to −M ≤ an ≤ M . Hence, −M is a lower bound and M is an upper bound.

Proposition 2.3.3 If (an) is bounded and bn → 0, then the sequence cn := anbn → 0.

Proof : By Proposition 2.3.2, there exists M ∈ N such that |an| ≤ M for all n. Because bn → 0,
for any ε > 0 we can find some N ∈ N such that, for all n ≥ N , |bn| < ε

M . But for all n ≥ N ,

|cn| = |anbn| = |an||bn| ≤ M |bn| < M · ε

M
= ε.

Theorem 2.3.4 Any convergent sequence is bounded.
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Proof : Suppose an → L. Then, there exists N ∈ N such that, for all n ≥ N , we have |an − L| < 1
(remember this works for all ε > 0, so it works for ε = 1 in particular). By the Triangle Inequality,
this means |an| ≤ |L|+ 1 for all n ≥ N . In other words, {|an| : n ≥ N} is bounded (by |L|+ 1),
but we aren’t done here. It might be that an earlier term of the sequence is larger than this
number; we consider {|an| : n < N} and therefore define K := max({|an| : n < N} ∪ {|L|+ 1}).
From this, it is now clear that the sequence satisfies |an| ≤ K for all n.

Lemma 2.3.5 If an → L with an ̸= 0 for all n ∈ N and L ̸= 0, then ( 1
an
) is bounded.

Proof : The structure of the argument here is similar to that of Theorem 2.3.4, namely we show
{| 1

an
| : n ≥ N} is bounded, and then take the maximum of this and the previous terms. Since

an → L, there exists N ∈ N such that, for all n ≥ N , |an − L| < |L|
2 (choosing ε = |L|

2 here). So,

−|L|
2

< an < L+
|L|
2

⇔ L− |L|
2

< an < L+
|L|
2
.

We want
∣∣∣ 1
an

∣∣∣ ≤ K for some K ∈ R. Using the above alongside the Triangle Inelasticity, we get

|L| = |an − L+ an| ≤ |an − L|+ |an| <
|L|
2

+ |an| ⇒ |L|
2

< |an| ⇔
∣∣∣∣ 1an

∣∣∣∣ < 2

|L|
.

We therefore choose K := max({| 1
an
| : n < N}∪{ 2

|L|}), from which we see
∣∣∣ 1
an

∣∣∣ ≤ K for all n.

Theorem 2.2.7 (Algebra of Limits) Let an → A and bn → B. Then, the following are true:
(i) an + bn → A+B.
(ii) can → cA for all c ∈ R.
(iii) anbn → AB.
(iv) an/bn → A/B if bn ̸= 0 for all n ∈ N and B ̸= 0.

Proof : (i) For each ε > 0, there exist N1, N2 ∈ N such that, for all n ≥ N1, |an −A| < ε
2 and,

for all n ≥ N2, |bn −B| < ε
2 . Setting N = max{N1, N2}, we see that for all n ≥ N ,

|an + bn − (A+B)| = |an −A+ bn −B|
≤ |an −A|+ |bn −B|

<
ε

2
+

ε

2
= ε.

(ii) For any ε > 0, there exists N ∈ N where, for all n ≥ N , |an −A| < ε
|c| . For all n ≥ N then,

|can − aA| = |c(an −A)| = |c||an − a| < |c| · ε

|c|
= ε.
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(iii) Consider the sequence

anbn −AB = A(bn −B) + bn(an −A).

Because an → A and bn → B, Proposition 2.2.10 implies that an−A → 0 and bn−B → 0. Now,
the sequence (A(bn − B)) is a constant times a convergent sequence, so part (ii) of the Algebra
of Limits tells us that A(bn − B) → A · 0 = 0. Next, the sequence (bn(an − A)) is the product
of two convergent sequences, one of which converges to zero. In particular, it is the product of a
bounded sequence (by Theorem 2.3.4) and sequence that converges to zero, so Proposition 2.3.3
implies that bn(an − A) → 0. Hence, part (i) of the Algebra of Limits implies anbn − AB → 0,
which is equivalent to anbn → AB.

(iv) Consider the sequence

1

bn
− 1

B
=

b− bn
Bbn

= − 1

B
(
1

bn
(bn −B)).

Because bn → B, Proposition 2.2.10 implies bn − B → 0, and we know that ( 1
bn
) is bounded by

Lemma 2.3.5. Hence, it follows that 1
bn

− 1
B → − 1

B · 0 = 0, which is equivalent to 1
bn

→ 1
B .

Note: One can give direct ε-N proofs for parts (iii) and (iv) of the Algebra of Limits.

ε-N Proofs of the Algebra of Limits : (iii) Since (bn) is convergent, it is bounded by Theorem
2.3.4; there exists M ∈ R such that |bn| ≤ M by Proposition 2.3.2. Let ε > 0 be given and define

δ :=
ε

M + |A|
> 0.

There exist N1, N2 ∈ N such that, for all n ≥ N1, |an −A| < δ and, for all n ≥ N2, |bn −B| < δ.
Consequently, for all n ≥ N where we have chosen N = max{N1, N2}, it follows that

|anbn −AB| = |anbn −Abn +Abn −AB|
= |(an −A)bn −A(bn −B)|
≤ |an −A||bn|+ |A||bn −B|
< δK + |A|δ
= ε.

(iv) It suffices to prove 1
bn

→ 1
B ; the result follows from part (ii). Let ε > 0 be given and define

δ := ε
|B|2

2
> 0

We know |B|
2 > 0 as B ̸= 0. Now, there exist N1, N2 ∈ N such that, for all n ≥ N1, |bn −B| < |B|

2
and, for all n ≥ N2 , |bn −B| < δ. Again, setting N = max{N1, N2}, we see that for all n ≥ N ,∣∣∣∣ 1bn − 1

B

∣∣∣∣ = |bn −B|
|bn||B|

<
δ

|B||B|/2
= ε.
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Method – Proofs without the Algebra of Limits: Suppose we are asked to prove that a
product of two sequences converges without using the Algebra of Limits. Then, we can
just ‘copy’ the proof of Theorem 2.2.7 with our sequences/limits substituted into it.

Definition 2.3.6 Let (an) be a sequence.
(i) It is (monotonically) increasing if an ≤ an+1 for all n.
(ii) It is (monotonically) decreasing if an ≥ an+1 for all n.
(iii) It is strictly (monotonically) increasing if an < an+1 for all n.
(iv) It is strictly (monotonically) decreasing if an > an+1 for all n.
(v) It is monotonic of it is either increasing or decreasing.

Theorem 2.3.7 (Monotone Convergence Theorem) Bounded monotone sequences converge:
(i) Increasing sequences (an) that are bounded above converge to sup{an : n ∈ N}.
(ii) Decreasing sequences (an) that are bounded below converge to inf{an : n ∈ N}.

Proof : (i) By the Axiom of Completeness, we know that L := sup{an : n ∈ N} exists. Let ε > 0
be given. Because L is the least upper bound, L− ε < L is not an upper bound; there is at least
one term in the sequence larger than it, i.e. there exists N ∈ N such that aN > L− ε. Because
(an) is increasing, we know that an ≥ aN for all n ≥ N ; this means that an > L − ε for all
n ≥ N . Combining this with the fact that an ≤ L because L is an upper bound on the sequence,
it follows that L− ε < an < L+ ε for all n ≥ N , which is precisely to say |an − L| < ε.

(ii) If (an) is decreasing, then bn := −an is increasing, so we can simply apply part (i) to (bn).

Definition 2.3.8 Let S ⊆ R. We say a sequence (an) is contained in S if an ∈ S for all n.

Note: If an → L and (an) is contained in S, it is not true in general that the limit L ∈ S.

Theorem 2.3.9 Let S ⊆ R be non-empty and bounded above. Then, there exists a sequence
(an) in S such that an → sup(S).

Proof : Because L := sup(S) is the least upper bound on S, the number L − 1
n is not an upper

bound on S. This implies there exists an element an ∈ S also living in the interval (L − 1
n , L].

Doing this for all n ∈ N, we obtain a sequence (an). Notice that L − 1
n < an ≤ L for all n, so

the Squeeze Theorem implies an → L.

Corollary 2.3.10 Let S ⊆ R be non-empty and bounded below. Then, there exists a sequence
(an) in S such that an → inf(S).

Sketch of Proof : Define bn := −an and apply Theorem 2.3.9 to (bn).
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Definition 2.3.11 We call S ⊆ R closed if the limit of a convergent sequence in S lies in S.

Lemma 2.3.13 (Stability of Closed Inequalities under Limits) Let an → A and bn → B be
sequences such that an ≤ bn for all n ∈ N. Then, their limits satisfy A ≤ B.

Proof : Assume to the contrary that A > B, and let ε = A−B
2 > 0. By the convergence of the

sequences (an) and (bn), there exist N1, N2 ∈ N such that, for all n ≥ N1, |an −A| < ε and, for
all n ≥ N2, |bn −B| < ε. In particular, this means that for all n ≥ max{N1, N2}, we have both

A− ε < an and bn < B + ε.

