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1 The Set of Real Numbers

1.1 Axiomatic Characterisation of the Real Numbers

Definition 1.1.1 A set K with two binary operations + : K×K → K and · : K×K → K
and a relation ≤ is an ordered field if, for all x, y, z ∈ K, the following hold true:
(A1) (x+ y) + z = x+ (y + z) and (x · y) · z = x · (y · z). (Associativity)
(A2) x+ y = y + x and x · y = y · x. (Commutativity)
(A3) x · (y + z) = (x · y) + (x · z). (Distributivity)
(A4) There exists a unique element 0 ∈ K with 0 + x = x. (Additive Identity)
(A5) There exists a unique element 1 ∈ K with 1 · x = x. (Multiplicative Identity)
(A6) For each x ∈ K, there is a unique y ∈ K with x+ y = 0. (Additive Inverse)
(A7) For each x ∈ K, there is a unique y ∈ K with x · y = 1. (Multiplicative Inverse)
(A8) x ≤ y implies x+ z ≤ y + z.
(A9) x ≤ y and y ≤ z implies x ≤ z. (Transitivity)

(A10) x ≤ y and y ≤ x implies x = y. (Anti-Symmetry)
(A11) x ≤ y and 0 ≤ z implies x · z ≤ y · z.
(A12) Either x ≤ y or y ≤ x. (Strong Connectivity)

Note: We often relabel the additive/multiplicative inverses in (A6) and (A7) as follows:
(i) The additive inverse of x is denoted −x.
(ii) The multiplicative inverse of x is denoted x−1 or 1

x .

Theorem 1.1.3 For any a, b, c ∈ K elements of an ordered field, we have the following:
(i) a+ c = b+ c implies a = b.
(ii) a · 0 = 0.
(iii) (−a) · b = −(a · b).
(iv) (−a) · (−b) = a · b.
(v) a · c = b · c with c ̸= 0 implies a = b.
(vi) a · b = 0 implies a = 0 or b = 0.

Theorem 1.1.4 For any a, b, c ∈ K elements of an ordered field, we have the following:
(i) a ≤ b implies −b ≤ −a.
(ii) a ≤ b and c ≤ 0 implies b · c ≤ a · c.
(iii) a ≤ 0 and b ≤ 0 implies 0 ≤ a · b.
(iv) 0 ≤ a · a =: a2.
(v) 0 < 1.
(vi) 0 < a implies 0 < a−1.
(vii) 0 < a < b implies 0 < b−1 < a−1.

Although you should take care to remember these results, they should be very familiar; this is
the sort of thing we have been working with since high school (or even before) except now we are
interested in any ordered field, not just R. We haven’t proved that R is an ordered field though!
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Definition 1.1.6 Let K be an ordered field. A subset S ⊆ K is called bounded above if
there exists an element M ∈ K such that s ≤ M for all s ∈ S. We then call M an upper
bound for S. Similarly, a subset S ⊆ K is called bounded below if there exists an element
L ∈ K such that s ≥ L for all s ∈ S. We then call L a lower bound for S.

Note: For a subset S ⊆ K, we define −S := {−s : s ∈ S} ⊆ K. Then, S is bounded above
if and only if −S is bounded below (and vice versa); this is a useful trick for some proofs.

Definition 1.1.9 Let K be an ordered field and S ⊆ K a subset. We call M the least upper
bound for S if it is an upper bound for S and there is no upper bound smaller than M .

Note: If |S| < ∞ (S is finite), a least upper bound always exists; the largest element of S.

Definition 1.1.11 An ordered field K is complete if every non-empty subset that is bounded
from above has a least upper bound.

Axiom (Axiom of Completeness) R with the usual operations is a complete ordered field.

Remark 1.1.12 We can restate the Axiom of Completeness in terms of lower bounds and greatest
lower bounds; this is perfectly valid. In this way, a greatest lower bound is just a lower bound
such that there is no lower bound bigger than it.

1.2 The Structure of the Set of Real Numbers

Definition 1.2.1 Let S ⊆ R be a non-empty subset. The supremum of S is the least upper
bound of S, denoted sup(S), if the set is bounded above. The infimum of S is the greatest
lower bound of S, denoted inf(S), if the set is bounded below.

Note: If S isn’t bounded from above/below, we would write sup(S) = ∞ or inf(S) = −∞,
respectively. Moreover, we could also define the infimum as inf(S) := − sup(−S).

Theorem 1.2.3 (Archimedean Property of R) For all x ∈ R, there exists N ∈ N with x < N .

Proof : Assume to the contrary this is not the case, meaning N is bounded above by x. Then,
by the Axiom of Completeness, N has a least upper bound y ∈ R. By definition, y − 1 is not
an upper bound on N, which means there is an element of the naturals larger than it, i.e. there
exists M ∈ N with M ≥ y − 1. This is equivalent to y ≤ M + 1, but M + 1 ∈ M, so y is not an
upper bound on N, a contradiction to it being the least upper bound.
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Corollary 1.2.4 For all ε > 0, there exists N ∈ N with 0 < 1
N < ε.

Proof : By the Archimedean Property of R, we can choose N ∈ N such that 1
ε < N .

Corollary 1.2.5 For all δ > 0 and x > 0, there exists N ∈ N with Nδ > x.

Proof : By the Archimedean Property of R, we can choose N ∈ N such that x
δ < N .

Theorem 1.2.6 (Density of Q in R) Let x ∈ R. Then, for each ε > 0, there exists a rational
q ∈ Q where q ∈ (x− ε, x+ ε), i.e. contained in the open interval of width 2ε centred at x.

Proof : By Corollary 1.2.4, we can choose N ∈ N such that 0 < 1
N < ε. We now define the subset

X =
{
y ∈ N :

y

N
> x

}
⊆ N.

We know that this set is non-empty by Corollary 1.2.5. Furthermore, the set of naturals N is
well-ordered, meaning every non-empty subset has a smallest element. Therefore, there exists a
smallest element M ∈ X. This is precisely to say that

M − 1

N
≤ x <

M

N
, which becomes − 1

N
≤ x− M

N
< 0

by adding −M
N to all sides. If we swap the signs (i.e. multiply by −1), we can now conclude that

0 <
M

N
− x ≤ 1

N
< ε.

This shows that the rational number q := M
N lies in the subinterval (x, x+ ε) ⊆ (x− ε, x+ ε).

1.3 Important Inequalities

Definition Let x ∈ R. Then, its absolute value is the real number |x| ∈ R given by

|x| =

{
x, if x ≥ 0

−x, if x < 0
.

Note:We can also define this as |x| = sup{x,−x}, from which we see x ≤ |x| and −x ≤ |x|.

Theorem 1.3.2 For all x, y ∈ R, the absolute value has the following properties:
(i) |x| ≥ 0 with equality if and only if x = 0. (Non-Negativity)
(ii) |−x| = |x|. (Evenness)
(iii) |xy| = |x||y|. (Multiplicativity)
(iv) |x+ y| ≤ |x|+ |y|. (Triangle Inequality)
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Proof : Both (i) and (ii) are immediate from the definition of the absolute value. Multiplicativity
can be checked by considering four different cases:

� x > 0 and y > 0.

� x > 0 and y < 0.

� x < 0 and y > 0.

� x < 0 and y < 0.

Of course, if any of x and y are zero, the result is trivial. Finally, we know from the above note
that x ≤ |x| and y ≤ |y|; adding these inequalities tells us that x + y ≤ |x| + |y|. Similarly,
−x ≤ |x| and −y ≤ |y|; adding these inequalities gives us −(x+ y) ≤ |x|+ |y|. Combining these
statements is precisely that |x+ y| ≤ |x|+ |y|.

Note: We can replace y with −y to get an equivalent inequality to the Triangle Inequality:

|x− y| ≤ |x|+ |y|.

This implies the following inequality, for all x, y, z ∈ R:

|x− y| ≤ |x− z|+ |y − z|.

1.4 Supplementary Material

Proposition (Bernoulli Inequality) Let x ≥ 0 and n ∈ N. Then, (1 + x)n ≥ 1 + nx.

Lemma (Reversed Bernoulli Inequality for n = 1/2) Let x ≥ 0. Then,
√
1 + x ≤ 1 + 1

2x.

Proof : Assume to the contrary that
√
1 + x > 1 + 1

2x. If we square both sides, we see that
1 + x > 1 + x+ 1

4x
2. This implies that 0 > x2, which is a contradiction.

Proposition Let x > 1. Then, x2 > x.

Theorem (AM-GM Inequality) For all x, y ≥ 0, we have 1
2(x+ y) ≥ √

xy.

Proof : The AM-GM inequality is equivalent to 1
4(x+y)2 ≥ xy (achieved by squaring both sides).

Note that (x− y)2 ≥ 0 is always true; this is equivalent to x2 − 2xy + y2 ≥ 0. Hence, we know
that x2 + 2xy + y2 ≥ 4xy (by adding 4xy to both sides). This factorises to give (x+ y)2 ≥ 4xy,
from which we can rearrange and get the equivalent form of the AM-GM inequality.
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2 Sequences and Convergence

2.1 Sequences

Definition A sequence of real numbers is a function a : N → R where we call the output
an (instead of a(n) as is normal for functions). We denote a term in the sequence by an
and the whole sequence by (an)n∈N, or just (an) for short.

Definition 2.1.3 Let (an) be a sequence of real numbers.
(i) It is constant if an+1 = an for all n ∈ N.
(ii) It is (monotonically) increasing if an+1 ≥ an for all n ∈ N.
(iii) It is (monotonically) decreasing if an+1 ≤ an for all n ∈ N.
(iv) It is strictly (monotonically) increasing if an+1 > an for all n ∈ N.
(v) It is strictly (monotonically) decreasing if an+1 < an for all n ∈ N.
(vi) It is monotonic if it is either increasing or decreasing.
(vii) It is bounded above if there exists M ∈ R where an ≤ M for all n ∈ N.
(viii) It is bounded below if there exists L ∈ R where an ≥ L for all n ∈ N.
(ix) It is bounded if it is bounded above and below.

Note: A sequence (an) being bounded is equivalent to saying that there exists K ∈ R such
that |an| ≤ K for all n ∈ N. Furthermore, this is equivalent to the set {an : n ∈ N} being
bounded in the sense of Definition 1.1.6

2.2 Definition of Limits

Definition 2.2.1 A real sequence (an) converges to a real number L ∈ R if, for each ε > 0,
there exists N ∈ N such that, for all n > N , we have |an − L| < ε. In this case, we call L
the limit of (an) and we write either an → L or lim

n→∞
an = L. Here, we call (an) convergent.

Remark Let’s take a breather; Definition 2.2.1 is the first rigorous definition of a limit we have
encountered, and other definitions will be built from it. Thus, it is important you have an idea
of what this definition says. Indeed, we will explain it in words and we will provide a geometric
interpretation in Figure 1.

(i) Given a sequence (an), we can show that it ‘approaches’ the number L as n ∈ N gets large
by showing that for any positive number (ε > 0), there exists a point in the sequence aN
(there exists N ∈ N) after which (for all n > N) every term in the sequence lies within
distance that positive number of the number L (|an − L| < ε). Because this needs to work
for any ε, the idea is that the distance can be as large or as small as you like and we should
still be able to find N ∈ N to make this work.

