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Abstract

Geometry has been well-understood for many years and the famous mathematicians of old have

left their imprint on this topic. Arguably one of the most profound to do so was Carl Friedrich

Gauss; he started to consider an altering of the basic axioms of what we now call Euclidean

geometry. This paper will introduce one of these aforementioned alterations we call hyperbolic

geometry, where we discuss it in the sense of the Poincaré disk. From here, we will develop

theory on lines, transformations, lengths and areas by referring both to our definitions and the

area of complex analysis. We shall then divert the discussion to focus on right-angled polygons

in the hyperbolic plane, up to the study of pentagons.
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2.5 Classifying Möbius Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Measures of the Poincaré Disk 15
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1 Metric Spaces, Isometries and Groups

To begin the process of defining a variety of hyperbolic geometric-related objects, first the idea

of metric spaces shall be discussed in order to both simplify notation and interlink the concept of

the hyperbolic plane with topological spaces. Then, the idea of an isometry shall be developed,

before Section 3 leads on to a more specific idea, underpinned by the theory of isometries of

hyperbolic geometry. Also, some group theory is required when discussing these isometries and

so this will also be discussed briefly as well.

1.1 Introducing Metric Spaces

Definition 1.1 A metric space (X, d) is a non-empty set X and function d : X ×X → R, called
the metric, which satisfies the following criteria:

� d(x, y) ≥ 0, with equality if and only if x = y. (Non-Negativity)

� d(x, y) = d(y, x). (Symmetry)

� d(x, y) ≤ d(x, z) + d(z, y). (Triangle Inequality)

Example 1.2 The set X = Rn with the function d(x, y) = |x− y|, for x, y ∈ Rn, is an example

of a metric space, where d is the standard Euclidean metric. This is because X is certainly

non-empty and d satisfies the three conditions of Definition 1.1. Note that this is not the only

metric which can be defined on X.

More can be seen on this topic in [DE14], which covers complex-valued functions, something that

will connect to future areas of discussion. For now, we detail the construction of what is called

the Riemannian metric on R2. One can see from [Cha13] that, locally in R2, we see that

(δs)2 ≈ (δx)2 + (δy)2,

a consequence of Pythagoras’ Theorem, where δs denotes an infinitesimal change of the length

of a curve between two points, which is parametrised by the variable t say, and (δx, δy) denotes

an infinitesimal change in a point on the curve. Formally, as the change in parameter δt → 0,

(ds)2 = (dx)2 + (dy)2.

This is the so-called Riemannian metric. It is now possible to consider integrals of the metric as

expressions of the distance between two points, as will be done in Section 3. Furthermore, we

require a final property of metric spaces, which will be applied in the context of differentiable

functions defined over the complex numbers.
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Definition 1.3 Let (X, d) be a metric space. An open ball of radius ε > 0 and centre x ∈ X is

defined to be the set Bε(x) := {y ∈ X : d(x, y) < ε} ⊆ X.

Definition 1.4 Let (X, d) be a metric space and U ⊆ X. Then, U is said to be an open subset if,

for all x ∈ U , there exists an open ball Bε(x) such that Bε(x) ⊆ U .

1.2 Introducing Isometries

Definition 1.5 An isometry of a metric space (X, d) is a map f : X → X such that it preserves

the metric, that is d(f(x), f(y)) = d(x, y), for all x, y ∈ X.

The concept of an isometry will be useful for the study of both distance and transformations in

the hyperbolic plane. But first, we consider a simple Euclidean example and discuss one way in

which to represent linear isometries.

Example 1.6 A translation T : Rn → Rn, given by T (x) = x+v for a fixed v ∈ Rn, is an example

of an isometry, seen by applying the definition to the standard Euclidean metric:

d(T (x), T (y)) = |T (x)− T (y)| = |(x+ v)− (y + v)| = |x− y| = d(x, y).

Proposition 1.7 Let f : R2 → R2 be a linear isometry. Then, for θ ∈ [0, 2π), its matrix is either

Af =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
or Af =

(
cos(θ) sin(θ)

sin(θ) − cos(θ)

)
,

for f orientation-preserving (det(Af ) > 0) or orientation-reversing (det(Af ) < 0), respectively.