Using the expression of ε that we selected at the beginning, one can see that

an > A− ε = A− A−B

2
=

A+B

2
= B +

A−B

2
= B + ε > bn,

contradicting the fact that an ≤ bn for all n.

Note: If we replace the closed inequality ≤ with a strict inequality < in Lemma 2.3.13,
the result would not be true. As an easy example, notice − 1

n < 1
n but their limits 0 ̸< 0.

Proposition 2.3.12 Closed intervals [a, b] are closed in the sense of Definition 2.3.11.

Proof : Let (cn) be a convergent sequence contained in [a, b]. We must show that its limit L, let’s
call it, also lies in [a, b]. Well, the fact the sequence is contained in this interval means a ≤ cn ≤ b
for all n. Thus, applying Lemma 2.3.13 tells us that a ≤ L ≤ b, that is L ∈ [a, b].
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3 Subsequences

3.1 Definition and Convergence Properties

Definition 3.1.1 A sequence (bk) is called a subsequence of (an) if there exists a strictly
increasing sequence of positive integers (nk) such that bk = ank

for all k ∈ N.

Note: In other words, the terms in (bk) must occur in (an) in the same order. An alternate
take is this: we can obtain (bk) from (an) by deleting possibly infinitely-many terms.

Theorem 3.1.3 If an → L and (bk) is a subsequence of (an), then bk → L.

Proof : Let ε > 0 be given. Since an → L, there exists N ∈ N such that, for all n ≥ N , we
have |an − L| < ε. By the definition of a subsequence, we know that bk = ank

, where (nk)
is a strictly increasing sequence of positive integers. Note that n1 ≥ 1 and, if nk ≥ k, then
nk+1 ≥ nk + 1 ≥ k + 1. By induction, we conclude that nk ≥ k for all k ∈ N. Therefore, for all
k ≥ N , we have nk ≥ nN ≥ N which means |bk − L| = |ank

− L| < ε.

Definition Let (an) be a sequence. We call a term am dominant if every subsequent term
is not larger than it, that is to say an ≤ am for all n > m.

Lemma 3.1.5 Every sequence has a monotonic subsequence.

Proof : Let (an) be a sequence and D be the set of dominant terms.

(i) If D is infinite, the subsequence of dominant terms is decreasing, by definition of dominant;
we have found a monotonic(ally decreasing) subsequence.

(ii) If D is finite (or empty), there exists a term am beyond which there are no dominant terms.
Let n1 = m+ 1; since an1 is not dominant, there exists n2 > n1 such that an2 > an1 , but
since an2 is not dominant, there exists n3 > n2 such that an3 > an2 , and so forth. This
implies (ank

) is increasing; we have found a monotonic(ally increasing) subsequence.

Theorem 3.1.6 (Bolzano-Weierstrass) Any bounded sequence has a convergent subsequence.

Proof : Let (an) be bounded, meaning |an| ≤ M for some M ∈ N. Then, there exists a monotonic
subsequence (ank

) by Lemma 3.1.5. It follows that (ank
) is also bounded by the same upper

bound, that is |ank
| ≤ M . Hence, (ank

) converges by the Monotone Convergence Theorem.
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3.2 The Cauchy Property

Definition 3.2.1 A sequence (an) is Cauchy (or has the Cauchy property) if, for each ε > 0,
there exists N ∈ N such that, for all n,m ≥ N , we have |an − am| < ε.

Remark The definition of Cauchy is very similar to that of convergent, with a key difference; no
mention of a real number L. Instead, we look at the difference between two terms an and am. In
words, where convergence is about having all terms after a certain point being within distance ε
of the limit L, the Cauchy property is about having all terms after a certain point being within
distance ε of each other.

Proposition 3.2.2 If (an) is convergent, then it is Cauchy.

Proof : Suppose an → L and let ε > 0 be given. Then, there exists N ∈ N such that, for all
n ≥ N , we have |an − L| < ε

2 . But then, for all n,m ≥ N , we have

|an − am| = |an − L+ L− am|
≤ |an − L|+ |am − L|

<
ε

2
+

ε

2
= ε.

Lemma 3.2.3 If (an) is Cauchy, then it is bounded.

Proof : The proof is similar to that of Theorem 2.3.4. By assumption, there exists N ∈ N such
that, for all n,m ≥ N , |an − am| < 1. By the Triangle Inequality, this means that |an| ≤ |aN |+1
(since the first integer m which is at least N is N itself). We now only need to consider the
maximum of the terms |an| for n < N . Well, if we defineM := max({|an| : n < N} ∪ {|aN |+ 1}),
we immediately see that |an| ≤ M for all n, which is precisely that (an) is bounded.

Lemma 3.2.4 If (an) is Cauchy and it has a subsequence ank
→ L, then an → L.

Proof : Let ε > 0 be given and consider both the convergence and the Cauchy property: there
exists N1 ∈ N such that, for all n ≥ N1, |ank

− L| < ε
2 and there exists N2 ∈ N such that, for all

n,m ≥ N2, |an − am| < ε
2 . By fixing N = max{N1, N2} and considering n ≥ N , we have

|an − L| =
∣∣an − anN+1 + anN+1 − L

∣∣
≤
∣∣an − anN+1

∣∣+ ∣∣anN+1 − L
∣∣

<
ε

2
+

ε

2
= ε.
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Theorem 3.2.5 A sequence (an) converges if and only if it is Cauchy.

Proof : The forward direction is just Proposition 3.2.2. Conversely, if (an) is Cauchy, then it is
bounded (Lemma 3.2.3). Hence, it has a convergent subsequence (Bolzano-Weierstrass Theorem),
which means (an) itself converges (Lemma 3.2.4).
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4 Series

4.1 Definition and Convergence

Definition 4.1.1 A (real) series is a sequence of real numbers (sk) with terms defined by

sk =
k∑

n=1

an,

where an is the nth summand and sk is the kth partial sum. The series is denoted
∞∑
n=1

an.

Note:
∞∑
n=1

an is convergent if the sequence of partial sums (sk) converges in the usual sense.

Proposition 4.1.2 (Divergence Test) If an ↛ 0, then the series
∞∑
n=1

an does not converge.

Proof : Suppose that an ↛ 0, meaning that there exists ε > 0 such that, for all N ∈ N, there
exists n ≥ N where |an − 0| = |an| ≥ ε (this is the negation of Definition 2.2.3). For any N ∈ N
then, we can apply this assumption also to N + 1, i.e. there exists n + 1 ≥ N + 1 such that
|an+1| ≥ ε. Because we can write sn+1 = sn + an+1, it follows that for all n, n+ 1 ≥ N ,

|sn+1 − sn| = |an+1| ≥ ε.

In other words, (sk) is not Cauchy, and thus not convergent by Theorem 3.2.5.

Lemma (Harmonic Series) The series
∞∑
n=1

1
n diverges.

Proof : Per Theorem 3.1.3, it suffices to show the sequence of partial sums (sk) has an unbounded
(and thus divergent) subsequence. To that end, consider the subsequence (s2p) defined as follows:

s2p = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2p−1 + 1
+ · · ·+ 1

2p

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2p−1 + 1
+ · · ·+ 1

2p

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2p
+ · · ·+ 1

2p

)
= 1 +

p

2
.

This is clearly unbounded, so the subsequence (s2p) diverges. Consequently, (sk) diverges.
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Lemma (Geometric Series) For r ∈ R with |r| < 1, the series
∞∑
n=1

rn converges to 1
1−r .

Proof : Consider the sequence of partial sums, in particular the kth partial sum which is

sk = 1 + r + r2 + · · ·+ rk

⇒ rsk = r + r2 + r3 + · · ·+ rk+1

⇒ (1− r)sk = 1− rk+1

⇒ sk =
1− rk+1

1− r
.

Applying the Algebra of Limits, noting that rk+1 → 0, we conclude sk → 1
1−r as required.

Remark It is usually not possible to derive such a nice formula for sk as was done for the geometric
series proof. In fact, it would be better to develop some tests based on the sequence (an) of terms
in the series rather than the sequence (sk) of partial sums; this would (will) make life a bit easier.

4.2 Convergence Tests for Series

Note: If every summand an ≥ 0, then (sk) is increasing as sk+1 = sk + ak+1 ≥ sk. The
Monotone Convergence Theorem implies the series converges if and only if (sk) is bounded.

Proposition 4.2.1 (Algebra of Series) Let
∞∑
n=1

an and
∞∑
n=1

bn converge. Then, we have these:

(i)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.

(ii)
∞∑
n=1

(can) = c
∞∑
n=1

an for all c ∈ R.

Sketch of Proof : This is an easy consequence of the Algebra of Limits for sequences.

Lemma 4.2.2 The series
∞∑
n=1

converges if and only if
∞∑

n=N

an converges for any N ∈ N.

Proof : Let (sk) and (tk) be the sequences of partial sums of
∞∑
n=1

an and
∞∑

n=N

an, respectively. So,

tk = sk+(N−1) −
N−1∑
n=1

an.

As (sk) converges if and only if (sk+(N−1)) converges, and the negative right-hand term is constant
(which converges by Proposition 2.2.9), then (sk) converges if and only if (tk) converges.
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Theorem 4.2.3 (Comparison Test) Let an ≥ 0 and bn > 0 for all n ∈ N.