(ii) Geometrically, this means that if we plot n against an on a pair of axes, then after N ,
every point will live inside a rectangle with width 2ε centred on the line an = L.
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n

an

L

N

2ε

Figure 1: The geometric interpretation of the convergence of the sequence (an).

Note: Thus, (an) converges if and only if there are a finitely-many an /∈ (L− ε, L+ ε).

Theorem 2.2.3 (Uniqueness of Limits) The limit of a convergent sequence is unique.

Proof : Let (an) be convergent and suppose that an → L and an → K. We must prove L = K.
Indeed, suppose ε > 0 is given. By Definition 2.2.1, we know the following:

� There exists N1 ∈ N such that, for all n > N1, |an − L| < ε/2.

� There exists N2 ∈ N such that, for all n > N2, |an −K| < ε/2.

Define N = max{N1, N2}. Then, for all n > N , we see that

|L−K| = |L− an + an −K|
≤ |L− an|+ |an −K|, by the Triangle Inequality,

= |an − L|+ |an −K|, by properties of the absolute value,

< ε/2 + ε/2, by the inequalities above,

= ε.

This shows that the ‘distance’ between the real numbers L and K is less than the positive number
ε, but this works for any ε, so we must have |L−K| = 0. In other words, L = K as required.

Note: We can now talk about the limit of a convergent sequence. Therefore, an → L is
equivalent to an − L → 0, which itself is equivalent to |an − L| → 0.

Proposition 2.2.6 (Domination) Let (an) and (bn) be sequences where |an| ≤ |bn| for every
n ∈ N and further suppose that bn → 0. Then, an → 0.

Proof : By assumption, for all ε > 0, there exists N ∈ N such that |bn| < ε for all n > N . But
then, we know that |an| ≤ |bn| < ε for all n > N , which is precisely to say an → 0.
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Proposition 2.2.7 (Shift Invariance of the Limit) Suppose the sequence (an) converges to
L ∈ R and let m ∈ N. Then, the sequence (an+m) converges to L also.

Proof : Let ε > 0 be given. Then, there exists N ∈ N such that, for all n > N , |an − L| < ε. But
n+m > n > N , so it also follows that |an+m − L| < ε, as required.

Proposition 2.2.8 Let (an) and (bn) be sequences with an → L and an = bn for all except
finitely-many n ∈ N. Then, bn → L.

Proof : Let ε > 0. Then, there is N1 ∈ N such that |an − L| < ε, when n > N2. We now consider
the set {n ∈ N : an ̸= bn}; by assumption, this set is finite. Therefore, it has a maximal element,
called N2. Therefore, we know that an = bn for all n > N2, where we define N = max{N1, N2}.
Thus, |bn − L| = |an − L| < ε for all n > N , which is to say bn → L as required.

2.3 Theorems About Limits

Theorem 2.3.1 Any convergent sequence is bounded.

Proof : Let an → L. Then, there exists N ∈ N such that, for all n > N , we have |an − L| < 1
(remember this works for all ε > 0, so it works for ε = 1 in particular). By the Triangle Inequality,
this means that |an| ≤ |L|+1 for all n > N . Thus, define K := max({|an| : n ≤ N} ∪ {|L|+ 1}).
Then, |an| ≤ K for all n.

Note: It is clear that {|an| : n > N} is bounded (i.e. by |L|+1), but we aren’t done here.
It might be that an earlier term of the sequence is larger than this number; this is why
we consider {|an| : n ≤ N}. Thus, K is the largest number amongst the earlier terms of
the sequence and |L|+ 1.

Theorem 2.3.2 Let (an) and (bn) such that an → 0 and (bn) is bounded. Then, anbn → 0.

Proof : Suppose that K ∈ R such that |bn| ≤ K. For any ε > 0, there exists N ∈ N such that
|an| < ε/K whenever n > N . By the boundedness condition, we see that |anbn| < ε/K ·K = ε
for all n > N ; this is precisely to say anbn → 0.

Theorem 2.3.3 (Algebra of Limits) Let an → A and bn → B. Then, the following are true:
(i) an + bn → A+B.
(ii) anbn → AB.
(iii) λan + µbn → λA+ µB for any λ, µ ∈ R.
(iv) an/bn → A/B if bn ̸= 0 for all n ∈ N and B ̸= 0.
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Proof : (i) For each ε > 0, there exists N1, N2 ∈ N such that |an −A| < ε/2 for all n > N1 and
|bn −B| < ε/2 for all n > N2. Then, for N = max{N1, N2} and n > N , we see that

|an + bn − (A+B)| = |an −A+ bn −B|
≤ |an −A|+ |bn −B|
< ε/2 + ε/2

= ε.

This is precisely to say that an + bn → A+B.

(ii) Since (bn) is convergent, it is bounded by Theorem 2.3.1. This means there exists K ∈ R
such that |bn| ≤ K. Let ε > 0 be given and define the number

ε′ =
ε

K + |A|
> 0.

Then, there exists N1, N2 ∈ N such that |an −A| < ε′ when n > N1 and |bn −B| < ε′ when
n > N2. Once again, let N = max{N1, N2} and suppose that n > N . We see that

|anbn −AB| = |anbn −Abn +Abn −AB|
= |(an −A)bn −A(bn −B)|
≤ |an −A||bn|+ |A||bn −B|
< ε′K + |A|ε′

= ε.

This is precisely to say that anbn → AB.

(iii) This is an immediate consequence of (i) and (ii).

(iv) It suffices to prove that 1/bn → 1/B and then the result will follow from (ii). Indeed, let
ε > 0 be given. Since we assume that B ̸= 0, we know |B|/2 > 0. We now define the number
ε′ = ε|B|2/2 > 0. By assumption, there exist N1, N2 ∈ N such that |bn −B| < |B|/2 for all
n > N1 and |bn −B| < ε′ for all n > N2. Again, let N = max{N1, N2}. For all n > N , we have∣∣∣∣ 1bn − 1

B

∣∣∣∣ = |bn −B|
|bn||B|

<
ε′

|B||B|/2
= ε.

This is precisely to say that 1/bn → 1/B, which suffices.

Note: The proof of (ii) in the Algebra of Limits is different in the notes; above, we have
given a direct ε-N proof but the notes uses a clever argument to avoid these gritty details.

Method – Proofs without the Algebra of Limits: Suppose we are asked to prove that a
product of two sequences converges without using the Algebra of Limits. Then, we can
just ‘copy’ the proof of Theorem 2.3.3 with our sequences/limits substituted into it.
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Theorem 2.3.4 (Squeeze Rule) Let (an), (bn), (cn) be sequences where an ≤ bn ≤ cn for all
n ∈ N as well as an → L and cn → L. Then, it follows that bn → L.

Proof : By assumption, for any given ε > 0, there exists N ∈ N such that, for all n > N , we
have |an − L| < ε and |cn − L| < ε. By the properties of the absolute value, this means that
an > L − ε (we can rearrange an − L > −ε to get this) and cn < L + ε (we can rearrange
cn − L < ε to get this). Thus, for all n > N , we have

bn ≥ an> L− ε,

bn ≤ cn< L+ ε.

Combining gives L − ε < bn < L + ε, which is equivalent to −ε < bn − L < ε; this is precisely
|bn − L| < ε. Consequently, bn → L as required.

Theorem 2.3.5 (Monotone Convergence Theorem) Let (an) be an increasing sequence that
is bounded from above. Then, (an) converges to L := sup{an : n ∈ N}.

Proof : First, note that L exists by the Axiom of Completeness. Let ε > 0 be given. Because
L is an upper bound on (an), we know that an ≤ L for all n ∈ N. In particular, we know that
an ≤ L < L+ ε. Because L is the least upper bound, we know that any number below it is not
an upper bound. Hence, L− ε < L is not an upper bound; this means there exists at least one
term in the sequence larger than it (i.e. there exists N ∈ N such that aN > L− ε). Because (an)
is increasing, we know that an ≥ aN for all n > N; this means that an > L − ε for all n > N .
Combining this with the first inequality we stated gives L− ε < an < L+ ε for all n > N , which
is precisely |an − L| < ε.

Note: The proof of the Monotone Convergence Theorem here is of a slightly different
flavour to that in the lecture notes; the same ideas are used but we do a more direct proof
here. In the notes, it is framed in the context of a contradiction argument.

Corollary 2.3.6 Let (an) be a decreasing sequence that is bounded from below. Then, (an)
converges to K := inf{an : n ∈ N}.

Proof : Define bn := −an and apply the Monotone Convergence Theorem (MCT) to (bn).

Definition Let S ⊆ R. We say a sequence (an) is contained in S if an ∈ S for every n ∈ N.

Remark 2.3.8 Just because a sequence is contained in a set does not mean that the limit of that
sequence (if it exists) is also contained in the set. For example, the sequence (1/n) is contained
in the half-open interval S := (0, 1] but the limit of this sequence 0 /∈ S.
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Theorem 2.3.7 Let S ⊆ R be non-empty and bounded above. Then, there exists a sequence
(an) in S such that an → L := supS.

Proof : Because L is the least upper bound on S (by definition of the supremum), the number
L− 1

n is not an upper bound on S. Now, using the fact that L is an upper bound implies that
there exists an element of S in the interval (L − 1

n , L]. Call this element an. Doing this for all
n ∈ N, we obtain a sequence (an). Since each term of the sequences satisfies L − 1

n < an ≤ L,
we can see that − 1

n < an − L ≤ 0. The Squeeze Rule gives an − L → 0; this means an → L.

Theorem 2.3.9 (Stability of Non-Negativity under Limits) Let (an) be a sequence such that
an ≥ 0 for all n ∈ R and an → L. Then, the limit L ≥ 0.

Proof : Assume to the contrary that L < 0. Defining ε := −L > 0, we see that |x− L| < ε
implies x < 0 for any x ∈ R. Because an → L, we can find some N ∈ N such that, for all n > N ,
|an − L| < ε. By our observation, this implies an < 0, a contradiction to an ≥ 0 for all n.

Corollary 2.3.10 (Stability of Closed Inequalities under Limits) Let an → A and bn → B be
sequences with an ≤ bn for all n ∈ N. Then, the limits satisfy A ≤ B.

Proof : Apply Theorem 2.3.9 to the sequence (bn − an).

Definition 2.3.12 A subset S ⊆ R is called closed if every convergent sequence in S also
has its limit in S.

Corollary 2.3.11 Closed intervals [a, b] are closed in the sense of Definition 2.3.12.

Definition A collection of intervals I1, I2, I3... ⊆ R is called nested if I1 ⊇ I2 ⊇ I3 ⊇ · · · .

Lemma 2.3.14 (Nested Intervals Lemma) Let (In) be a sequence of nested non-empty closed
intervals In = [an, bn]. Then, the intersection of all intervals ∩nIn ̸= ∅.

Proof : By the nested assumption, the sequence of lower endpoints (an) is increasing and the
sequence of upper endpoints (bn) is decreasing. Moreover, an ≤ bm for all n,m ∈ N. In particular,
both sequences are monotonic and bounded. By the MCT, they converge. Say an → A and
bn → B. It now follows that an ≤ A ≤ B ≤ bn, where we use the stability of closed inequalities
to conclude that A ≤ B. Thus, the non-empty interval [A,B] is contained in every In.
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Definition An infinite subset S ⊆ R is countably infinite if there exists a bijection of the
form N → S (or, equivalently, of the form S → N).