Proof : Suppose that the matrix of f is given by

Af =

(
a b

c d

)
.

This is to say f(x, y) = (ax + by, cx + dy). Since f is an isometry, for the standard Euclidean

metric, it must follow that

d(f(x, y), f(u, v)) = d((x, y), (u, v))

⇒ |(ax+ by, cx+ dy)− (au+ bv, cu+ dv)| = |(x− u, y − v)|

⇒ (a(x− u) + b(y − v))2 + (c(x− u) + d(y − v))2 = (x− u)2 + (y − v)2.

Expanding the left-hand side yields the following equations:

a2 + c2 = 1, (1.8)
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ab+ cd = 0, (1.9)

b2 + d2 = 1. (1.10)

By (1.8), we can set a = cos(θ) and c = sin(θ), for some θ ∈ [0, 2π). Thus, by (1.9), we find that

b = −α sin(θ) and d = α cos(θ), for any α ∈ R. Substituting these into (1.10) gives α = ±1, i.e.

the cases of orientation-preserving and orientation-reversing, respectively.

Remark 1.11 The matrices in Proposition 1.7 give two situations: either where a vector in R2

is rotated or where it is rotated and reflected. This plants the seed of the discussion regarding

what isometries can do in hyperbolic space.

1.3 Introducing Group Theory

Group theory will be applied to demonstrate useful properties of the transformations that can

be performed in the hyperbolic plane. For now, consider these rudimentary concepts.

Definition 1.12 A binary operation ◦ on a set G is a map ◦ : G×G → G.

Definition 1.13 A group is a set and binary operation, denoted (G, ◦), satisfying the following:

(i) For all x, y ∈ G, x ◦ y ∈ G.

(ii) For all x, y, z ∈ G, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

(iii) There exists e ∈ G such that x ◦ e = e ◦ x = x, for every x ∈ G.

(iv) For all x ∈ G, there exists some y ∈ G such that x ◦ y = y ◦ x = e.

Example 1.14 Consider the following sets and operations:

(i) (R,+) is a group.

(ii) (R,×) is not a group, since 0 ∈ R has no multiplicative inverse.

Definition 1.15 A subgroup H of a group G is a subset H ⊆ G such that (H, ◦) is a group under

the same operation as G, denoted H ≤ G.

Example 1.16 Consider the following:

(i) The trivial subgroups of a group G are {e} and G, where e ∈ G is the identity of G.

(ii) (Z2,+mod 2) is not a subgroup of (Z3,+mod 3), since the group operation is different.

Theorem 1.17 (Subgroup Criterion) Let (G, ◦) be a group. H ⊆ G is a subgroup if and only if

the following criterion hold:

(i) For all x, y ∈ H, x ◦ y ∈ H.
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(ii) The identity e ∈ G is also contained in H, that is e ∈ H.

(iii) For all x ∈ H, there exists some y ∈ H such that x ◦ y = y ◦ x = e.

Proof : See [Wal01]; the proof is not immediately required for this paper’s discussion.

Definition 1.18 The general linear group is the set of invertible (n × n)-matrices whose entries

are in a given set under matrix multiplication, denoted GLn(X), where X is the set of entries.

Definition 1.19 A group homomorphism between (G, ◦G) and (H, ◦H) is a map φ : G → H such

that φ(u ◦G v) = φ(u) ◦H φ(v), for all u, v ∈ G. If φ is additionally bijective, then it is called a

group isomorphism, that is G and H are isomorphic, denoted G ∼= H.

Example 1.20 The map exp : (R,+) → (R \ {0},×) is a group homomorphism: for x, y ∈ R,

exp(x+ y) = exp(x) exp(y).

Note this isn’t a group isomorphism because exp doesn’t map to the negative real numbers.
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2 Models of Hyperbolic Geometry

There are a number of models one can use to describe hyperbolic geometry. For now, we restrict

to two such, as defined below. Note that these models are subsets of R2 but that it is useful to

associate with the point (x, y) the complex number z = x+ iy.

Definition 2.1 The Poincaré disk and its boundary are defined respectively as

D := {z ∈ C : |z| < 1} and ∂D = {z ∈ C : |z| = 1}.

Re(z)

Im(z)

Figure 1: The Poincaré disk, as in Definition 2.1.