(i) If (anbn ) is bounded above and
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

(ii) If ( bnan ) is bounded above and
∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges.

Note: A less general (but perhaps more clear) statement of the Comparison Test is this:

if we have 0 ≤ an ≤ bn for all n ∈ N, then
∞∑
n=1

bn converges implies that
∞∑
n=1

an converges.

Proof : (i) Let (sk) and (tk) be the sequences of partial sums of
∞∑
n=1

an and
∞∑
n=1

bn. By assumption,

0 ≤ an
bn

≤ M ⇔ 0 ≤ an ≤ Mbn

for some M ∈ R. Consequently, sk ≤ Mtk for all k. Since we assume that (tk) converges, it is
bounded above by K ∈ R, say. Therefore, sn ≤ MK. But now, (sk) is monotonically increasing
and bounded above, so converges by the Monotone Convergence Theorem.

(ii) This is merely the contrapositive of part (i).

Method – Using the Comparison Test: Suppose we have a series and want to determine
whether or not it converges. We ask ourselves “what familiar series does this appear like
which we do know converges or diverges?”, and this is precisely what we compare with.

Lemma The series
∞∑
n=1

1
n2 converges .

Sketch of Proof : Use the Comparison Test, comparing with the convergent series
∞∑
n=1

1
n(n+1) .

Proposition 4.2.5 The series
∞∑
n=1

1
nℓ converges for all ℓ ∈ N with ℓ ≥ 2.

Proof : Use the Comparison Test, comparing with the convergent series
∞∑
n=1

1
n2 . Indeed, let

an =
1

nℓ
≥ 0 and bn =

1

n2
> 0.

Then, we have an
bn

= 1
nℓ−2 ≤ 1, that is (anbn ) is bounded above. Hence, the series converges.
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4.3 Absolute Convergence

Definition The series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges as usual.

Theorem 4.3.1 If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges.

Proof : Let (sk) and (tk) be the sequences of partial sums of
∞∑
n=1

an and
∞∑
n=1

|an|. We see that

|tm − tk| =
m∑

n=k+1

|an|.

Because we assume (tk) converges, it is Cauchy by Theorem 3.2.5: for each ε > 0, there exists
N ∈ N such that, for all m > k ≥ N , we have |tm − tk| < ε. Therefore, for all m > k ≥ N , we
can apply the Triangle Inequality to the absolute value of the sum and use the above to conclude

|sm − sk| =

∣∣∣∣∣
m∑

n=k+1

an

∣∣∣∣∣ ≤
m∑

n=k+1

|an| < ε.

Note: The converse statement fails, i.e. convergence does not imply absolute convergence.
Indeed, a series that converges but not absolutely is called a conditionally convergent series.

Theorem 4.3.2 (Ratio Test) Let an > 0 for all n ∈ N such that an+1

an
→ L.

(i) If L < 1, then
∞∑
n=1

an converges absolutely, and thus converges.

(ii) If L > 1, then
∞∑
n=1

an diverges.

Proof : (i) Assume that L < 1. By assumption, there exists N ∈ N such that, for all n ≥ N ,∣∣∣∣an+1

an

∣∣∣∣ < L+
1− L

2
=: r,

picking ε = 1−L
2 in the definition of convergence. This inequality is equivalent to |an+1| < r|an|.

Using induction, it follows that |aN+m| < rm|aN | for every m ∈ N. If we take bn = rn|aN |, the
corresponding series converges since it is a geometric series multiplied by a constant. Hence, the
Comparison Test tells us that the series in question is (absolutely) convergent.

(i) Assume that L > 1. By assumption, there exists N ∈ N such that, for all n ≥ N ,∣∣∣∣an+1

an

∣∣∣∣ > L− L− 1

2
=: q,
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picking ε = L−1
2 in the definition of convergence. This inequality is equivalent to |an+1| > q|an|.

Using induction, it follows that |aN+m| > qm|aN | for every m ∈ N. But |aN+m| > |aN | > 0 for
all m ∈ N, so an ↛ 0. By the Divergence Test, the series in question does not converge.

Note: If an+1

an
→ 1, then we cannot immediately tell whether

∞∑
n=1

an converges or diverges.

4.4 Alternating Series

Definition 4.4.1 A series
∞∑
n=1

an is alternating if an ̸= 0 and an+1

an
< 0 for all n ∈ N.

Lemma 4.4.2 A series
∞∑
n=1

an is alternating if and only if it has the form ±
∞∑
n=1

(−1)n+1|an|.

Sketch of Proof : Use induction in two cases, depending on the sign of the first summand.

Lemma Let (an) be a sequence and L ∈ R. If a2k → L and a2k+1 → L, then an → L.

Proof : Let ε > 0 be given and apply Definition 2.2.3 to each of the subsequences in question:

� a2k → L means there exists K1 ∈ N such that, for all k ≥ K1, |a2k − L| < ε.

� a2k+1 → L means there exists K2 ∈ N such that, for all k ≥ K2, |a2k+1 − L| < ε.

Then, for all n ≥ max{2K1, 2K2+1}, either n is even (for which n ≥ 2K1 and so |an − L| < ε) or
n is odd (for which n ≥ 2K2+1 and so |an − L| < ε). Either way, we conclude that an → L.

Theorem 4.4.3 (Alternating Series Test) Let (an) be a decreasing positive sequence which

converges to zero. Then, the alternating series ±
∞∑
n=1

(−1)n+1an converge.

Proof : It suffices to work only with the positive series, as the negative case will follow from the
Algebra of Series. Let (sk) be the sequence of partial sums and consider the subsequence (s2m):

s2m = a1 − a2 + a3 − a4 + · · ·+ a2m−1 − a2m

= (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m)

⇒ s2m+2 − s2m = a2m+1 − a2m+2

≥ 0.

This implies that the sequence (s2m) is increasing. Furthermore, we see that

s2m = a1 − (a2 + a3)− · · · − (a2m−2 + a2m−1)− a2m
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< a1.

This establishes (s2m) is bounded above by a1. By the Monotone Convergence Theorem, we
know that s2k → L, for some L ∈ R. Consider now the subsequence (s2m+1). But notice that
s2m+1 = s2m + a2m+1. Applying the Algebra of Limits yields s2m+1 → L + 0 = L, since we
assume that an → 0. Consequently, the previous lemma implies sk → L and we are done.

Corollary (Alternating Harmonic Series) The series
∞∑
n=1

(−1)n+1

n converges.

Proof : This is an immediate consequence of the Alternating Series Test with an = 1
n .

Note: This series actually acts as a counterexample to the converse of Theorem 4.3.1.

Definition 4.4.6 A series is conditionally convergent if it converges but not absolutely.

4.5 The Riemann Rearrangement Theorem (Non-Examinable)

Definition 4.5.1 For a bijection σ : N → N, we call
∞∑
n=1

aσ(n) a rearrangement of
∞∑
n=1

an.

Remark In other words, we have the same underlying sequence (an) of summands but they now
appear in a different order. The fact that σ is a bijection means that each index n is sent to a
single distinct new index σ(n). Of course, if σ(n) = n, then we will have a trivial rearrangement
wherein nothing has actually changed.

Note: The sequence (uk) of partial sums of
∞∑
n=1

aσ(n) isn’t generally a subsequence of (sk).

Theorem 4.5.2 If
∞∑
n=1

an converges absolutely, then any rearrangement
∞∑
n=1

aσ(n) converges.

Proof : We begin by introducing the following sequences of partial sums that we use throughout:

(sk) is the sequence of partial sums of

∞∑
n=1

an,

(tk) is the sequence of partial sums of
∞∑
n=1

|an|,

(uk) is the sequence of partial sums of

∞∑
n=1

aσ(n).
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Because we assume that the series converges absolutely, we know there exists M ∈ R such that
tk → M . This means that, for each ε > 0, there exists K1 ∈ N such that, for all k ≥ K1,

|tk −M | < ε

4
⇔

∣∣∣∣∣
k∑

n=1

|an| −
∞∑
n=1

|an|

∣∣∣∣∣ =
∞∑

n=k+1

|an| <
ε

4
.

But absolute convergence implies convergence (Theorem 4.3.1), so there exists L ∈ R such that
sk → L. This means that, for each ε > 0, there exists K2 ∈ N such that, for all k ≥ K2,

|sk − L| < ε

2
⇔ L− ε

2
< sk < L+

ε

2
.

We now assume k ≥ K := max{K1,K2} is large enough such that the firstK summands a1, ..., aK
appear in the first k summands aσ(n) of the rearrangement. Thus, the difference of partial sums

uk − sk =

k∑
n=1

aσ(n) −
k∑

n=1

an

has a1, ..., aK appearing in each of the sums on the right, so these terms cancel. Consequently,

|uk − sk| =

∣∣∣∣∣
k∑

n=1

aσ(n) −
k∑

n=1

an

∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

n=1,σ(n)≥K+1

aσ(n) −
k∑

n=K+1

an

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑

n=1,σ(n)≥K+1

aσ(n)

∣∣∣∣∣∣+
∣∣∣∣∣

k∑
n=K+1

an

∣∣∣∣∣, by the Triangle Inequality,

≤
k∑

n=1,σ(n)≥K+1

∣∣aσ(n)∣∣+ k∑
n=K+1

|an|, by the Triangle Inequality,

≤
∞∑

j=K+1

|aj |+
∞∑

n=K+1

|an|, after setting j := σ(n),

<
ε

4
+

ε

4
.