Theorem 2.3.15 The interval (0, 1) is not countable.

Proof : Assume to the contrary that (0, 1) is countable. This means that we can find a sequence
(xn) such that for each x ∈ (0, 1), there exists a unique n ∈ N such that x = xn. We now
inductively construct a nested sequence of closed intervals:

I1 is any closed interval in [0, 1] not containing x1,

I2 is any closed interval in I1 not containing x2,

I3 is any closed interval in I2 not containing x3,

...

By the Nested Intervals Lemma, there must be at least one number y ∈ (0, 1) which lives in
every one of these closed intervals In. But by definition, xn /∈ In, so y ̸= xn for any n. Hence,
there does not exist a unique n ∈ N where y = xn, a contradiction.

Corollary 2.3.16 The set of real numbers R is not countable.
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3 Subsequences

3.1 Definition and Convergence Properties

Definition 3.1.1 A sequence (bk) is called a subsequence of (an) if there exists a strictly
increasing sequence of positive integers (nk) such that bk = ank

for all k ∈ N.

Note: In other words, the terms in (bk) must occur in (an) in the same order. An alternate
take is this: we can get (bk) from (an) by deleting (possibly infinitely-many) terms.

Theorem 3.1.3 If an → L and (bk) is a subsequence of (an), then bk → L.

Proof : Let ε > 0 be given. Since an → L, there exists N ∈ N such that, for all n > N , we
have |an − L| < ε. By the definition of a subsequence, we know that bk = ank

, where (nk)
is a strictly increasing sequence of positive integers. Note that n1 ≥ 1 and, if nk ≥ k, then
nk+1 ≥ nk + 1 ≥ k + 1. By induction, we conclude that nk ≥ k for all k ∈ N. Therefore, for all
k > N , we have nk ≥ nN > N which means |bk − L| = |ank

− L| < ε.

3.2 The Bolzano-Weierstrass Theorem

Definition Let (an) be a sequence. We call a term am dominant if every subsequent term
is not larger than it, that is to say an ≤ am for all n > m.

Lemma 3.2.1 Every sequence has a monotonic subsequence.

Proof : Let (an) be a sequence and D be the set of dominant terms.

(i) If D is infinite, then the subsequence of dominant terms is decreasing, by definition of
dominant. We have found a monotonic subsequence.

(ii) If D is finite (or empty), then there exists a term am beyond which there are no dominant
terms. Let n1 = m+1; since an1 is not dominant, there exists n2 > n1 such that an2 > an1 ,
but since an2 is not dominant, there exists n3 > n2 such that an3 > an2 , and so forth. The
subsequence (ank

) is clearly increasing. We have found a monotonic subsequence.

Theorem 3.2.2 (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent
subsequence.

Proof : Let (an) be a bounded sequence. Then, there exists a monotonic subsequence (ank
) by

Lemma 3.2.1. But because (an) is bounded, it follows that (ank
) is also bounded (by the same

upper and lower bounds as the original sequence). Hence, (ank
) converges by the MCT.
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3.3 The Cauchy Property

Definition 3.3.1 A sequence (an) is Cauchy (or has the Cauchy property) if, for each ε > 0,
there exists N ∈ N such that, for all n,m > N , we have |an − am| < ε.

Remark The definition of Cauchy is very similar to that of convergent, with a key difference; no
mention of a real number L. Instead, we look at the difference between two terms an and am. In
words, where convergence is about having all terms after a certain point being within distance ε
of the limit L, the Cauchy property is about having all terms after a certain point being within
distance ε of each other.

Lemma 3.3.2 If (an) is convergent, then it is Cauchy.

Proof : Suppose an → L and let ε > 0 be given. Then, there exists N ∈ N such that, for all
n > N , we have |an − L| < ε/2. But then, for all n,m > N , we have

|an − am| = |an − L+ L− am|
≤ |an − L|+ |am − L|
< ε/2 + ε/2

= ε.

Lemma 3.3.3 If (an) is Cauchy, then it is bounded.

Proof : The proof is similar to that of Theorem 2.3.1. By the Cauchy property, there exists
N ∈ N such that, for all n,m > N , we have |an − am| < 1. By the Triangle Inequality, this
means that |an| ≤ |aN+1| + 1 (since the first integer m strictly greater than N is N + 1).
We now only need to consider the maximum of the terms |an| for n ≤ N . Well, if we define
M := max({|an| : n ≤ N} ∪ {|aN+1|+ 1}), we immediately see that |an| ≤ M for all n, which is
precisely that (an) is bounded.

Lemma 3.3.4 If (an) is Cauchy and it has a subsequence ank
→ L, then an → L.

Proof : Let ε > 0 be given and consider both the convergence and the Cauchy property: there
exists N1 ∈ N such that, for all n > N1, |ank

− L| < ε/2 and there exists N2 ∈ N such that, for
all n,m > N2, |an − am| < ε/2. For N = max{N1, N2} and n > N , we have

|an − L| =
∣∣an − anN+1 + anN+1 − L

∣∣
≤
∣∣an − anN+1

∣∣+ ∣∣anN+1 − L
∣∣

< ε/2 + ε/2

= ε.
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Theorem 3.3.5 A sequence (an) converges if and only if it is Cauchy.

Proof : (⇒) This is Lemma 3.3.2.

(⇐) If (an) is Cauchy, then it is bounded (Lemma 3.3.3). Hence, it has a convergent subsequence
(Bolzano-Weierstrass Theorem), which means (an) itself converges (Lemma 3.3.4).

3.4 Accumulation Points, the Limit Inferior and the Limit Superior

Definition 3.4.1 We call K ∈ R an accumulation point (or limit point or subsequential limit)
of a sequence (an) if, for every ε > 0, the set {k ∈ N : |ak −K| < ε} is infinite.

Note: For the usual limit, we want the set {k ∈ N : |ak − L| ≥ ε} to be finite. In other
words, the number of terms greater than distance ε from L is finite. As for an accumulation
point, we want the number of terms less than the distance ε from K to be infinite.

Theorem 3.4.2 The number K ∈ R is an accumulation point of (an) if and only if there
exists a subsequence (ank

) such that ank
→ K.

Proof : (⇐) Suppose (ank
) is a subsequence of (an) such that ank

→ K. We must show that K
is an accumulation point of (an). Indeed, for any ε > 0 given, there exists N ∈ N such that, for
all n > N , |ank

−K| < ε. Since ank
are all terms of (an), there are infinitely-many terms of the

sequence within distance ε of K (this is precisely Definition 3.4.1).

(⇒) Suppose K is an accumulation point of (an). We will construct a subsequence of (an)
which converges to K. First, for ε = 1 the definition of an accumulation point implies there are
infinitely-many terms of the sequence within distance one of K, that is infinitely-many terms
where |ak −K| < 1. We will chose one term of the sequence where this is the case; call it an1 .
Second, repeating this with for ε = 1/2, we can find a term an2 which is within distance 1/2 of
K. Doing the same for ε = 1/3, we can find a term an3 within distance 1/3 of K, etc. Repeating
this ad infinitum, we get a subsequence (ank

) whereby |ank
−K| < 1/k. By the Squeeze Rule,

|ank
−K| → 0, which is equivalent to ank

→ K.

Definition Let (an) be bounded. Its tail is the sequence (ck) where ck := sup{an : n > k}.

Remark By definition, (ck) is decreasing because we are taking the supremum over a set which
becomes smaller as k increases. It is also bounded, by the boundedness of (an), so we can apply
the MCT to conclude that it also converges. This makes the next definition sensible.

Definition 3.4.3 Let (an) be bounded. The limit superior is lim sup an := lim
k→∞

ck.
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Note: If (an) is unbounded above, we define lim sup an = ∞. Note that if the sequence is
bounded above only, then the tail is still defined and decreasing but it may be unbounded
below; in this case, we define lim sup an = −∞.

Definition 3.4.4 Let (an) be bounded. The limit inferior is lim inf an := −(lim sup(−an)).

Remark An alternate definition of the limit inferior mirrors that of the limit superior. Indeed,
we can consider the sequence dk := inf{an : n > k} and from it define lim inf an := lim

k→∞
dk.

Theorem 3.4.5 Let (an) be bounded. Then, we can say the following:
(i) lim sup an is the largest accumulation point of (an).
(ii) lim inf an is the smallest accumulation point of (an).

Proof : (i) Let L := lim sup an = lim ck. Since (an) is bounded, we know that, for all n ∈ N,
|an| ≤ K for some K > 0. This is equivalent to an ∈ [−K,K] for all n, from which we refer to
Corollary 2.3.10 to conclude that L ∈ [−K,K]. As remarked above, (ck) is bounded.

Now, assume to the contrary that L = lim sup an is not an accumulation point of (an). Then,
there exists ε > 0 such that the set {k ∈ N : |ak − L| < ε} is finite. In other words, there are
finitely-many terms ak ∈ (L − ε, L + ε). Given that there are only a finite number of terms in
this interval, there must exist N ∈ N such that, for all n > N , an /∈ (L− ε, L+ ε). Consequently,
for n > N , ck = sup{an : n > k} /∈ (L− ε, L+ ε), meaning that ck ↛ L, a contradiction.

We have shown L = lim sup an is an accumulation point, so it remains to show that it is the largest
accumulation point. It suffices to show that any M > L = lim sup an is not an accumulation
point of (an). First, we choose ε > 0 such that L + ε < M . By definition, there exists N ∈ N
such that, for all n > N , we have |ck − L| < ε/2 (since L = lim sup an = lim ck exists). Hence,

ck = ck − L+ L <
ε

2
+ L < M − ε

2
,

where the last inequality comes by subtracting ε/2 from the inequality L+ ε < M which we had
before. For n > N then, we have ck < M − ε/2. By the definition of ck, it implies that M − ε/2
is an upper bound on (an) for all n > N . Hence, an < M−ε/2 for all n > N , which is equivalent
to an /∈ (M − ε/2,M + ε/2) if n > N . This is precisely to say that M is not an accumulation
point of (an).

(ii) A near-identical argument to (i) with L := lim inf an = lim dk, for dk = inf{an : n > k}.
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4 Series

4.1 Definition and Convergence

Definition 4.1.1 For a series
∑∞

n=1 an, we say that an is the nth term of the series and we

call sk :=
∑k

n=1 an the kth partial sum. We say that the series converges if the sequence of
partial sums (sk) converges in the usual sense. Otherwise, we say that the series diverges.

Proposition (Harmonic Series) The series
∑∞

n=1
1
n diverges.

Proof : We will show that the sequence of partial sums (sk) has an unbounded (and so divergent)
subsequence; this will imply that (sk) itself is divergent by the contrapositive of Theorem 3.1.3.
Indeed, we consider the sequence (s2p), that is the partial sums up to k = 2p:

s2p = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2p−1 + 1
+ · · ·+ 1

2p

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2p−1 + 1
+ · · ·+ 1

2p

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2p
+ · · ·+ 1

2p

)
= 1 +

1

2
+

1

2
+ · · ·+ 1

2

= 1 +
p

2
.

This is clearly unbounded, so (s2p) diverges which implies that
∑∞

n=1
1
n diverges.

Proposition (Geometric Series) For q ∈ (−1, 1), the series
∑∞

n=1 q
n converges to 1

1−q .