The elements of the set D are indeed the points of the model of hyperbolic geometry discussed

in the above definition. However, the elements of the set ∂D are not points of the model. In

fact, Section 3 and, to an extent, Section 4 introduce the notion of hyperbolic length/distance

and with this, the points of ∂D are found to be infinitely far from the points of D.

Definition 2.2 The Poincaré upper-half plane and its boundary are defined respectively as

H := {z ∈ C : Im(z) > 0} and ∂H = {z ∈ C : Im(z) = 0} ∪ {∞}.

Re(z)

Im(z)

Figure 2: The Poincaré upper-half plane, as in Definition 2.2.
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Figure 3: A hyperbolic line meets the Poincaré disk’s boundary, as in Lemma 2.7.

For this paper, we restrict solely to the disk model as in Definition 2.1. This is, in a way,

advantageous for visualising the geometry in this introduction since it isn’t a set which extends

indefinitely as the upper-half plane does (the union of the disk and its boundary is compact).

2.1 Lines of the Poincaré Disk

Definition 2.3 A hyperbolic line L in the Poincaré disk is one of the following:

(i) The intersection of a Euclidean line through the origin and D.

(ii) The intersection of a Euclidean circle and D, which meets ∂D at right angles.

We now develop theory which can be exploited to construct such lines.

Lemma 2.4 Consider two Euclidean circles C1, C2 ⊆ C with centres c1, c2 ∈ C and radii r1, r2 >

0, respectively. Then, C1 and C2 meet at right angles if and only if r21 + r22 = |c1 − c2|2. In

particular, for C1 any circle and C2 the unit circle, this defines the condition on which a line can

be as in Definition 2.3.

Proof : We find relationship between two Euclidean circles in [BEG12], namely for the circles

x2 + y2 + f1x+ g1y + h1 = 0 and x2 + y2 + f2x+ g2y + h2 = 0,

they are orthogonal if and only if

f1f2 + g1g2 = 2(h1 + h2). (2.5)
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Suppose C1 has radius r1, centre c1 = (a1, b1) and C2 has radius r2, centre c2 = (a2, b2). The

functions above can be determined by comparing them to the equations of C1 and C2:

x2 + y2 + (−2a1)︸ ︷︷ ︸
f1

x+ (−2b1)︸ ︷︷ ︸
g1

y + a21 + b21 − r21︸ ︷︷ ︸
h1

= 0

and

x2 + y2 + (−2a2)︸ ︷︷ ︸
f2

x+ (−2b2)︸ ︷︷ ︸
g2

y + a22 + b22 − r22︸ ︷︷ ︸
h1

= 0.

Then, the above expressions can be substituted into (2.5), leading to the intended result.

Definition 2.6 Given some circle C in the complex plane, two points z and z̃ are said to be

inverse points if any circle orthogonal to C containing z also contains z̃, where z̃ := z/|z|2.

Lemma 2.7 Let p ∈ D \ {0}. Any circle containing p and p̃ intersects ∂D at right-angles.

Proof : Let m ∈ C be the midpoint of the Euclidean line with endpoints p and p̃ and B be

its perpendicular bisector, where we use [Roy08] as a loose framework. Take c a point on the

bisector B and define r := dist(p, c), as in Figure 3. Note as m is the midpoint of p and p̃, it

follows that |p−m| = 1
2 |p̃− p|. Then, one can apply Pythagoras’ Theorem, giving

|c|2 = |m|2 + |m− c|2

= (|p|+ |p−m|)2 + |p− c|2 − |p−m|2

=

(
|p|+ 1

2

(
1

|p|
− |p|

))2

+ r2 − 1

4

(
1

|p|
− |p|

)2

=
1

4

(
1

|p|
+ |p|

)2

+ r2 − 1

4

(
1

|p|
− |p|

)2

= r2 + 1.

Consequently, Lemma 2.4 applies to ∂D and the circle of radius r, centre c.

Proposition 2.8 There exists a unique hyperbolic line in the Poincaré disk such that it contains

any two distinct points p, q ∈ D.

Proof : There are two cases to consider.

(i) p and q lie on a diameter of D: Let L be the intersection of a Euclidean line with the disk

D which contains p and q. Then, L is a diameter of D, that is it passes through the origin.