This is equivalent to sk − ε
4 < uk < sk +

ε
4 . Combined with an earlier inequality, we see that

L− ε < sk −
ε

2
< uk < sk +

ε

2
< L+ ε ⇔ |uk − L| < ε.

Note: The proof shows the rearrangement converges to the same limit as the series, i.e.

∞∑
n=1

aσ(n) =
∞∑
n=1

an.
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Theorem 4.5.3 (Riemann Rearrangement Theorem) Let
∞∑
n=1

an be conditionally convergent

and L ∈ R. Then, there exists a rearrangement of this series which converges to L, i.e.

∞∑
n=1

aσ(n) = L.

Sketch of Proof : Consider the following subsequences of (an), namely (bℓ) which consists of the
non-negative terms, and (cℓ) which consists of the negative terms. Note each of these truly is a
subsequence, i.e. there are infinitely-many non-negative and negative terms. Well, for all N ∈ N,

∞∑
n=1

an converges ⇔
∞∑

n=N

an converges. (∗)

� If we have finitely-many non-negative terms, then for large enough N , we see that

∞∑
n=N

an = −
∞∑

n=N

|an|.

� If we have finitely-many negative terms, then for large enough N , we see that

∞∑
n=N

an = −
∞∑

n=N

|an|.

Convergence of the left-hand sides follows from the above equivalence (∗). Hence, it follows
that the right-hand sides also converge, but (∗) tells us also that this means the series converges
absolutely, contradicting the conditionally convergent hypothesis. We now consider the series
generated by each of these subsequences. Let’s call the limit of the original series C ∈ R, that is

∞∑
n=1

an = C.

� Since
∞∑
n=1

|an| diverges, for any M ∈ R, there exists N ∈ N such that, for all n ≥ N , both

k∑
n=1

an > C − 1 and
k∑

n=1

|an| > 2M − C + 1.

The sequence of partial sums of
∞∑
ℓ=1

bℓ is unbounded above (and doesn’t converge). Indeed,

k∑
ℓ=1

bℓ =

k∑
n=1,bℓ=an

an =
1

2

(
k∑

n=1

an +

k∑
n=1

|an|

)
> M.
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� Since
∞∑
n=1

|an| diverges, for any M ∈ R, there exists N ∈ N such that, for all n ≥ N , both

k∑
n=1

an < C + 1 and

k∑
n=1

|an| > −2M + C + 1.

The sequence of partial sums of
∞∑
ℓ=1

cℓ is unbounded below (and doesn’t converge). Indeed,

k∑
ℓ=1

cℓ =
k∑

n=1,cℓ=an

an =
1

2

(
k∑

n=1

an −
k∑

n=1

|an|

)
< M.

Per (∗), the so-called tail of each of the series defined by these subsequences converge, meaning

∞∑
ℓ=N

bℓ converges and
∞∑

ℓ=N

cℓ converges

for any N ∈ N. By the Divergence Test, it is necessary that an → 0, so Theorem 3.1.3 now tells
us each of bℓ → 0 and cℓ → 0. For any L ∈ R, we define the rearrangement we’re after as follows:

1. Take as many summands bℓ as we can such that
N−1∑
ℓ=1

bℓ < L but then
N∑
ℓ=1

bℓ > L.

2. Follow this by adding c1, ..., cM so
N∑
ℓ=1

bℓ +
M−1∑
ℓ=1

cℓ > L but then
N∑
ℓ=1

bℓ +
M∑
ℓ=1

cℓ < L.

3. Repeat this process continuously.

The idea is this: add some of the positive (or zero) (bℓ)-terms until we exceed L, and then add to
this some of the negative (cℓ)-terms until we fall short of L, and add some more (bℓ)-terms until
we again overshoot L, and so forth. This process will never fail because the series corresponding
to each of these subsequences are unbounded above/below. Convergence to L is intuitively clear,
but let’s make it rigorous: for each ε > 0, there exists K ∈ N such that, for all ℓ ≥ K, we have
0 ≤ bℓ < ε (since bℓ → 0) and −ε < cn < 0 (since cℓ → 0). The corresponding rearrangement is
therefore bounded between L+ ε and L− ε, as required.

Note: Perhaps more remarkably, there exists a rearrangement that is a divergent series.

Justification : Continuing with what we established in the proof of Theorem 4.5.3, we can find a
divergent rearrangement by taking as many (bℓ)-terms as we like to ensure that the sum is greater
than two, and then as many (cℓ)-terms to bring it less than one, and then some more (bℓ)-terms
so that it exceeds three, followed by (cℓ)-terms to get under two, and so forth. Eventually, the
sum will exceed M + 2 for any M ∈ R, but cℓ > −1 for all ℓ ≥ K and thus the partial sums are
unbounded below (each is greater than M for Kth one and beyond).
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5 Symbolic Logic

Reminder: A statement is any declaration which is unambiguously either true or false.

5.1 Symbolic Manipulation

Definition Let P and Q be statements. We can build from these the following statements:
� The negation ¬P , which means “not P”.
� The conjunction P ∧Q, which means “P and Q”.
� The disjunction P ∨Q, which means “P or Q or both”.

Note: The conjunction is true precisely when both the statements P and Q are true. The
disjunction is true precisely when at least one of the statements P and Q are true.

Definition A truth table encodes the truth/falsity of a constructed statement in terms of
the truth/falsity of its constituent pieces. We represent “false” by 0 and “true” by 1.

Method – Logically-Equivalent Statements: To show that two statements are logically
equivalent (meaning one is true if and only if the other is true), it suffices to construct a
truth table and exhibit that the columns representing each of the statements are identical.
In this case, we denote logical equivalence by the symbol ⇔.

Lemma For any statement P , we have the logical equivalence P ⇔ ¬(¬P ).

Proof : We construct the truth table and compare the relevant columns:

P ¬P ¬(¬P )

0 1 0
1 0 1

Theorem (de Morgan’s Laws) For statements P and Q, we have these logical equivalences:
(i) ¬(P ∧Q) ⇔ (¬P ) ∨ (¬Q).
(ii) ¬(P ∨Q) ⇔ (¬P ) ∧ (¬Q).

Proof : (i) We construct a truth table once again and compare the relevant columns:

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q (¬P ) ∨ (¬Q)

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0
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(ii) We could construct a truth table, or we can use what we have already proved. Indeed,

¬(P ∨Q) ⇔ ¬(¬(¬P ) ∨ ¬(¬Q)), by the previous lemma,

⇔ ¬
(
¬
(
(¬P ) ∧ (¬Q)

))
, by the first de Morgan’s Law,

⇔ (¬P ) ∧ (¬Q), by the previous lemma again.

5.2 Implications

Definition Let P and Q be statements. The implication P ⇒ Q means “if P , then Q”.

Note: The standard notation for an implication is actually P → Q but this conflicts with
our notation of convergence, so we henceforth stick with the notation P ⇒ Q.

The implication is delicate when it comes to truth. Namely, it only says “if P is true, then Q
is true automatically”. Therefore, P being false doesn’t contradict this statement, in which case
it’s true by default. The only instance where the implication is false is if P is true but Q is not:

P Q P ⇒ Q

0 0 1
0 1 1
1 0 0
1 1 1

Lemma For statements P and Q, we have the logical equivalence (P ⇒ Q) ⇔ (¬P ) ∨Q.

Sketch of Proof : Simply construct the truth table for (¬P ) ∨Q.

Definition Let P and Q be statements. We can build from these the following statements:
� The converse of P ⇒ Q, which is Q ⇒ P .
� The contrapositive of P ⇒ Q, which is ¬Q ⇒ ¬P .

Lemma For statements P and Q, we have the logical equivalence (P ⇒ Q) ⇔ (¬Q ⇒ ¬P ).

Sketch of Proof : Simply construct the truth table for ¬Q ⇒ ¬P .

Note: The negation of an implication is ¬(P ⇒ Q) ⇔ ¬((¬P ) ∨Q) ⇔ P ∧ (¬Q) by using
the lemma-before-last. Hence, the negation of an implication is not itself an implication.
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5.3 Quantifiers

Definition Let A be a set and P (x) be a collection of statements indexed by x ∈ A.
� A universal statement is ∀xP (x), which means “P (x) is true for all x ∈ A”.
� An existential statement is ∃xP (x), which means “P (x) is true for some x ∈ A”.

Note: The symbol ∀ is the universal quantifier, and the symbol ∃ is the existential quantifier.

Proposition Let P (x) be true for all x ∈ A. Then, we have the following:
(i) ¬(∀xP (x)) ⇔ ∃x¬P (x).
(ii) ¬(∃xP (x)) ⇔ ∀x¬P (x).