Proof : We again look to the sequence of partial sums:

sk = 1 + q + q2 + · · ·+ qk

⇒ qsk = q + q2 + q3 + · · ·+ qk+1

⇒ (1− q)sk = 1− qk+1

⇒ sk =
1− qk+1

1− q
.

Applying the Algebra of Limits, noting that qk+1 → 0, we conclude sk → 1
1−q .

Remark It is usually not possible to derive such a nice formula for sk as was done for the geometric
series proof. In fact, it would be better to develop some tests based on the sequence (an) of terms
in the series rather than the sequence (sk) of partial sums; this would (will) make life a bit easier.
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4.2 Convergence Tests for Series

Theorem 4.2.1 (Divergence Test) If
∑∞

n=1 an converges, then an → 0.

Proof : By assumption, the sequence sk =
∑k

n=1 an converges to some limit L ∈ R. Hence,
sk+1 → L by Theorem 3.1.3 (since (sk+1) is a subsequence). But ak+1 = sk+1 − sk → L−L = 0
by the Algebra of Limits. Since this works for all k, it must be that an → 0.

Note: We call Theorem 4.2.1 the Divergence Test because, in its present form, it isn’t
the most useful (the result assumes that the series converges) but the contrapositive can
immediately tell us if a series diverges: if an ↛ 0, then

∑∞
n=1 an diverges. Be warned: it

may be that an → 0 but we still have that
∑∞

n=1 an diverges (e.g. the harmonic series)!

Remark If the terms of a series are all non-negative (an ≥ 0 for all n), then the sequence (sk) of
partial sums is increasing. Indeed, sk+1 = sk + ak+1 ≥ sk. Therefore, the MCT implies that the
series

∑∞
n=1 an is convergent if and only if the sequence (sk) is bounded.

Notation To indicate the sequence of partial sums of
∑∞

n=1 an is bounded above, we will write

∞∑
n=1

an < ∞.

More specifically, if the sequence of partial sums is bounded above by K ∈ R, we will write

∞∑
n=1

an ≤ K.

Note: If 0 ≤ an ≤ bn and
∑∞

n=1 bn ≤ K, we immediately conclude that
∑∞

n=1 an ≤ K.

Theorem 4.2.3 (Comparison Test) Let an > 0 and bn > 0 for all n ∈ N.
(i) If an/bn is bounded above and

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

(ii) If bn/an is bounded above and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges.

Proof : (i) By assumption, there exists K > 0 such that 0 ≤ an/bn ≤ K. This is equivalent to
0 ≤ an ≤ Kbn. Since

∑∞
n=1 bn converges, this means that

∑∞
n=1 bn < ∞. Consequently, we have

∞∑
n=1

an ≤ K
∞∑
n=1

bn < ∞,

that is
∑∞

n=1 an converges also.

(ii) We see that
∑∞

n=1 an convergent implies
∑∞

n=1 bn convergent by (i) above. The contrapositive
of this is precisely the desired statement.
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Note: We call Theorem 4.2.3 the Comparison Test because the idea is to look at a series∑∞
n=1 an (that we don’t know if it converges or diverges) and ask ourselves what familiar

series does this appear like which we do know converges/diverges?. For example, the series

∞∑
n=1

n

2n2 + sinn

looks complicated. However, for large n, the sinn part is irrelevant (sine takes values
between 1 and −1), so the series looks roughly like

∑∞
n=1 n/2n

2 =
∑∞

n=1 1/2n, and this is
very similar to the harmonic series. Hence, we use the Comparison Test with bn = 1/n.

Theorem 4.2.7 (Ratio Test) Let an > 0 for all n ∈ N where also an+1/an → L.
(i) If L < 1, then

∑∞
n=1 an converges.

(ii) If L > 1, then
∑∞

n=1 an diverges.

Observation 1: if (an) is a sequence where an → L < 1, then there exists N ∈ N such that, for
all n > N , we have an < 1− γ, where γ := 1−L

2 > 0. Indeed, we can take ε = γ in the definition
of convergence and note that |an − L| < γ implies this fact.

Observation 2: if (an) is a sequence where an → L > 1, then there exists N ∈ N such that, for
all n > N , we have an > 1 + δ, where δ := L−1

2 > 0. Indeed, we can take ε = δ in the definition
of convergence and note that |an − L| < δ implies this fact.

Proof : (i) By Observation 1, there exist N ∈ N and γ > 0 such that, for all n > N , we have

0 ≤ an+1

an
< 1− γ.

This is equivalent to 0 ≤ an+1 < (1− γ)an. By induction, we conclude that

aN+1+n < (1− γ)naN+1

for all n ∈ N. Therefore, we can see that

∞∑
n=1

an =
N+1∑
n=1

an +
∞∑

n=N+2

an ≤
N+1∑
n=1

an + aN+1

∞∑
n=1

(1− γ)n < ∞,

where we know the final sum converges by applying the geometric series formula.

(ii) By Observation 2, there exist N ∈ N and δ > 0 such that, for all n > N , we have
an+1

an
> 1 + δ.

This is equivalent to an+1 > (1 + δ)an. By induction, we conclude that

aN+1+n > (1 + δ)naN+1.

We know that (1+δ)n ≥ 1+nδ; this is the Bernoulli Inequality. The right-hand side is unbounded
above, meaning that the sequence aN+1+n is unbounded. Since this is a subsequence of (an), it
follows that (an) is unbounded. In particular, it doesn’t converge (to zero, in particular). The
Divergence Test implies that

∑∞
n=1 an diverges.
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Corollary (Exponentials Beat Polynomials) Let k ∈ N and α ∈ (0, 1). Then, an = nkαn → 0.

Sketch of Proof : The series
∑∞

n=1 an converges (Ratio Test), so an → 0 (Divergence Test).

4.3 Alternating Series

Definition 4.3.1 A series
∑∞

n=1 an is alternating if an ̸= 0 and an+1/an < 0 for all n ∈ N.

Note: In words, an+1/an < 0 means the terms swap signs (+−+− · · · or −+−+ · · · ).

Lemma 4.3.4 Let (an) be a sequence and L ∈ R. If a2k → L and a2k+1 → L, then an → L.

Proof : Let ε > 0 be given. Since a2k → L, there exists K1 ∈ N such that, for all k > K1,
|a2k − L| < ε. Since a2k+1 → L, there exists K2 ∈ N such that, for all k > K2, |a2k+1 − L| < ε.
Let N := max{2K1, 2K2 + 1}. Then, for all n > N , either n is even (for which n > 2K1 and so
|an − L| < ε) or n is odd (for which n > 2K2 + 1 and so |an − L| < ε). Either way, an → L.

Theorem 4.3.3 (Alternating Series Test) Let (an) be a decreasing sequence of positive num-
bers which converges to zero. Then, the alternating series

∑∞
n=1(−1)n+1an converges.

Proof : Let (sk) be the sequence of partial sums and consider the subsequence (s2m):

s2m = a1 − a2 + a3 − a4 + · · ·+ a2m−1 − a2m

= (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m)

⇒ s2m+2 − s2m = a2m+1 − a2m+2

≥ 0.

This implies that the sequence (s2m) is increasing. Furthermore, we see that

s2m = a1 − (a2 + a3)− · · · − (a2m−2 + a2m−1)− a2m

< a1.

This implies that (s2m) is bounded above by a1. By the MCT, we know that s2k → L, for some
L ∈ R. Consider now the subsequence (s2m+1). But notice that s2m+1 = s2m+a2m+1. Applying
the Algebra of Limits tells us that s2m+1 → L+0 = L, since an → 0. Thus, Lemma 4.3.4 implies
that sk → L also.

Corollary (Alternating Harmonic Series) The series
∑∞

n=1
(−1)n+1

n converges.

Proof : This is an immediate consequence of the Alternating Series Test with an = 1/n.
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4.4 Absolute Convergence

Definition 4.4.1 The series
∑∞

n=1 an converges absolutely if the series
∑∞

n=1 |an| converges
in the usual sense.

Theorem 4.4.2 If
∑∞

n=1 an converges absolutely, then it converges.

Proof : Let (sk) be the sequence of partial sums for the series
∑∞

n=1 an. Then, (sk) converges
if and only if it is Cauchy (Theorem 3.3.5). Hence, it suffices to show that (sk) is a Cauchy
sequence. Now, let (tk) be the sequence of partial sums for the series

∑∞
n=1 |an|; we assume that

this converges, which means (tk) is Cauchy. Hence, for each ε > 0, there exists N ∈ N such that,
for all m > n > N , we have |tm − tn| < ε. But notice that this says

|tm − tn| =
m∑

k=n+1

|ak| < ε.

Therefore, for all m > n > N , we can apply the Triangle Inequality and use the above to see

|sm − sn| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| < ε,

by the Triangle Inequality. Hence, (sk) is Cauchy and therefore convergent.

Note: The converse of Theorem 4.4.2 fails; convergence doesn’t imply absolute conver-
gence. Indeed, the alternating harmonic series

∑∞
n=1(−1)n+1/n converges, but the series∑∞

n=1

∣∣(−1)n+1/n
∣∣ =∑∞

n=1 1/n diverges; notice that this is the usual harmonic series.

4.5 The Importance of Absolute Convergence

Informally, absolute convergence allows one to rearrange the terms of a real series, whereas
regular convergence does not allow for this. More precisely, if f : N → N is a bijection, then the
series

∑∞
n=1 af(n) can be understood as a rearrangement of the series

∑∞
n=1 an.

Theorem 4.5.2 Let S1 ⊆ S2 ⊆ S3 ⊆ · · · be an increasing sequence of finite subsets Sk ⊆ N
such that their union is all the natural numbers, i.e. ∪∞

k=1Sk = N. Furthermore, let (an)
be a sequence such that

∑∞
n=1 an converges absolutely. Then,

lim
k→∞

∑
n∈Sk

an =

∞∑
n=1

an.
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Proof : Since we know
∑∞

n=1 an converges absolutely, Theorem 4.4.2 implies the existence of the
limit L :=

∑∞
n=1 an ∈ R. For any ε > 0, we can choose N ∈ N such that

k > N ⇒

∣∣∣∣∣
k∑

n=1

an − L

∣∣∣∣∣ < ε

2
,

by the assumption that the sequence of partial sums converges, and

m > k > N ⇒
m∑

n=k+1

|an| <
ε

2
,

by the assumption that the sequence of partial sums of
∑∞

n=1 |an| is (convergent and therefore)
Cauchy. If we choose K ∈ N such that {1, ..., N} ⊆ SK , then we get the following for all n > K:

∣∣∣∣∣∣
∑
n∈Sk

an − L

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
N∑

n=1

an − L+
∑
n∈Sk
n>N

an

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
N∑

n=1

an − L

∣∣∣∣∣+ ∑
n∈Sk
n>N

|an|

< ε/2 + ε/2

= ε.

Remark 4.5.3 In the case that each of the subsets Sk = {1, 2, ..., k}, then the left-hand side and
the right-hand side of the punchline of Theorem 4.5.2 are the same, by definition.

Theorem 4.5.4 Let
∑∞

n=1 an be absolutely convergent with limit L ∈ R and f : N → N be
a bijection. Then, the series

∑∞
n=1 af(n) is absolutely convergent with the same limit L.