Hence, it is a hyperbolic line.
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Suppose that another such line K is such that it contains p and q. Then, it is either the

intersection with the disk D of a Euclidean line or a Euclidean circle. Suppose it is the

latter. Then, the perpendicular bisectors B1 of the Euclidean line joining p and q and B2

of the Euclidean line joining p and p̃ are parallel, meaning no such circular arc contains p

and q, a contradiction. Thus, K must be a diameter of D containing p and q. Hence, K

must be L.

(ii) p and q don’t lie on a diameter of D: Let L be the intersection of a Euclidean circle with

the disk D which contains p and q, with radius rL > 0 and centre cL ∈ C, which is the

point of intersection of the perpendicular bisectors B1 of the Euclidean line joining p and q

and B2 of the Euclidean line joining p and p̃. Then, L meet ∂D at right-angles, by Lemma

2.7. Hence, L is a hyperbolic line.

Suppose that another such line K is such that it contains p and q. Then, it is either the

intersection with the disk D of a Euclidean line or a Euclidean circle. Suppose it is the

former. Then, K does not pass through the origin as p and q aren’t on a diameter of D,
so it isn’t a hyperbolic line, a contradiction. Hence, it must be the arc of a circle, whose

radius is rK > 0 and centre is cK ∈ C. But then, cK must lie on B1 and B2, ensuring

equidistance between p and q and perpendicularity with ∂D. Therefore, cK = cL. As a

consequence, rK = dist(cK , p) = dist(cL, p) = rL. Hence, K must be L.

Thus, in any case, a unique hyperbolic lines exist between two distinct points.

Proposition 2.9 There exists a unique hyperbolic line in the Poincaré disk with ends on any two

distinct points p, q ∈ ∂D.

Sketch of Proof : Let p, q ∈ ∂D. As with the proof of Proposition 2.8, there are two cases to

consider; either the points lie on a diameter of D or they do not. If they do, then such a diameter

is unique and has endpoints p and q, by the same line of reasoning as the first case in the previous

proof. Otherwise, if p and q are not on a diameter of D, then the construction of the arc of the

Euclidean circle as laid out in Proposition 2.8 is such that p̃ = p, since |p| = 1. Thus, the

bisector B2 is a tangent to ∂D at p and the construction of the Euclidean circle which intersects

∂D at right-angles proceeds as per Proposition 2.8. Again, uniqueness is achieved by a similar

argument of the second case in the previous proof.

2.2 Introducing Möbius Transformations

Transformations are an important part of geometry; the case of hyperbolic geometry is no

exception. We now begin to introduce the idea which will be developed until Section 4.
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Definition 2.10 The Riemann sphere is C = C ∪ {∞}, i.e. the complex plane with the point at

infinity.

Definition 2.11 A Möbius transformation is a self-map f : C → C of the form

f(z) =
az + b

cz + d
,

for a, b, c, d ∈ C where ad− bc ̸= 0. The set of such Möbius transformations is denoted M(C).

Remark 2.12 Note that the function in Definition 2.11 maps from and to the Riemann sphere

bijectively, as discussed in [Law98], so the point at infinity both has an image and a pre-image.

Naturally, the image of this point is defined as a/c and the pre-image defined as −d/c. These

points are often referred to as the inverse pole and the pole, respectively.

Möbius transformations are classified as orientation-preserving and orientation-reversing, whose

sets are denoted M(C)+ and M(C)−, respectively. Such a classification will be discussed more

specifically in Proposition 2.14. Not all Möbius transformations map from and to the Poincaré

disk, motivating the following definition.

Definition 2.13 The set of Möbius transformations on the Poincaré disk, denoted M(D), is a subset

of M(C) that fixes both the disk D and the boundary ∂D.

Proposition 2.14 Let f be a Möbius transformation. It holds true that f ∈ M(D) if either

f(z) =
αz + β

β̄z + ᾱ
(2.15)

or

f(z) =
αz̄ + β

β̄z̄ + ᾱ
, (2.16)

where α, β ∈ C are such that |α|2 − |β|2 > 0.