Sketch of Proof : These can be justified by thinking about negation in words. For (i), the state-
ment ¬(∀xP (x)) means it is not the case that P (x) is true for all x ∈ A. In particular, there
exists an element of A making it not true. Similarly for (ii), the statement ¬(∃xP (x)) means it
is not the case that P (x) is true for some x ∈ A. In other words, every element of A makes the
statement false.

Theorem The statement “the sequence (an) does not converge to L ∈ R” means that there
exists ε > 0 such that, for all N ∈ N, there exists n ≥ N with |an − L| ≥ ε.

Sketch of Proof : Write out the definition of an → L using quantifiers and negate it.

Corollary The statement “the sequence (an) does not converge” means for all L ∈ R, there
exists ε > 0 such that, for all N ∈ N, there exists n ≥ N with |an − L| ≥ ε.

Proof : The fact (an) converges means there exists L ∈ R such that Definition 2.2.3 is satisfied.
Negating and using the above theorem and previous proposition, we get the expected result.

31



6 Functions of a Real Variable

6.1 Continuity

Definition 6.1.1 Let D ⊆ R. Then, f : D → R is continuous at a ∈ D if, for all sequences
(xn) in D where xn → a, we have f(xn) → f(a). If f is not continuous at a ∈ D, we say
it is discontinuous at a ∈ D. We say f is continuous if it is continuous at every a ∈ D.

Lemma The constant function f : R → R where f(x) ≡ c for a fixed c ∈ R is continuous.

Proof : Let a ∈ R and xn → a. Then, f(xn) = c → c = f(a).

Lemma The identity function g : R → R where g(x) = x is continuous.

Proof : Let a ∈ R and xn → a. Then, g(xn) = xn → a = g(a).

Lemma The reciprocal function h : R \ {0} → R where h(x) = 1
x is continuous.

Proof : Let a ∈ R\{0} and xn → a. Then, h(xn) =
1
xn

→ 1
a = h(a) by the Algebra of Limits.

Theorem 6.1.3 (Algebra of Continuous Functions) Let f, g : D → R be continuous at a ∈ D.
Then, the following are true:
(i) f + g is continuous at a.
(ii) cf is continuous at a for all c ∈ R.
(iii) fg is continuous at a.
(iv) 1/f is continuous at a if f(x) ̸= 0 for all x ∈ D.

Proof : Let (xn) be a sequence in D such that xn → a. By assumption, we know f(xn) → f(a)
and g(xn) → g(a). Consequently, the usual Algebra of Limits of sequences implies the result:

(i) (f + g)(xn) = f(xn) + g(xn) → f(a) + g(a) = (f + g)(a).

(ii) (cf)(xn) = cf(xn) → cf(a) = (cf)(a).

(iii) (fg)(xn) = f(xn)g(xn) → f(a)g(a) = (fg)(a).

(iv) (1/f)(xn) = 1/f(xn) → 1/f(a) = (1/f)(a).

Reminder: A polynomial in x is a function of the form p(x) = a0 + a1x+ · · ·+ anx
n where

the coefficients a0, ..., an ∈ R. If an ̸= 0, we say that the degree of p is n, denoted deg(p).
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Corollary 6.1.4 Every polynomial function p : R → R is continuous.

Proof : We prove this by induction on the degree of the polynomial, namely n. Indeed, the base
case is where n = 0, so the polynomial is constant and is therefore continuous. Next, assume
that every polynomial of degree k is continuous and let p be a polynomial of degree k + 1.
Hence, we can write p(x) = xq(x) + a0, where q is a polynomial of degree k. By assumption,
q is continuous; we know that the polynomial g(x) = x is continuous from earlier. Hence, the
Algebra Property of Continuous Functions implies that p is continuous. By induction, the result
holds for all polynomials.

Corollary 6.1.5 Let p : R → R be a polynomial and define D = {x ∈ R : p(x) ̸= 0}. Then,

the function f : D → R given by f(x) =
1

p(x)
is continuous.

Proof : Apply Theorem 6.1.3(iv) in conjunction with Corollary 6.1.4.

Theorem 6.1.6 Let f : D → R and g : E → R with f(D) ⊆ E and assume f is continuous
at a ∈ D and g is continuous at f(a) ∈ E. Then, their composition g ◦ f : D → R given
by (g ◦ f)(x) = g(f(x)) is continuous at a.

Proof : Let (xn) be a sequence in D such that xn → a. Since f is continuous at a, f(xn) → f(a).
But since g is continuous at f(a), (g ◦f)(xn) = g(f(xn)) → g(f(a)) = (g ◦f)(a), as required.

Corollary 6.1.7 Let p and q be polynomials and define D = {x ∈ R : q(x) ̸= 0}. Then, the

rational function f : D → R given by f(x) =
p(x)

q(x)
is continuous.

Proof : Combine Theorem 6.1.3, Corollaries 6.1.4 and 6.1.5, and Theorem 6.1.6.

Note: Where the coefficients live in R, we denote the set of polynomials in one variable
by R[x]. Furthermore, we denote the set of rational functions in one variable by R(x).

6.2 Limits of Functions

Definition 6.2.3 Let D ⊆ R. We say a ∈ D is a cluster point (or a limit point) of D if there
exists a sequence (xn) in D \ {a} such that xn → a.

In other words, a cluster point is an element of a subset that can be approximated by a sequence
of other elements of that subset. More informally, we can “tend to” a ∈ D without reaching a.
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Definition 6.2.1 Let f : D → R and a ∈ D a cluster point. We say f has a limit L ∈ R at a
if for any (xn) in D \{a} with xn → a, we have f(xn) → L. This is denoted lim

x→a
f(x) = L.

Note: The value f(a), if it even exists, has no bearing on the limit L of f at a (in general).

That said, there is a special connection between continuous functions and functions whose limit
at a point is equal to the value of the function f(a) at said point. This is explored below.

Proposition 6.2.4 (Continuity via Limits) Let f : D → R and a ∈ D be a cluster point.
Then, f is continuous at a if and only if lim

x→a
f(x) = f(a).

Proof : (⇒) If f is continuous at a, then for all (xn) inD such that xn → a, we have f(xn) → f(a)
by Definition 6.1.1. In particular then, this is true for all (xn) in D \{a} ⊆ D, so Definition 6.2.1
is satisfied with L = f(a), that is lim

x→a
f(x) = f(a).

(⇐) Let f(a) be the limit of f at a and suppose (xn) is any sequence in D such that xn → a.
We will define the collection of numbers (bk) simply be removing the terms xnk

= a. There are
two cases to consider:

� If (bk) is finite, it is not itself a sequence, but xn = a for all n ≥ max{nk : xnk
̸= a} and

thus f(xn) → f(a).

� If (bk) is infinite, then it is a subsequence of (xn) and it lives exclusively in D \ {a}. By
Theorem 3.1.3, it follows that bk → a. Therefore, f(bk) → f(a) by assumption; for each
ε > 0, there exists N ∈ N such that, for all k ≥ N , we have |f(bk)− f(a)| < ε. If we now
let n ≥ nN , either xn = bk or xn = a. Hence, |f(xn)− f(a)| < ε, that is f(xn) → f(a).

Proposition 6.2.6 Let f : D → R. Then, f is continuous at any non-cluster point a ∈ D.

Proof : If a is not a cluster point, we can determine what this means by negating Definition 6.2.3:
there does not exist a sequence (xn) in D \ {a} such that xn → a. We begin by proving that
any sequence in D that converges to a is eventually constant (it has a tail consisting of terms all
equal to a). This is equivalent to saying that any sequence (xn) in D such that xn → a contains
finitely-many terms not equal to a. Assume to the contrary there are infinitely-many terms not
equal to a. These terms form a subsequence (yk) of (xn) and, since they are not equal to a, this
subsequence lives in D \ {a}. But by Theorem 3.1.3, we know yk → a, contradicting the fact a is
not a cluster point. Hence, (xn) is eventually constant, i.e. there exists N ∈ N such that xn = a
for all n ≥ N . Consequently, for any ε > 0, we have |f(xn)− f(a)| = 0 < ε for all n ≥ N . In
other words, f(xn) → f(a) which means f is continuous at a.

Proposition 6.2.7 Let I ⊆ R be an interval. Then, any a ∈ I is a cluster point.
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Sketch of Proof : There are a number of cases depending on if I is open, closed or half-open. Let

xn :=



a+
|β − a|
2n

if

I = (α, β), or

I = [α, β), or

I = [α, β] and a = α

a− |a− α|
2n

if
I = (α, β], or

I = [α, β] and a = β

.

In every case, the sequence (xn) lives in I \ {a} where xn → a by the Algebra of Limits.

6.3 Properties of Continuous Functions

Theorem 6.3.1 (Intermediate Value Theorem) Let f : [a, b] → R be continuous and y ∈ R
be a number between f(a) and f(b). Then, there exists c ∈ [a, b] such that f(c) = y.