Proof : This follows from Theorem 4.5.2 where Sk = f({1, ..., k}). Then, absolute convergence
follows by replacing an by |an| in the statement of that result.

Note: We can generalise things a bit. Indeed, let S be an infinite countable indexing set
and (aη)η∈S a family of real numbers aη ∈ R. Suppose also that

∑∞
n=1

∣∣af(n)∣∣ converges.
If g : N → I is another bijection, we know that f−1 ◦ g : N → N is bijective. Then,

∞∑
n=1

∣∣af(n)∣∣ = ∞∑
n=1

∣∣af(f−1(g(n)))

∣∣ = ∞∑
n=1

∣∣ag(n)∣∣
and

∞∑
n=1

af(n) =
∞∑
n=1

af(f−1(g(n))) =
∞∑
n=1

ag(n).
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Definition 4.5.5 We say
∑

η∈S aη converges absolutely if
∑∞

n=1 af(n) converges absolutely
in the usual sense for some (and therefore any) bijection f : N → I.

Remark An analogue of Theorem 4.5.2 holds for series as in Definition 4.5.5. The difference here
is that the subsets Sk are not necessarily finite.

Theorem (Fubini’s Theorem for Sums) Let (anm)n,m∈N be a family of real numbers and
assume

∑
n,m∈N |anm| converges. Then, both the sum

∑∞
m=1 anm converges absolutely for

all n ∈ N and the sum
∑∞

n=1 anm converges absolutely for all m ∈ N. Moreover, we have

∑
n,m∈N

anm =

∞∑
n=1

( ∞∑
m=1

anm

)
=

∞∑
m=1

( ∞∑
n=1

anm

)
.
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5 Functions and Continuity

5.1 Sequential Continuity

Definition 5.1.1 Let D ⊆ R. Then, f : D → R is continuous at a ∈ D if, for all sequences
(xn) in D where xn → a, we have f(xn) → f(a). If f is not continuous at a ∈ D, we say
it is discontinuous at a ∈ D. We say f is continuous if it is continuous at every a ∈ D.

Note: Definition 5.1.1 is sequential continuity, since it’s based on convergence of sequences.

Lemma The function f : R → R where f(x) = c is continuous, for a fixed c ∈ R.

Proof : Let a ∈ R and xn → a. Then, f(xn) = c → c = f(a).

Lemma The function g : R → R where g(x) = x is continuous.

Proof : Let a ∈ R and xn → a. Then, g(xn) = xn → a = g(a).

Lemma The function h : R \ {0} → R where h(x) = 1
x is continuous.

Proof : Let a ∈ R\{0} and xn → a. Then, h(xn) =
1
xn

→ 1
a = h(a) by the Algebra of Limits.

Proposition Every function f : Z → R is continuous.

Proof : Let a ∈ Z and (xn) be a sequence in Z where xn → a. By definition of convergence, there
exists N ∈ N such that, for all n > N , we have |xn − a| < 1/2. However, since xn ∈ Z for every
n, this tells us that the difference between two integers is less than 1/2; this means the integers
are equal. Thus, for any ε > 0 and n > N , we have |f(xn)− f(a)| = |f(a)− f(a)| = 0 < ε.
Consequently, f(xn) → f(a).

Theorem 5.1.3 (ε-δ Continuity) A function f : D → R is continuous at a ∈ D if and only
if for each ε > 0, there exists δ > 0 such that, for all x ∈ D with |x− a| < δ, we have
|f(x)− f(a)| < ε.

Proof : (⇐) Suppose that f satisfies the ε-δ definition of continuity. We must show that f is
continuous in the usual sense of Definition 5.1.1. Well, let (xn) be a sequence in D where xn → a.
By the ε-δ property, there exists δ > 0 such that |f(x)− f(a)| < ε if |x− a| < δ. Since xn → a,
we can choose N ∈ N such that |xn − a| < δ for all n > N . Therefore, we will get for free that
|f(xn)− f(a)| < ε when n > N . This is precisely to say f(xn) → f(a), as required.
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(⇒) We prove the contrapositive, so suppose that f doesn’t satisfy the ε-δ property. Then,
there exists ε > 0 such that, for all δ > 0, there is some x ∈ D with |x− a| < δ such that
|f(x)− f(a)| ≥ ε. In particular, let δ = 1/n and let xn ∈ D be the element corresponding to x
where |xn − a| < 1/n. Clearly, the sequence xn → a but f(xn) ↛ f(a) since |f(xn)− f(a)| ≥ ε.
Hence, f is not continuous.

Remark We explain Theorem 5.1.3 in words and provide a geometric interpretation in Figure 2.

(i) Given a function f : D → R, we can show that it is continuous at a ∈ D by showing
that for any positive number (ε > 0), there exists a small distance (δ > 0) such that if we
move the input of the function away from a by less than that distance (for all x ∈ D with
|x− a| < δ), then the output of the function will move away from f(a) by less than the
given positive number (|f(x)− f(a)| < ε).

(ii) Geometrically, the graph of f(x) should stay inside the rectangle for all x in the rectangle.

x

f(x)

a

f(a) 2ε

2δ

Figure 2: The geometric interpretation of continuity of f : D → R.

5.2 Basic Properties of Continuous Functions

Theorem 5.2.1 (Algebra Property of Continuous Functions) Let f : D → R and g : D → R
be continuous at a ∈ D. Then, the following are true:
(i) f + g is continuous at a.
(ii) fg is continuous at a.
(iii) 1/f is continuous at a if f(x) ̸= 0 for all x ∈ D.

Proof : Let (xn) be a sequence in D such that xn → a. By assumption, we know f(xn) → f(a)
and g(xn) → g(a). Consequently, the Algebra of Limits implies the following:

(f + g)(xn) = f(xn) + g(xn) → f(a) + g(a) = (f + g)(a),

(fg)(xn) = f(xn)g(xn) → f(a)g(a) = (fg)(a),

(1/f)(xn) = 1/f(xn) → 1/f(a) = (1/f)(a).

Thus, f + g and fg and 1/f (so long as f is non-zero on D) are continuous at a.
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Definition A polynomial in x is a function of the form p(x) = a0 + a1x+ · · ·+ anx
n where

the coefficients a0, ..., an ∈ R. If an ̸= 0, we say that the degree of p is n, denoted deg(p).

Proposition 5.2.2 Every polynomial function p : R → R is continuous.

Proof : We prove this by induction on the degree of the polynomial, namely n. Indeed, the base
case is where n = 0, so the polynomial is constant and is therefore continuous. Next, assume
that every polynomial of degree k is continuous and let p be a polynomial of degree k + 1.
Hence, we can write p(x) = xq(x) + a0, where q is a polynomial of degree k. By assumption,
q is continuous; we know that the polynomial g(x) = x is continuous from earlier. Hence, the
Algebra Property of Continuous Functions implies that p is continuous. By induction, the result
holds for all polynomials.

Corollary Let p and q be polynomials and D = {x ∈ R : q(x) ̸= 0}. Then, the function
f : D → R given by f(x) = p(x)/q(x) is continuous. We call this a rational function in x.

Note: Where the coefficients live in R, we denote the set of polynomials in one variable
by R[x]. Furthermore, we denote the set of rational functions in one variable by R(x).

Theorem 5.2.3 Let D,E ⊆ R and f : D → E be continuous at a ∈ D and g : E → R be
continuous at f(a) ∈ E. Then, the function g ◦ f : D → R is continuous at a.

Proof : Let (xn) be a sequence in D with xn → a. By the continuity of f at a, f(xn) → f(a).
By the continuity of g at f(a), (g ◦ f)(xn) = g(f(xn)) → g(f(a)) = (g ◦ f)(a). This is precisely
to say that g ◦ f is continuous at a.

5.3 The Intermediate Value Theorem

Theorem 5.3.1 (Intermediate Value Theorem) Let f : [a, b] → R be continuous and y ∈ R
be a number between f(a) and f(b). Then, there exists c ∈ [a, b] such that f(c) = y.

Proof : If f(a) = f(b), the result is trivial as y = f(a) is the only possibility; just choose c = a.
We will now split into cases, although the second will follow immediately from the first.

(i) Assume that f(a) < f(b). Define the set X := {x ∈ [a, b] : f(x) ≤ y}. Certainly X
is non-empty because a ∈ X and it is bounded above by b. Therefore, the Axiom of
Completeness implies that c := sup(X) exists. Because the interval [a, b] is closed, we
know that the supremum c ∈ [a, b]. Now, let (xn) be a sequence in X such that xn → c
(this exists by Theorem 2.3.7). It follows that f(xn) ≤ y. By the continuity of f , we know
that f(xn) → f(c). As a consequence of the stability of closed inequalities under limits
(Corollary 2.3.10), we know that f(c) ≤ y < f(b). Next, because c is the supremum of
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X, we know that c + 1/n is not in X. Because c < b, we know that c + 1/n ∈ [a, b] for n
sufficiently large. Therefore, for large enough n, we know that f(c + 1/n) > y. Because
c+ 1/n → c, we know that f(c+ 1/n) → f(c) ≥ y. Hence, f(c) = y.

(ii) Assume that f(a) > f(b). Then, define g = −f and apply (i) above to g.

Definition 5.3.4 A function f : D → R is called strictly increasing if, for all x, y ∈ D with
x < y, we have f(x) < f(y).

Lemma 5.3.5 Let k ∈ N. Then, f : [0,∞) → R given by f(x) = xk is strictly increasing.

Proof : Let y > x > 0. Then, we can factorise the following:

f(y)− f(x) = yk − xk = (y − x)(yk−1 + yk−2x+ · · ·+ yxk−2 + xk−1).

But y−x > 0 and the second factor yk−1+ yk−2x+ · · ·+ yxk−2+xk−1 ≥ yk−1 > 0. This implies
that f(y)− f(x) > 0, precisely what was to be proved.

Proposition 5.3.6 (Existence of Roots) Let k ∈ N. Given any y ≥ 0, there exists a unique
x ≥ 0 such that xk = y. We denote this real number by x1/k and call it the kth root of y.

Proof : For existence, let f : [0, 1+ y] → R be given by f(x) = xk. This is continuous as a result
of Proposition 5.2.2. Note that f(0) = 0 ≤ y. Additionally, notice the following:

(i) If y ≥ 1, then f(1 + y) > f(y) = yk ≥ y; this uses that xk is increasing.

(ii) If y < 1, then f(1 + y) ≥ f(1) = 1 > y; this uses that xk is increasing.

Either way, we see that f(1 + y) > y. This means that y is a real number between f(0) and
f(1+y). By the Intermediate Value Theorem (IVT), there exists x ∈ [0, 1+y] such that f(x) = y,
that is xk = y. For uniqueness, let z ∈ [0,∞) also satisfy f(z) = y. Then, f(z) = f(x). This
means that z ̸< x (otherwise it would contradict Lemma 5.3.5) and z ̸> x (since this would again
contradict Lemma 5.3.5). Therefore, z = x.

Lemma 5.3.7 The function g : [0,∞) → R given by g(x) = x1/k is strictly increasing.

Proof : Assume to the contrary that 0 ≤ x < y but g(x) ≥ g(y) and define f(x) := xk. Then,
by Lemma 5.3.5, f(g(x)) ≥ f(g(y)). However, f(g(x)) = x and f(g(y)) = y, which means that
x ≥ y, a contradiction.