Proof : If f(a) = f(b), the result is trivial as y = f(a) is the only possibility; just choose c = a.
We now assume f(a) < f(b) without loss of generality (if the inequality is flipped, we repeat
the following argument with the function g := −f). Define the set S := {x ∈ [a, b] : f(x) ≤ y}.
Certainly S is non-empty because a ∈ S and it is bounded above by b. Therefore, the Axiom
of Completeness implies that c := sup(S) exists. Because the interval [a, b] is closed, we know
that the supremum c ∈ [a, b]. Now, let (xn) be a sequence in S such that xn → c (this exists by
Theorem 2.3.9). It follows that f(xn) ≤ y. By the continuity of f , we know that f(xn) → f(c).
As a consequence of the stability of closed inequalities under limits (Lemma 2.3.13), we know
that f(c) ≤ y < f(b). Next, because c is the supremum of S, we know that c + 1

n is not in S.
Because c < b, we know c+ 1

n ∈ [a, b] for n sufficiently large. Therefore, for large enough n, we
know that f(c+ 1

n) > y. Taking the limit then, f(c+ 1
n) → f(c) ≥ y. Hence, f(c) = y.

Remark We can interpret the Intermediate Value Theorem geometrically in a rather easy way.
Indeed, given a continuous function on an interval (or any function which is continuous when
restricted to some interval), every value between the start and end values is obtained by some
input inside the interval. The picture for this is shown in Figure 2 below.

x

f(x)

c

f(a)

f(b)

y

Figure 2: The geometric interpretation of the Intermediate Value Theorem.
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Corollary 6.3.2 Let f : D → R be continuous and [a, b] ⊆ D be contained in the domain.
Then, f takes every value between f(a) and f(b) on D.

Proof : Simply apply the Intermediate Value Theorem to the restriction of f to [a, b].

Lemma Let n ∈ N. Then, f : [0,∞) → R given by f(x) = xn is strictly increasing.

Proof : Let y > x > 0. Then, we can factorise the following:

f(y)− f(x) = yn − xn = (y − x)(yn−1 + yn−2x+ · · ·+ yxn−2 + xn−1).

But the first factor y−x > 0 and the second factor yn−1+yn−2x+ · · ·+yxn−2+xn−1 ≥ yn−1 > 0.
This implies that f(y)− f(x) > 0, meaning precisely that f is strictly increasing.

Theorem 6.3.3 (Existence of Roots) Let n ∈ N. Given any y ≥ 0, there exists a unique
x ≥ 0 such that xn = y. We denote this real number by y1/n and call it the nth root of y.

Proof : For existence, let f : [0, y+1] → R be given by f(x) = xn − y. This is a polynomial and
thus is continuous (Corollary 6.1.4). Notice f(0) = −y ≤ 0. Also, the previous lemma implies

f(y + 1) = (y + 1)n − y ≥ y + 1− y = 1 > 0.

Because f(0) is negative and f(y+1) is positive, we know 0 is a real number between them. We
can now apply the Intermediate Value Theorem (or Corollary 6.3.2): there exists x ∈ [0, y + 1]
such that f(x) = 0, that is xn = y. For uniqueness, let z ∈ [0,∞) also satisfy f(z) = 0. Then,
f(z) = f(x). But the previous lemma says f is strictly increasing, so z < x and z > x would
each be a contradiction to this result. Consequently, the only option remaining is z = x.

Note: For each n ∈ N, we have a well-defined (strictly increasing and continuous) function

n
√

· : [0,∞) → R, x 7→ x1/n.

Definition 6.3.4 Let f : D → R be a function.
(i) We say f is bounded above if there exists M ∈ R such that f(x) ≤ M for all x ∈ D.
(ii) We say f is bounded below if there exists L ∈ R such that f(x) ≥ L for all x ∈ D.
(iii) We say f is bounded if it is both bounded above and below.
(iv) We say f attains a minimum if there exists c ∈ D with f bounded below by f(c).
(v) We say f attains a maximum if there exists c ∈ D with f bounded above by f(c).

Remark A function may be bounded but not attain a maximum value. It will, however, still have
a supremum (guaranteed by the Axiom of Completeness). For example, the function f(x) = − 1

x
is bounded above by 0, but it never attains this bound. Conversely, if a function attains a
maximum value, it is automatically bounded above and its maximum value is its supremum.
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Note: Boundedness of f is just boundedness of the set f(D) as in Definition 1.1.7.

Theorem 6.3.5 (Extreme Value Theorem) Let f : [a, b] → R be continuous. Then, f is both
bounded above and below, and attains a maximum and minimum.

Proof : Assume to the contrary that f is unbounded above. Then, each n ∈ N is not an upper
bound on f , so there exists a number xn ∈ [a, b] such that f(xn) > n. This defines a sequence
(xn) which is bounded; the Bolzano-Weierstrass Theorem implies the existence of a convergent
subsequence, say xnk

→ x. Because a ≤ xnk
≤ b for all k ∈ N, we know the limit a ≤ x ≤ b

(Lemma 2.3.13). Since f is continuous, we know that f(xnk
) → f(x). Because convergent

sequences are bounded (Theorem 2.3.4), we know that the sequence (f(xnk
)) is bounded. But

we assumed f(xnk
) > nk ≥ k, so the sequence (f(xnk

)) is unbounded above, a contradiction.

The image f([a, b]) := {f(t) : t ∈ [a, b]} ⊆ R of this function is non-empty and bounded above,
so the Axiom of Completeness guarantees that M := sup(f) exists. For any n ∈ N, we see that
M − 1

n < M , meaning M − 1
n is not an upper bound on f . Hence, there exists yn ∈ [a, b] whose

image f(yn) ≥ M − 1
n . Combining this with the definition of the supremum, we conclude that

M − 1

n
≤ f(yn) ≤ M.

Since (yn) is bounded, it has a convergent subsequence by the Bolzano-Weierstrass Theorem
(this is the same argument used in the contradiction done above), say (ynk

) such that ynk
→ c.

By the Squeeze Theorem applied to the inequalities above, we see that

M ≤ f(c) ≤ M,

where we have used the continuity of f to conclude f(ynk
) → f(c). Thus, f(c) = M = sup(f). To

see that f is bounded below and attains a minimum value, a near-identical argument can be done.
Alternatively, one can apply the above to the function g : [a, b] → R where g(x) := −f(x).

Corollary 6.3.6 Continuous functions send closed intervals to closed intervals.

Proof : Let f : D → R and [a, b] ⊆ D. We can apply the Extreme Value Theorem to the
restriction of f to [a, b]. Indeed, there exist c, d ∈ [a, b] such that f(c) = M is the maximum
and f(d) = L is the minimum of f on [a, b]. In other words, f(x) ∈ [L,M ] for all x ∈ D.
This establishes that f([a, b]) ⊆ [L,M ]. On the other hand, we apply the Intermediate Value
Theorem to the restriction of f to [min{c, d},max{c, d}]. Indeed, for each y ∈ [L,M ], there
exists x ∈ [min{c, d},max{c, d}] such that f(x) = y. This establishes that [L,M ] ⊆ f([a, b]).
Combining both inclusions tells us f([a, b]) = [L,M ], as required.

Note: This corollary says that any number between two outputs y, z ∈ f([a, b]) is also an
output of the function f , even if y and z are not between f(a) and f(b). Consequently,
one can think of this as a sort-of strengthening of the Intermediate Value Theorem.
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Corollary 6.3.7 Continuous functions send intervals to intervals.

Sketch of Proof : Let f : D → R and I ⊆ D an interval. Take a ∈ I, so that we can refer to an
element f(a) ∈ f(I) in the image. There are a number of possibilities depending on the interval.

� Let f be bounded above and attain its maximum f(c) = M . Necessarily then, f(a) ≤ M
by definition of a maximum. Hence, f takes every value between f(a) and M by the
Intermediate Value Theorem. The image contains every value in [f(a),M ].

� Let f be bounded above but not attain its maximum. It still has a supremum M := sup(f).
Necessarily then, f(x) < M for all x ∈ I and, for any y ∈ R with f(a) ≤ y < M , there
exists x ∈ I such that f(x) > y. Hence, f takes every value between f(a) and f(x) by the
Intermediate Value Theorem. The image contains every value in [f(a),M).

� Let f be unbounded above. In this case, for any z ∈ R with f(a) ≤ z, there exists x ∈ I
such that z < f(x). Again, f takes every value between f(a) and f(x) by the Intermediate
Value Theorem. The image contains every value in [f(a),∞).

� Let f be bounded below and attain its minimum f(c) = L. Necessarily then, L ≥ f(a)
by definition of a minimum. Hence, f takes every value between L and f(a) by the
Intermediate Value Theorem. The image contains every value in [L, f(a)].

� Let f be bounded below but not attain its minimum. It still has an infimum L := inf(f).
Necessarily then, L < f(x) for all x ∈ I and, for any y ∈ R with L < y ≤ f(a), there
exists x ∈ I such that f(x) < y. Hence, f takes every value between f(x) and f(a) by the
Intermediate Value Theorem. The image contains every value in (L, f(a)].

� Let f be unbounded below. In this case, for any z ∈ R with z ≤ f(a), there exists x ∈ I
such that f(x) < z. Again, f takes every value between f(x) and f(a) by the Intermediate
Value Theorem. The image contains every value in (−∞, f(a)].

The image f(I) is then the interval whose endpoints are determined by what we discussed above,
e.g. if the interval had the form I = (−∞, b], then the image has the form f(I) = (−∞,M ].

6.4 Limits at Infinity

Definition 6.4.1 A real sequence (an) diverges (or tends) to infinity if, for each K ∈ R,
there exists N ∈ N such that, for all n ≥ N , an > K. In this case, we write an → ∞.

Remark We explain Definition 6.4.1 in words and with a geometric interpretation in Figure 3.
Given a sequence (an), we can show that it diverges to infinity by showing that for any number
(K ∈ R), there exists a point in the sequence aN (there exists N ∈ N) after which (for all n ≥ N)
it and every subsequent term in the sequence exceeds that number (an > K). Geometrically, if
we plot n against an on a pair of axes, then after N , every point will live above the line an = K.
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n

an

K

N

Figure 3: The geometric interpretation of the divergence of (an) to infinity.

Definition 6.4.2 A real sequence (an) diverges (or tends) to minus infinity if, for eachK ∈ R,
there exists N ∈ N such that, for all n ≥ N , an < K. In this case, we write an → −∞.

Note: In fact, Definitions 6.4.1 and 6.4.2 are related: an → −∞ if and only if −an → ∞.

Definition 6.4.3 Let f : D → R be a function
(i) If D ⊆ R is unbounded above, we say f has a limit L ∈ R at infinity if, for any

sequence (xn) in D with xn → ∞, we have f(xn) → L. We write lim
x→∞

f(x) = L.

(ii) If D is unbounded below, we say f has a limit K ∈ R at minus infinity if, for any
sequence (xn) in D with xn → −∞, we have f(xn) → K. We write lim

x→−∞
f(x) = K.

Theorem 6.4.4 If f : R → R is continuous and both lim
x→±∞

f(x) exist, then f is bounded.

Proof : Let L := lim
x→∞

f(x) and K := lim
x→−∞

f(x). First, there exists X ∈ R where, for all x > X,

|f(x)− L| < 1 ⇔ L− 1 < f(x) < L+ 1.

Indeed, suppose to the contrary this is not the case. In particular, it is true that |f(x)− L| ≥ 1
for each x ∈ R with x > n, for each n ∈ N. Choosing some xn > n, this defines for us a
sequence (xn) whereby |f(xn)− L| ≥ 1. Notice that (xn) diverges to infinity and (f(xn)) does
not converge to L. This contradicts the fact that f has a limit L at infinity. Similarly, we can
conclude there exists Y ∈ R where, for all x > Y ,

|f(x)−K| < 1 ⇔ K − 1 < f(x) < K + 1.

If Y > X, we are done. Otherwise, we can apply the Extreme Value Theorem to the restriction
of f on [Y,X]. Since f is bounded on this interval, it is certainly bounded on all of R.
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7 Complex Sequences and Series

Reminder: A complex number z ∈ C has the form z = x+ iy where x, y ∈ R and i2 = −1.
We call x =: Re(z) the real part of z and y =: Im(z) the imaginary part of z. The modulus
is the real number |z| :=

√
x2 + y2. The conjugate is the complex number z̄ := x− iy.

Note: We can prove by direct computation that |z|2 = zz, |z| = |z| and z + w = z + w.

7.1 Convergence of Complex Sequences

Proposition 7.1.1 Let z, w ∈ C. Then, the following are true:
(i) Re(z) ≤ |z|.
(ii) Im(z) ≤ |z|.
(iii) |zw| = |z||w|. (Multiplicativity)
(iv) |z + w| ≤ |z|+ |w|. (Triangle Inequality)

Proof : (i) Squaring both sides, we want to show x2 ≤ x2 + y2. This is always true as y2 ≥ 0.

(ii) Again, squaring both sides, we want to show y2 ≤ x2 + y2. This is always true as x2 ≥ 0.

(iii) Let z = x+ iy and w = a+ ib, so zw = (x+ iy)(a+ ib) = (xa− yb) + (xb+ ya)i. Working
with the squares of the moduli (and taking the square root after), we obtain what we want:

|zw|2 = (xa− yb)2 + (xb+ ya)2

= (x2a2 − 2xyab+ y2b2) + (x2b2 + 2xyab+ y2a2)

= x2a2 + y2b2 + x2b2 + y2a2

= (x2 + y2)(a2 + b2)

= |z|2|w|2.

(iv) Assume to the contrary that |z + w| > |z|+ |w|. Squaring both sides, we obtain

|z + w|2 > (|z|+ |w|)2

⇒ (z + w)(z + w) > |z|2 + 2|z||w|+ |w|2

⇔ (z + w)(z + w) > |z|2 + 2|z||w|+ |w|2

⇔ |z|2 + zw + wz + |w|2 > |z|2 + 2|z||w|+ |w|2

⇒ zw + wz > 2|z||w|
⇔ zw + wz > 2|z||w|
⇔ 2Re(zw) > 2|zw|,

using part(iii), but this is a contradiction to the inequality established in part (i).
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Definition A sequence of complex numbers is a function z : N → C with output denoted
zn (instead of the usual notation z(n) for functions). A term in the sequence is denoted
by zn, whereas the whole sequence is denoted by (zn)n∈N, or just (zn) for short.

Think of a complex sequence as an infinite ordered list (zn) = (z1, z2, z3, ...) of complex numbers.

Definition 7.1.2 A complex sequence (zn) converges to the number L ∈ C if, for each ε > 0,
there exists N ∈ N such that, for all n ≥ N , we have |an − L| < ε. Here, we write zn → L.

Remark Comparing this with Definition 2.2.3 (the convergence of real sequences), we see it is
very much the same idea: for any positive number, there is a point in the sequence after which
it and all subsequent terms lie within distance that positive number of L. The main difference
comes from the geometric interpretation: if we plot the outputs zn in the complex plane, every
point for n ≥ N will live inside the (open) disk of radius ε centred at the complex number L.

R

iR

ε
L

an for n = 1, ..., N − 1

an for n ≥ N

Figure 4: The geometric interpretation of the convergence of a complex sequence (zn).

Proposition 7.1.4 Let (zn) be a complex sequence and L ∈ C, with each zn = xn + iyn for
xn, yn ∈ R and L = A+ iB for A,B ∈ R. Then, the following are equivalent:
(i) zn → L.
(ii) xn → A and yn → B in the sense of Definition 2.2.3.
(iii) |zn − L| → 0.

Proof : ((i) ⇒ (ii)) Let ε > 0 be given. As zn → L, there exists N ∈ N such that, for all n ≥ N ,
|zn − L| < ε. If we continue to assume that n ≥ N , we obtain the following as a consequence:

|xn −A| =
√
(xn −A)2

≤
√
(xn −A)2 + (yn −B)2

= |(xn −A) + i(yn −B)|
= |(xn + iyn)− (A+ iB)|
= |zn − L|
< ε.
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This establishes xn → A, and an identical argument can be repeated to show that yn → B too.

((ii) ⇒ (iii)) Let ε > 0 be given. Since xn → A, there exists N1 ∈ N such that, for all n ≥ N1,
|xn −A| < ε

2 . Similarly, as yn → B, there exists N2 ∈ N such that, for all n ≥ N2, |yn −B| < ε
2 .

For n ≥ max{N1, N2}, we can use the Triangle Inequality from Proposition 7.1.1 to see that

||zn − L| − 0| = |zn − L|
= |(xn −A) + i(yn −B)|
≤ |xn −A|+ |yn −B|

<
ε

2
+

ε

2
= ε,

which is precisely to say that |zn − L| → 0, as we required.

((iii) ⇒ (i)) This is essentially completed above. Indeed, for any given ε > 0, there exists N ∈ N
such that, for all n ≥ N , we have ||zn − L| − 0| < ε. But this is the same as |zn − L| < ε.

Corollary (Uniqueness of Limits) The limit of a convergent complex sequence is unique.

Proof : Let zn → L. By writing zn = xn + iyn, it follows from Proposition 7.1.4 that the real
sequences (xn) and (yn) converge, and their limits are unique by Theorem 2.2.6. Explicitly,
xn → A and yn → B for unique A,B ∈ R. But this uniquely defines the limit L = A+ iB.

Corollary Any convergent complex sequence is bounded.

Proof : Let zn → L. By writing zn = xn + iyn, it follows from Proposition 7.1.4 that the real
sequences (xn) and (yn) converge, and thus they are bounded by Theorem 2.3.4. Explicitly, there
exist K,M > 0 such that |xn| ≤ K and |yn| ≤ M for all n. By the Triangle Inequality, we can
conclude that |zn| = |xn + iyn| ≤ |xn|+ |yn| ≤ K +M . In other words, (zn) is bounded.

Corollary (Algebra of Limits) Let zn → Z and wn → W . Then, the following are true:
(i) zn + wn → Z +W .
(ii) λzn → λZ for all λ ∈ C.
(iii) znwn → ZW .
(iv) zn/wn → Z/W if wn ̸= 0 for all n ∈ N and W ̸= 0.

Sketch of Proof : We can write each term in (zn) and (wn) in terms of real numbers and apply
the usual Algebra of Limits in conjunction with Proposition 7.1.4 to conclude the result.