Proposition 5.3.8 The function g : [0,∞) → R given by g(x) =
√
x := x1/2 is continuous.
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Proof : (Continuity at a > 0) Let a ∈ (0,∞) and (xn) be a sequence in [0,∞) where xn → a.
For any ε > 0, there exists N ∈ N such that, for all n > N , |xn − a| < ε

√
a, which is a positive

real number. Therefore, for all n > N ,

|g(xn)− g(a)| =
∣∣√xn −

√
a
∣∣

=
|xn − a|

√
xn +

√
a

<
|xn − a|√

a

< ε.

Therefore, g(xn) → g(a), so g is continuous at every a > 0.

(Continuity at a = 0) Let (xn) be a sequence in [0,∞) where xn → 0. For any ε > 0, there exists
N ∈ N such that, for all n > N , we see that 0 ≤ |xn − 0| = xn < ε2. Therefore, for all n > N ,

|g(xn)− 0| = |
√
xn|

=
√
xn

<
√
ε2

= ε.

Hence, g(xn) → 0 = g(0), so g is continuous at zero also.

Proposition 5.3.9 The function g : [0,∞) → R given by g(x) = x1/k is continuous.

Proof : (Continuity at a > 0) Suppose a ∈ (0,∞) and (xn) is a sequence in [0,∞) where xn → a.
Let ε > 0 be given. The trick is to use the factorisation formula in the proof of Lemma 5.3.5.

To this end, define yn := g(xn) = x
1/k
n and b := g(a) = a1/k. Then,

ykn − bk = (yn − b)(yk−1
n + yk−2

n b+ · · ·+ ynb
k−2 + bk−1)

⇒ yn − b =
ykn − bk

yk−1
n + yk−2

n b+ · · ·+ ynbk−2 + bk−1

⇒ |yn − b| ≤
∣∣ykn − bk

∣∣
bk−1

⇔ |g(xn)− g(a)| ≤ |xn − a|
bk−1

.

Since xn → a, there exists N ∈ N such that, for all n > N , |xn − a| < εbk−1. Hence, for n > N ,
the above estimate implies that |g(xn)− g(a)| < ε. We conclude therefore that g(xn) → g(a),
meaning g is continuous at every a > 0.

(Continuity at a = 0) Suppose (xn) is a sequence in [0,∞) where xn → 0. For any ε > 0, there
exists N ∈ N such that, for all n > N , we have |xn − 0| = xn < εk. Therefore, for all n > N ,

|g(xn)− 0| = x1/kn < ε.

Hence, g(xn) → 0 = g(0), so g is continuous at zero also.
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5.4 The Extreme Value Theorem

Definition 5.4.1 Let D ⊆ R and f : D → R. We say that f is bounded above if there
exists M ∈ R such that f(x) ≤ M for all x ∈ D. In this case, we define the supremum
of the function, sup(f), to be its least upper bound. Similarly, we say that f is bounded
below if there exists L ∈ R such that f(x) ≥ L for all x ∈ D. In this case, we define the
infimum of the function, inf(f), to be its greatest lower bound.
If there exists a ∈ D such that f(x) ≤ f(a) = M for all x ∈ D, we say that f attains a
maximum value of M at a. Similarly, if there exists b ∈ D such that f(x) ≥ f(b) = L for
all x ∈ D, we say that f attains a minimum value of L at b.

Note: As expected, we say the function f is bounded if it is bounded above and below.

Remark A function may be bounded but not attain a maximum value. It will, however, still have
a supremum (guaranteed by the Axiom of Completeness). For example, the function f(x) = −1/x
is bounded above by 0, but it never attains this bound. Conversely, if a function attains a
maximum value, it is automatically bounded above and its maximum value is its supremum.

Theorem 5.4.2 Let f : [a, b] → R be continuous. Then, f is bounded above. Furthermore,
there exists c ∈ [a, b] such that f(c) = sup(f).

Proof : Assume to the contrary that f is unbounded above. Then for each n ∈ N, n is not an
upper bound on f , so there exists a number xn ∈ [a, b] such that f(xn) > n. This defines a
sequence (xn) which is bounded; the Bolzano-Weierstrass Theorem implies the existence of a
convergent subsequence (xnk

), say xnk
→ x. Because a ≤ xnk

≤ b for all k ∈ N, we know the
limit a ≤ x ≤ b (Corollary 2.3.10). Since f is continuous, we know that f(xnk

) → f(x). Because
convergent sequences are bounded (Theorem 2.3.1), we know that f(xnk

) is bounded. However,
we assumed that f(xnk

) > nk ≥ k, so f(xnk
) is unbounded above; this is a contradiction.

The image of f , which is the set im(f) := {f(t) : t ∈ [a, b]}, is non-empty and bounded above
(which is what we just proved by contradiction), it has a supremum, M say. Well, for any n ∈ N,
we see that M − 1/n < M , meaning M − 1/n is not an upper bound on im(f) (and therefore f).
Hence, there exists yn ∈ [a, b] such that f(yn) ≥ M − 1/n. Combining this with the definition of
the supremum, we know that

M − 1

n
≤ f(yn) ≤ M.

Since (yn) is bounded, it has a convergent subsequence by the Bolzano-Weierstrass Theorem
(this is the same argument used in the contradiction done above), say (ynk

) such that ynk
→ c.

By the Squeeze Rule applied to the inequalities above, we see that

M ≤ f(c) ≤ M,

where we have used the continuity of f to conclude f(ynk
) → f(c). Thus, f(c) = M = sup(f).
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Corollary 5.4.3 (Extreme Value Theorem) Let f : [a, b] → R be continuous. Then, f is
bounded and attains both a maximum value and a minimum value.

Proof : The fact f is bounded above and attains a maximum value is simply Theorem 5.4.2. To
see it is bounded below and attains a minimum value, define g : [a, b] → R by g(x) = −f(x) and
apply Theorem 5.4.2 to the function g.

5.5 Supplementary Material

Remark Continuity is a so-called local property in this sense: to check if a function f : D → R is
continuous at a ∈ D, it is sufficient to know only how f behaves ‘near’ a; we make this rigorous.

Lemma Let D ⊆ R, a ∈ D and f : D → R be a function. Suppose δ > 0 is any positive
number and the function g is obtained by restricting f onto (a− δ, a+ δ)∩D. Then, f is
continuous at a if and only if g is continuous at a.

Sketch of Proof : Any sequence (xn) inD such that xn → a will eventually end up being contained
in the set (a− δ, a+ δ)∩D. In other words, there exists N ∈ N such that xn ∈ (a− δ, a+ δ)∩D
for all n > N .

Proposition The absolute value function |·| : R → R is continuous.

Proof : The absolute value function x 7→ |x| is the same as the function x 7→ x on the set [0,∞)
and the same as the function x 7→ −x on (−∞, 0). Both of these functions are continuous, so
the previous lemma implies that |·| is continuous at every a ∈ R\{0}. Some special care is taken
for continuity at a = 0. Indeed, consider an arbitrary sequence xn → 0. Then, |xn| → 0, so it is
indeed also continuous at zero.

Definition Let D ⊆ R. A function f : D → R is called piecewise if it is given by

f(x) =


g1(x), if x ∈ X1

g2(x), if x ∈ X2

...

gk(x), if x ∈ Xk

,

where the Xi ⊆ D are pairwise disjoint (Xi ∩Xj = ∅ for all i ̸= j) and D =
⋃k

i=1Xi.

This definition is pretty general, but we will only really be concerned with piecewise functions
f : R → R of the following form, where g : R → R and h : R → R are continuous:

f(x) =

{
g(x), if x ≥ 0

h(x), if x < 0
.
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By definition, this means that f agrees with g on the interval (0,∞) and f agrees with h on the
interval (−∞, 0). The only place we need check now is x = 0.

Proposition For the piecewise function f : R → R with two ‘pieces’ above, f is continuous
at zero if g(0) = h(0) and discontinuous at zero otherwise.

Proof : (Continuous Case) Assume g(0) = h(0). Consider an arbitrary sequence xn → 0; we will
show that f(xn) has but one accumulation point and is therefore bounded (and thus converges).
Because (xn) is convergent, it is bounded (Theorem 2.3.1). Therefore, there exists M ∈ N such
that xn ∈ [−M,M ] for all n. By the Extreme Value Theorem (EVT), we see that both g and
h are bounded when their domains are restricted to [−M,M ]. This therefore means that f is
bounded on [−M,M ], since sup(f) ≤ max{sup(g), sup(h)} and inf(f) ≥ max{inf(g), inf(h)}.
We can conclude that the sequence f(xn) is bounded; we know it has a convergent subsequence
f(xnk

) by the Bolzano-Weierstrass Theorem. There are two possibilities.

(i) There are infinitely-many terms xnk
≥ 0. In this case, we have a subsequence that converges

to zero from the right; this means that f(xnk
) → g(0).

(ii) There are infinitely-many terms xnk
< 0. In this case, we have a subsequence that converges

to zero from the left; this means that f(xnk
) → h(0).

As g(0) = g(0), there is one accumulation point. This implies lim inf f(xn) = f(0) = lim sup f(xn).
Consequently, f(xn) → f(0), which is precisely to say f is continuous at zero.

(Discontinuous Case) Assume g(0) ̸= h(0). To show that f is not continuous at zero, it is enough
to give one sequence (xn) where xn → 0 but f(xn) ↛ f(0). Indeed, consider xn = (−1)n/n → 0.
By the fact that g and h are continuous, we know that g(xn) → g(0) and h(xn) → h(0). We see
that x2k > 0 and x2k+1 < 0, for all k ∈ N. Therefore,

f(xn) =

{
g(xn), if n is even

h(xn), if n is odd
.

As such, f(xn) has two convergent subsequences: f(x2k) → g(0) and f(x2k+1) → h(0). Because
g(0) ̸= h(0), it follows that f(xn) is not convergent and thus f is discontinuous at zero.
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6 Some Symbolic Logic

6.1 Statements and their Symbolic Manipulation

Definition A statement is, for our purposes, any declaration which is unambiguously true
or false. We denote a statement by a capital letter, say P . Suppose we have two statements
P and Q. We can consider new statements from them:

� The negation ¬P is true if and only if P is false.
� The conjunction P ∧Q is true if and only if both P and Q are true.
� The disjunction P ∨Q is true if and only if at least one of P and Q is true.

Note: When a mathematician says “or”, they mean “this or that or both”. Also then, we
can think of the new statements in the above definition in words as follows:
(i) ¬P is “not P”.
(ii) P ∧Q is “P and Q”.
(iii) P ∨Q is “P or Q (or both)”.

Definition A truth table represents the truth/falsity of a constructed statement in terms
of the truth/falsity of its constituent pieces. We represent “false” by 0 and “true” by 1.

Method – Logically-Equivalent Statements: To show that two statements are logically
equivalent (meaning one is true if and only if the other is true), it suffices to construct a
truth table and exhibit that the columns representing each of the statements are identical.
In this case, we denote logical equivalence by the symbol ⇔.

Lemma For a statement P , we have the logical equivalence P ⇔ ¬(¬P ).

Proof : We can easily show this by constructing the truth table:

P ¬P ¬(¬P )

0 1 0
1 0 1

Table 1: The truth table for P ⇔ ¬(¬P ).