Note: Generally, the results we proved about convergent real sequences pass over the
convergent complex sequences by viewing things through the lens of Proposition 7.1.4.
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Definition 7.1.8 Let D ⊆ C. Then, f : D → C is continuous at w ∈ D if, for all sequences
(zn) in D where zn → w, we have f(zn) → f(w). If f is not continuous at w ∈ D, we say
it is discontinuous at w ∈ D. We say f is continuous if it is continuous at every w ∈ D.

Proposition 7.1.9 Let f : D → C be continuous and (zn) an inductively-defined sequence
given by iterating f from an initial value z0 ∈ C, meaning zn = f(zn−1). If zn → L, then
L is a fixed point of f , meaning f(L) = L.

Proof : Let zn → L. As noted above, we can carry over results like Theorem 3.1.3 (subsequences
of convergent sequences themselves converge) to work for complex sequences. As such, it follows
that the subsequence zn+1 → L also. By the inductive definition of (zn), we have zn+1 = f(zn).
The continuity of f guarantees f(zn) → f(L), and the Uniqueness of Limits gives f(L) = L.

7.2 Complex Series

Definition A complex series is a sequence of complex numbers (sk) with terms defined by

sk =
k∑

n=1

zn,

where zn is the nth summand and sk is the kth partial sum. The series is denoted
∞∑
n=1

zn.

This is very much the same as Definition 4.1.1, except we have replaced “real” by “complex”.

Note:
∞∑
n=1

zn is convergent if the sequence of partial sums (sk) converges in the usual sense.

Remark One can write the complex series in terms of two real series in the expected way:

∞∑
n=1

zn =
∞∑
n=1

(xn + iyn) =
∞∑
n=1

xn + i
∞∑
n=1

yn.

Proposition 7.1.4 implies the series converges if and only if the corresponding real series converge.

Definition 7.2.1 The series
∞∑
n=1

zn converges absolutely if the real series
∞∑
n=1

|zn| converges.

Proposition 7.2.3 If the real series
∞∑
n=1

|zn| converges, then
∞∑
n=1

zn converges.
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Proof : Let zn = xn + iyn and (tk) be the sequence of partial sums of
∞∑
n=1

|zn|. Let’s also define

uk :=

k∑
n=1

|xn| and vk :=

k∑
n=1

|yn|.

Since we assume absolute convergence, it means the real sequence (tk) converges in the usual
sense. Hence, it is bounded above (because the sequence of partial sums is increasing). From
Proposition 7.1.1(i) and (ii), we have xn ≤ |zn| and yn ≤ |zn|, respectively. Hence, it follows that

uk ≤ tk and vk ≤ tk.

Since (tk) is bounded above, so too are the real sequences (uk) and (vk). Moreover, each of these
is also increasing; the Monotone Convergence Theorem implies that they converge. Because the
absolute convergence of real series implies convergence (Theorem 4.3.1), we know these converge:

∞∑
n=1

xn and
∞∑
n=1

yn.

Finally, the previous remark now implies that
∞∑
n=1

zn converges, precisely what we wanted.

7.3 Power Series

Definition Let an ∈ C for all n ∈ N. A (complex) power series is a series of the form

∞∑
n=0

anz
n,

where z is a complex variable. The terms in the series are anz
n and the kth partial sum is

sk(z) =

k∑
n=0

anz
n = a0 + a1z + a2z

2 + · · ·+ akz
k.

Notation Up until this point, we have used zn to denote complex terms as opposed to an which
we used for real terms. However, the above definition assumes that an ∈ C. The reason for the
notation switch is so that the power series terms anz

n look appealing to the eye; if we insisted
on still using zn, our terms would be znz

n which is a little confusing at a glance!

Note: Our power series begin at n = 0, which is different to the n = 1 start as before.

Theorem (Complex Geometric Series) The series
∞∑
n=0

zn converges if and only if |z| < 1.
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Proof : As in the proof of the convergence of the real geometric series, the kth partial sum sk is

sk = 1 + z + z2 + · · ·+ zk

⇒ zsk = z + z2 + z3 + · · ·+ zk+1

⇒ (1− z)sk = 1− zk+1

⇒ sk =
1− zk+1

1− z
.

(⇐) If |z| < 1, then |z|k+1 → 0 and so sk → 1
1−z by the Algebra of Limits; we have convergence.

(⇒) If |z| ≥ 1, then |zn| ≥ 1. Since they are complex numbers, we can write each zn = xn + iyn.
Thus, the previous inequality is equivalent to x2n + y2n ≥ 1. By Lemma 2.3.13, we cannot have
both xn → 0 and yn → 0 (if so, this would imply the obviously-false inequality 02 + 02 ≥ 1). It
must then be true that xn ↛ 0 or yn ↛ 0. It now follows from the Divergence Test that

∞∑
n=1

xn diverges or
∞∑
n=1

yn diverges.

Therefore, the previous remark implies the complex geometric series diverges for all |z| ≥ 1.

Note: Generally, a power series may converge for some values of z and not for others. As
such, it defines a complex function on a subset of C. Note however that every power series
converges when z = 0. Indeed, every partial sum sk(0) = a0 → a0 in this situation.

Definition 7.3.2 The exponential, sine and cosine functions are defined as follows:

exp : C → C, exp(z) =
∞∑
n=0

zn

n!
,

sin : C → C, sin(z) =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

cos : C → C, cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!
.

Proposition The function exp is well-defined, that is
∞∑
n=0

zn

n!
converges for all z ∈ C.

Proof : The above note means we need only prove it for z ̸= 0. For wn := zn

n! > 0, notice that

|wn+1|
|wn|

=
|z|n+1

(n+ 1)!

n!

|z|n
=

|z|
n+ 1

→ 0 < 1.

By the Ratio Test,
∞∑
n=0

|wn| converges. Thus, exp(z) =
∞∑
n=0

wn converges by Proposition 7.2.3.
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Definition 7.3.5 The radius of convergence of a power series
∞∑
n=0

anz
n is the real constant

R := sup{|z| :
∞∑
n=0

|anzn| converges}.

If the set on the right-hand side is unbounded, there is no supremum and we say “R = ∞”.

In other words, the radius of convergence is the positive constant R ≥ 0 such that the power
series converges for all values of z ∈ C within that distance from the origin (that is |z| < R) and
diverges for all values more than that distance away from the origin (that is |z| > R).

Note: We can’t immediately tell if the series converges or diverges at z ∈ C with |z| = R.

Lemma 7.3.6 If
∞∑
n=0

anz
n converges at z = w, then it converges absolutely for |z| < |w|.

Proof : We assume
∞∑
n=0

anw
n converges; writing anw

n = xn + iyn, the previous remark implies

∞∑
n=0

xn converges and
∞∑
n=0

yn converges.

By the Divergence Test, it follows that the real sequences xn → 0 and yn → 0. Therefore,
the sequence of terms anw

n → 0 + i0 = 0 by Proposition 7.1.4. In particular, this sequence is
bounded, meaning there exists K > 0 such that |anwn| < K for all n. Consequently, notice that

|anzn| = |anwn| |z
n|

|wn|
< K

|zn|
|wn|

.

Hence, by the Comparison Test with
∞∑
n=0

|zn|
|wn| , it follows that

∞∑
n=0

|anzn| converges, as required.

Theorem 7.3.7 Let R be the radius of convergence of the power series
∞∑
n=0

anz
n. Then,

the series converges absolutely for |z| < R and the series diverges for |z| > R.

Proof : Consider an arbitrary power series
∞∑
n=0

anz
n, and let us introduce the notation

A := {|z| :
∞∑
n=0

|anzn| converges} ⊆ R
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so that R = sup(A). If |z| < R, there exists w ∈ C with |z| < |w| < R such that this converges:

∞∑
n=0

|anwn|.

We know such w exists; if not, R would not be the the least upper bound on A. But complex
absolute convergence implies convergence (Proposition 7.2.3), and we can apply Lemma 7.3.6
to conclude that the original arbitrary power series converges. On the other hand, if |z| > R,
assume to the contrary that the power series converges. Again by Lemma 7.3.6, it follows that

∞∑
n=0

|anvn| converges, for v =
1

2
(|z|+R).

This is because |v| < |z|. However, |v| ∈ A and yet |v| > R by the assumption |z| > R. In other
words, R is not an upper bound on A, contradicting the fact it is the radius of convergence.

Corollary A power series
∞∑
n=0

anz
n defines a complex function f : {z ∈ C : |z| < R} → C.

Proof : This is simply another way to re-phrase Theorem 7.3.7.

Method – Finding the Radius of Convergence: Consider the power series
∞∑
n=0

anz
n.

(i) Let bn := anz
n be the sequence of terms in the series.

(ii) Compute the ratio |bn+1|
|bn| and determine its limit L as n → ∞ in terms of |z|.

(iii) Apply the Ratio Test to find an upper bound on |z| that makes the limit L < 1.

Note: Although the above method uses the Ratio Test to find the radius of convergence,
notice that the definition of the radius of convergence has no mention of the Ratio Test.

Remark Since R ⊆ C, we can equally apply all of the above theory to the case of a real power
series. This is defined in precisely the same way, except the coefficients an ∈ R for all n ∈ N.
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