Indeed, we see that the columns for P and for ¬(¬P ) are the same.

Theorem (de Morgan’s Laws) For statements P and Q, we have these logical equivalences:
(i) ¬(P ∧Q) ⇔ (¬P ) ∨ (¬Q).
(ii) ¬(P ∨Q) ⇔ (¬P ) ∧ (¬Q).
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Proof : (i) We can prove the first law by constructing another truth table

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q (¬P ) ∨ (¬Q)

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Table 2: The truth table for ¬(P ∧Q) ⇔ (¬P ) ∨ (¬Q).

We see that the columns for ¬(P ∧Q) and (¬P ) ∨ (¬Q) are the same.

(ii) We can again construct a truth table, or we can use the first law with the previous lemma:

¬(P ∨Q) ⇔ ¬(¬(¬P ) ∨ ¬(¬Q))

⇔ ¬
(
¬
(
(¬P ) ∧ (¬Q)

))
⇔ (¬P ) ∧ (¬Q),

where we applied the first of de Morgan’s Laws to the statements ¬P and ¬Q to get from the
first line to the second line (i.e. the second logical equivalence).

Corollary For statements P , Q and R, we have the logical equivalences

¬(P ∨ (Q ∧R)) ⇔ (¬P ) ∧ ¬(Q ∧R)

⇔ (¬P ) ∧ ((¬Q) ∨ (¬R)).

6.2 Implications

Definition An implication is a new statement build from two others, P and Q. It is denoted
by P ⇒ Q and spoken as “if P , then Q” or “P implies Q”.

Note: The standard notation for an implication is actually P → Q but this conflicts with
our notation of convergence, so we stick with P ⇒ Q from here. Its truth table is below.

P Q P ⇒ Q

0 0 1
0 1 1
1 0 0
1 1 1

Table 3: The truth table for P ⇒ Q.

Lemma For statements P and Q, we have the logical equivalence (P ⇒ Q) ⇔ (¬P ) ∨Q.
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Sketch of Proof : Simply construct the truth table for (¬P ) ∨Q.

Definition Suppose we have statements P and Q and an implication P ⇒ Q.
� The converse is the statement Q ⇒ P .
� The contrapositive is the statement ¬Q ⇒ ¬P .

Proposition For statements P and Q, we have the logical equivalence

(P ⇒ Q) ⇔ (¬Q ⇒ ¬P ).

Sketch of Proof : Simply construct the truth table for ¬Q ⇒ ¬P .

Note: The negation of an implication is not another implication. Indeed, we see from the
previous lemma ¬(P ⇒ Q) ⇔ ¬((¬P ) ∨Q) ⇔ P ∧ (¬Q); the latter is not an implication.

6.3 Quantifiers

Definition Let P (x) be a statement making sense for all x ∈ A. Here, A is just some set.
� The statement ∀xP (x) means “for all x ∈ A, P (x) is true”.
� The statement ∃xP (x) means “there exists x ∈ A such that P (x) is true”.

We call ∀ the universal quantifier and ∃ the existential quantifier.

Proposition Let P (x) be true for all x ∈ A. Then, we have the following:
(i) ¬(∀xP (x)) ⇔ ∃x¬P (x).
(ii) ¬(∃xP (x)) ⇔ ∀x¬P (x).

Note: In words, (i) means that a statement is false for all values in a set if and only if
there exists a single value for which the statement fails to be true. Also, (ii) means there
is no value making the statement true if and only if all values make the statement false.

Theorem The statement “the sequence (an) does not converge to L ∈ R” means that there
exists ε > 0 such that, for all N ∈ N, there exists n > N with |an − L| ≥ ε.

Sketch of Proof : Write out the definition of an → L using quantifiers and negate it.

34



7 Limits of Functions

7.1 The Main Definition

Definition 7.1.1 Let D ⊆ R. Then, a point a ∈ D is called a limit point of D if there exists
a sequence (xn) in D \ {a} such that xn → a.

Definition 7.1.2 Let D ⊆ R, a ∈ D a limit point of D and f : D → R. We say that f has
a limit L ∈ R at a if, for all sequences (xn) in D \ {a} where xn → a, we have f(xn) → L.
In this case, we write lim

x→a
f(x) = L (the left-hand side is often limx→a f(x) when typed).

Note: In Definition 7.1.2, every term xn ̸= a. Thus, the value f(a) is irrelevant, if it exists.

Proposition 7.1.3 (Uniqueness of Limits) If it exists, limx→a f(x) is unique.

Proof : Let f : D → R and assume that L,K ∈ R both satisfy the definition of limx→a f(x). For
any sequence (xn) in D \ {a} such that xn → a, we know that f(xn) → L and f(xn) → K. By
the uniqueness of limits of sequences (Theorem 2.2.3), we know that L = K.

Theorem 7.1.5 (Algebra of Limits) Let f : D → R and g : D → R be functions with limits
limx→a f(x) = L and limx→a g(x) = K Then, the following are true:
(i) limx→a(f(x) + g(x)) = L+K.
(ii) limx→a(f(x)g(x)) = LK.
(iii) limx→a 1/f(x) = 1/L if f(x) ̸= 0 for all x ∈ D and L ̸= 0.

Proof : Let (xn) be a sequence in D \ {a} where xn → a. Then, f(xn) → L and g(xn) → K by
assumption. Hence, the Algebra of Limits of sequences (Theorem 2.3.3) implies the result:

(i) f(xn) + g(xn) → L+K.

(ii) f(xn)g(xn) → LK.

(iii) 1/f(xn) → 1/L if f(xn) ̸= 0 for all n ∈ N and L ̸= 0.

7.2 An Alternative Definition for Limits of Functions

Theorem 7.2.1 (ε-δ Limits) A function f : D → R has a limit L ∈ R at a ∈ D if and only
if for each ε > 0, there exists δ > 0 such that, for all x ∈ D with 0 < |x− a| < δ, we have
|f(x)− L| < ε.

Proof : (⇐) Suppose that f satisfies the ε-δ definition of having a limit L at a. We must show
that f has a limit in the usual sense of Definition 7.1.2. Well, let (xn) be a sequence in D \ {a}
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where xn → a. By the ε-δ property, there exists δ > 0 such that |f(x)− L| < ε if 0 < |x− a| < δ.
Since xn → a, we can choose N ∈ N such that |xn − a| < δ for all n > N . Because every xn ̸= a,
we have also that 0 < |xn − a| < δ for all n > N . Thus, we have |f(xn)− L| < ε when n > N

(⇒) We prove the contrapositive, so suppose that f doesn’t satisfy the ε-δ property. Then,
there exists ε > 0 such that, for all δ > 0, there is some x ∈ D with 0 < |x− a| < δ such that
|f(x)− L| ≥ ε. In particular, let δ = 1/n and let xn ∈ D be the element corresponding to x
such that 0 < |xn − a| < 1/n. It is clear that (xn) is a sequence in D \ {a} where xn → a but
f(xn) ↛ L since |f(xn)− L| ≥ ε. Hence, f does not have a limit L at a.

Corollary 7.2.2 For D ⊆ R and a ∈ D, f : D → R is continuous at a if and only if either
(i) a is not a limit point of D (we call a an isolated point in this case), or
(ii) the limit of f at a exists and is equal to its value at a, that is limx→a f(x) = f(a).

Proof : This is immediate by comparing Theorem 7.2.1 to Theorem 5.1.3 and Definition 7.1.1.

7.3 Limits at Infinity

Definition 7.3.1 A real sequence (an) diverges to infinity if, for each K ∈ R, there exists
N ∈ N such that, for all n > N , an > K. In this case, we write an → ∞. Similarly, (an)
diverges to minus infinity if, for each M ∈ R, there exists N ∈ N such that, for all n > N ,
an < M . In this case, we write an → −∞.

Remark We explain Definition 7.3.1 in words and with a geometric interpretation in Figure 3.

(i) Given a sequence (an), we can show that it diverges to infinity by showing that for any
number (K ∈ R), there exists a point in the sequence aN (there exists N ∈ N) after which
(for all n > N) every term in the sequence exceeds that number (an > K).

(ii) Geometrically, this means that if we plot n against an on a pair of axes, then after N , every
point will live above the line an = K. Similarly, divergence to negative infinity means that
every point for n > N will live below the line an = M .

n

an

K

N

Figure 3: The geometric interpretation of the divergence of (an) to infinity.
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Note: It is clear that the sequence an → −∞ if and only if −an → ∞.

Proposition 7.3.5 (Sweep Rule) If an → ∞ and an ≤ bn for all n ∈ N, then bn → ∞.

Proof : Let K ∈ R be given. Since an → ∞, there exists N ∈ N such that an > K for all n > N .
But it follows that bn ≥ an > K for all n > N , so bn → ∞ also.

Proposition 7.3.6 Let (an) diverge to infinity and (bn) be bounded. Then, an + bn → ∞.

Proof : Let K ∈ R be given. Since (bn) is bounded, there exists M ∈ N such that |bn| ≤ M (in
particular, bn ≥ −M) for all n. Since an → ∞, there exists N ∈ N such that an > K +M for all
n > N . Therefore, an + bn > K +M −M = K whenever n > N , as needed.

Proposition 7.3.7 Let (an) diverge to infinity but an ̸= 0 for all n ∈ N. Then, 1/an → 0.

Proof : Let ε > 0 be given. Since an → ∞, there exists N ∈ N such that an > 1/ε for all n > N .
For n > N , this implies that |1/an| = 1/an < ε, as required.

Definition 7.3.8 Let D ⊆ R and f : D → R.
(i) If D is unbounded above, f has a limit L ∈ R at ∞ if, for any sequence (xn) in D

with xn → ∞, we have f(xn) → L. This is denoted limx→∞ f(x) = L.
(ii) If D is unbounded below, f has a limit L ∈ R at −∞ if, for any sequence (xn) in D

with xn → −∞, we have f(xn) → L. This is denoted limx→−∞ f(x) = L.

Theorem 7.3.9 (ε-K Limits at Infinity) Let f : D → R, where D ⊆ R is unbounded above.
Then, limx→∞ f(x) = L if and only if for each ε > 0, there exists K ∈ R such that, for
all x ∈ D with x > K, we have |f(x)− L| < ε.

Sketch of Proof : This is very similar to the proofs of Theorem 5.1.3 and Theorem 7.2.1.

Theorem 7.3.12 Let f : R → R be continuous with limits at both ±∞. Then, f is bounded.

Proof : Let L := limx→∞ f(x) and K := limx→−∞ f(x). By the ε-K property of limits at infinity,
there exists R1 > 0 such that |f(x)− L| < 1 (that is f(x) ≤ |L| + 1) for all x > R1. Similarly,
there exists R2 > 0 such that |f(x)−K| < 1 (that is f(x) ≤ |K|+ 1) for all x < −R2. Because
f is continuous on the interval [−R2, R1], it is bounded there by some N . Thus, |f(x)| ≤ M for
all x ∈ R, where M := max{|L|+ 1, |K|+ 1, N}.
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8 Complex Sequences and Series

8.1 Convergence of Complex Sequences

Note: Recall that a complex number z ∈ C is a number of the form z = x + iy, where
x, y ∈ R are the real part and imaginary part of z, respectively; these are Re(z) and Im(z).
The modulus of z = x + iy is the real number defined as |z| =

√
x2 + y2. The complex

conjugate is the complex number defined as z̄ = x− iy.

Proposition 8.1.1 Let z, w ∈ C. Then, the following are true:
(i) Re(z) ≤ |z|.
(ii) Im(z) ≤ |z|.
(iii) |zw| = |z||w|. (Multiplicativity)
(iv) |z + w| ≤ |z|+ |w|. (Triangle Inequality)

Definition A sequence of complex numbers is a function z : N → C where we call the output
zn. We denote a term in the sequence by zn and the whole sequence by (zn)n∈N, or (zn).

Definition 8.1.2 A complex sequence (zn) converges to L ∈ C if, for each ε > 0, there
exists N ∈ N such that, for all n > N , we have |an − L| < ε. Here, we write zn → L.

Remark We explain Definition 8.1.2 in words and with a geometric interpretation in Figure 4.

(i) Given a complex sequence (zn), we can show that it converges to L ∈ C by showing that for
any positive number (ε > 0), there exists a point in the sequence aN (there exists N ∈ N)
after which (for all n > N) every term in the sequence lies within distance that positive
number of the complex number L (|zn − L| < ε). This is very much the same idea as that
for real sequences. The difference is the geometric interpretation

(ii) Geometrically, this means that if we plot the outputs zn in the complex plane, then after
N , every point will live inside the disk of radius ε centred at the point L.

R

iR

aN

ε
L

Figure 4: The geometric interpretation of the convergence of the complex sequence (zn).
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Proposition 8.1.4 Let (zn) be a complex sequence where zn = xn+ iyn for each n ∈ N and
let L = A+ iB where A,B ∈ R. Then, the following are equivalent:
(i) zn → L.
(ii) xn → A and yn → B in the usual sense.
(iii) |zn − L| → 0.

Proof : ((i) ⇒ (ii)) Let ε > 0 be given. As zn → L, there exists N ∈ N such that |zn − L| < ε for
all n > N . That being said, we can see that

|zn − L| = |xn + iyn − (A+ iB)|
= |(xn −A) + i(yn −B)|

=
√

(xn −A)2 + (yn −B)2

≥ max{
√
(xn −A)2,

√
(yn −B)2}

= max{|xn −A|, |yn −B|}.

Therefore, |xn −A| ≤ |zn − L| < ε and |yn −B| ≤ |zn − L| < ε for all n > N . This is precisely
to say that the real sequences xn → A and yn → B.

((ii) ⇒ (iii)) Let ε > 0 be given. Since xn → A, there exists N1 ∈ N such that, for all n > N1,
|xn −A|ε/2. Similarly, as yn → B, there exists N2 ∈ N such that, for all n > N2, |yn −B| < ε/2.
Hence, for N := max{N1, N2} and n > N ,

||zn − L| − 0| = |zn − L|
= |(xn −A) + i(yn −B)|
≤ |xn −A|+ |yn −B|
< ε/2 + ε/2

= ε.

This is precisely to say that |zn − L| → 0.

((iii) ⇒ (i)) Let ε > 0 be given. Since |zn − L| → 0, there exists N ∈ N such that, for all n > N ,
we have ||zn − L| − 0| < ε. But this is just |zn − L| < ε for all n > N , which is precisely to say
that zn → L.

Note: Here are some important consequences of Proposition 8.1.4:
� The limit of a convergent complex sequence is unique.
� Every convergent complex sequence is bounded.
� The Algebra of Limits holds for convergent complex sequences.

Definition 8.1.8 A function f : C → C is continuous at w ∈ C if, for all sequences (zn) in
C where zn → w, we have f(zn) → f(w). If f is not continuous at w ∈ C, we say it is
discontinuous at w ∈ C. We say f is continuous if it is continuous at every w ∈ C.
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Proposition 8.1.9 Let f : C → C be continuous and (zn) be a sequence defined inductively
via iterating f from a starting value z0 ∈ C, that is zn = f(zn−1). If zn → L, then L is a
fixed point of f , meaning f(L) = L.

Proof : Let zn → L. By Proposition 8.1.4 combined with Theorem 3.1.3, we know that the
subsequence zn+1 → L also. By definition, zn+1 = f(zn). By continuity, f(zn) → f(L), so the
Uniqueness of Limits guarantees that f(L) = L.

8.2 Complex Series

Definition 8.2.1 For a complex series
∑∞

n=1 zn, its kth partial sum is sk :=
∑k

n=1 zn. We
say that the series converges if the sequence of partial sums (sk) converges in the usual
sense (of Definition 8.1.2). We say that the series converges absolutely if the real series∑∞

n=1 |zn| converges in the usual sense.

Note: By Proposition 8.1.4, if zn = xn + iyn for all n ∈ N, the complex series
∑∞

n=1 zn
converges if and only if both the real series

∑∞
n=1 xn and

∑∞
n=1 yn converge.

Proposition 8.2.3 If a complex series
∑∞

n=1 zn converges absolutely, then it converges.

Proof : Let zn = xn + iyn and assume
∑∞

n=1 zn converges absolutely, i.e. the real sequence (sk)

converges where sk =
∑k

n=1 |zn|. Consequently, (sk) is bounded above (note that the sequence
of partial sums is increasing). Since |xn| ≤ |zn| and |yn| ≤ |zn| by Proposition 8.1.1, consider
these:

uk :=

k∑
n=1

|xn| ≤ sk and vk :=

k∑
n=1

|yn| ≤ sk.

Because (sk) is bounded above, so too are the sequences (uk) and (vk). Moreover, each of these
sequences is increasing, so the MCT implies that they converge. Because absolute convergence
implies convergence of real series (Theorem 4.4.2), we know that

∑∞
n=1 xn and

∑∞
n=1 yn converge.

Thus, the series
∑∞

n=1 zn converges by Proposition 8.1.4.

8.3 Power Series

Definition A power series is a complex series of the form
∑∞

n=0 anz
n where an ∈ C for all

n ∈ N (we switch notation from zn denoting complex series because znz
n looks rather con-

fusing!). Here, z is a complex variable, so the kth partial sum is the following polynomial:

sk =
k∑

n=0

anz
n = a0 + a1z + a2z

2 + · · ·+ akz
k.
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Theorem The series
∑∞

n=1 z
n converges for |z| < 1 and diverges otherwise.

Proof : As in the proof of the convergence of the geometric series, the kth partial sum sk is

sk = 1 + z + z2 + · · ·+ zk

⇒ zsk = z + z2 + z3 + · · ·+ zk+1

⇒ (1− z)sk = 1− zk+1

⇒ sk =
1− zk+1

1− z
.

If |z| < 1, then |z|k+1 → 0 which means that sk → 1
1−z . Hence, we know that the series converges

for |z| < 1. On the other hand, suppose now that |z| ≥ 1; this means that each term |zn| ≥ 1.
Since they are complex numbers, we can write zn = xn + iyn for all n ∈ N. Thus, the previous
inequality is equivalent to x2n+ y2n ≥ 1. We then see that either xn ↛ 0 or yn ↛ 0, which implies
that either

∑∞
n=1 xn diverges or

∑∞
n=1 yn diverges, by the Divergence Test. Hence, Proposition

8.1.4 implies that
∑∞

n=1 z
n diverges for all |z| ≥ 1.

Note: If z = 0, the power series reduces to the constant a0, which means it certainly
converges. In general, a power series may converge for some values of z but not others.

Definition 8.3.2 The exponential, sine and cosine functions are defined as follows:

exp : C → C, exp(z) =

∞∑
n=0

zn

n!
,

sin : C → C, sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

cos : C → C, cos(z) =

∞∑
n=0

(−1)n
z2n

(2n)!
.

Proposition The exponential function is well-defined:
∑∞

n=0 z
n/n! converges for all z ∈ C.

Proof : We know that it converges at z = 0 already, by the above note. Hence, assume that z ̸= 0
and let wn = zn/n!. It is clear that |wn| > 0 and

|wn+1|
|wn|

=
|z|n+1

(n+ 1)!

n!

|z|n
=

|z|
n+ 1

→ 0 < 1.

So,
∑∞

n=1 |wn| converges by the Ratio Test, and
∑∞

n=1wn converges by Proposition 8.2.3.
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Definition 8.3.5 The radius of convergence of a power series
∑∞

n=0 anz
n is the constant

R := sup{|z| :
∞∑
n=0

|anzn| converges}.

If the set on the right-hand side is unbounded, the convention is to write R = ∞.

Note: In other words, the radius of convergence is the positive constant R ≥ 0 such that
the power series converges for all values of z ∈ C within that distance from the origin
(that is |z| < R) and diverges for all values more than that distance away from the origin
(that is |z| > R). The power series may converge or diverge for z ∈ C where |z| = R.

Lemma 8.3.6 If
∑∞

n=0 anz
n converges at z = w, then it converges absolutely for |z| < |w|.

Proof : As
∑∞

n=0 anw
n converges, so do the series of real and imaginary parts (Proposition 8.1.4).

By the Divergence Test, it follows that the real sequences (Re(anwn)) and (Im(anw
n)) converge

to zero. Therefore, anw
n → 0 again by Proposition 8.1.4. In particular, this sequence is bounded,

i.e. there exists K > 0 such that, for all n ∈ N, |anwn| < K. But we see that

|anzn| = |anwn| |z
n|

|wn|
< K

(
|z|
|w|

)n

.

Since |z| < |w|, we can use the Comparison Test to conclude
∑∞

n=0 |anzn|, and therein
∑∞

n=0 anz
n,

converges for all |z| < |w|; we compare this to the convergent geometric series
∑∞

n=0(|z|/|w|)n.

Theorem 8.3.7 Let
∑∞

n=0 anz
n have radius of convergence R. There are two possibilities:

(i) The power series converges absolutely for |z| < R.
(ii) The power series diverges for |z| > R.

Proof : Define the set A := {|z| :
∑∞

n=0 |anzn| converges} ⊆ R; this means that R = sup(A).

(i) If |z| < R, then there exists w ∈ C with |z| < |w| < R such that
∑∞

n=0 |anwn| converges
(we know this is true because, if not, R wouldn’t be the least upper bound on A). Thus,∑∞

n=0 anw
n is convergent, and so

∑∞
n=0 anz

n is absolutely convergent by Lemma 8.3.6.

(ii) If |z| > R, assume to the contrary that
∑∞

n=0 anz
n converges. This implies

∑∞
n=0 |anvn|

converges where v = 1
2(|z|+R); this is another application of Lemma 8.3.6 since |z| < |v|.

But |v| > R (so R is not an upper bound on A), a contradiction.

Note: We give a method for computing the radius of convergence via the Ratio Test. That
being said, be aware that it will not always work. Furthermore, note that Definition 8.3.5
has no mention of the Ratio Test.
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Method – Finding the Radius of Convergence: Consider the power series
∑∞

n=0 anz
n.

(i) Let bn := anz
n be the sequence of terms in the series.

(ii) Compute |bn+1|/|bn| and determine its limit as n → ∞ in terms of |z|.
(iii) Use the Ratio Test, in particular that |bn+1|/|bn| → L < 1 means the power series

converges (absolutely) and |bn+1|/|bn| → L > 1 means the power series diverges, to
determine an upper bound on |z| to make the limit in Step (ii) less than one.
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