Proof : Suppose f is of the form (2.15). Note it is sufficient to prove that |f(z)| ≤ 1, with equality

occurring when |z| = 1. For |z| < 1, this is equivalent to |αz + β| <
∣∣β̄z + ᾱ

∣∣. Consider these:
|αz + β|2 = |α|2|z|2 + |β|2 + αβ̄z + ᾱβz̄,∣∣β̄z + ᾱ

∣∣2 = |β|2|z|2 + |α|2 + αβ̄z + ᾱβz̄.

By assumption, |α|2 − |β|2 > 0 ⇒ |α|2 > |β|2. In particular, this means that for some δ < 0,

δ|α|2 < δ|β|2.
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Let δ := |z|2 − 1 < 0, since |z| < 1 by assumption. Then, the following is true for any k ∈ R:

|α|2(|z|2 − 1) < |β|2(|z|2 − 1)

⇒ |α|2|z|2 − |α|2 < |β|2|z|2 − |β|2

⇒ |α|2|z|2 + |β|2 < |β|2|z|2 + |α|2

⇒ |α|2|z|2 + |β|2 + k < |β|2|z|2 + |α|2 + k.

Choosing k = αβ̄z + ᾱβz̄ (which is real since this is the sum of a complex number and its

conjugate, so the imaginary part vanishes) in the final line above implies |αz + β| <
∣∣β̄z + ᾱ

∣∣.
Note that if |z| = 1, then |αz + β|2 =

∣∣β̄z + ᾱ
∣∣2, that is |f(z)|2 = 1 so it fixes ∂D. Hence,

f ∈ M(D). A near-identical argument applies in the case that f is of the form (2.16).

Example 2.17 The Möbius transformation g : H → D, given by

g(z) =
z − i

z + i
,

is such that it maps 1 7→ −i, 0 7→ −1 and ∞ 7→ 1, which means that R 7→ ∂D. Thus, the

Poincaré disk is the image of the Möbius transformation. This is one way to suggest that the

models of hyperbolic geometry in Definition 2.1 and 2.2 are equivalent.

Remark 2.18 In fact, Proposition 2.14 is a necessary and sufficient condition on the form of the

Möbius transformations of the Poincaré disk. In order to prove that such a transformation has

one of the forms stated, one can appeal to results known aboutM(H), the Möbius transformations

that fix the upper-half plane, as detailed in [And05].

2.3 Möbius Groups

Now that the Möbius transformations of the Poincaré disk have been classified, we can state and

prove some important results regarding a subgroup of these isometries. First, we will state, but

not prove, a simple result which will be used to prove another idea.

Lemma 2.19 (M(C), ◦) forms a group, under function composition.

Next, we define an object which makes calculations with Möbius transformations less tedious.

Definition 2.20 The matrix of a Möbius transformation f(z) = (az + b)/(cz + b) is defined as(
a b

c d

)

Remark 2.21 By Definition 2.11, the Möbius transformation being non-degenerate (ad− bc ̸= 0)
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corresponds to its matrix being invertible. Essentially, we have defined a group homomorphism

φ : GL2(C) → M(C), as is discussed in [Ols10].

Proposition 2.22 (M(D), ◦) ≤ (M(C), ◦), that is the group of Möbius transformations of the

Poincaré disk forms a subgroup of all Möbius transformations, under function composition.

Proof : We appeal to the Subgroup Criterion in order to prove the proposition. First, choose

f, g ∈ M(D). For α, β, γ, δ ∈ C with |α|2 − |β|2 > 0, we define these Möbius transformations as

f(z) =
αz + β

β̄z + ᾱ
∈ M(D)+ or f(z) =

αz̄ + β

β̄z̄ + ᾱ
∈ M(D)−

and

g(z) =
γz + δ

δ̄z + γ̄
∈ M(D)+ or g(z) =

γz̄ + δ

δ̄z̄ + γ̄
∈ M(D)−.

Hence, we quickly compute the following compositions:

(f ◦ g)(z) =



(αγ + βδ̄)z + (αδ + βγ̄)

(ᾱδ̄ + β̄γ)z + (ᾱγ̄ + β̄δ)
if f ∈ M(D)+ and g ∈ M(D)+

(αγ + βδ̄)z̄ + (αδ + βγ̄)

(ᾱδ̄ + β̄γ)z̄ + (ᾱγ̄ + β̄δ)
if f ∈ M(D)± and g ∈ M(D)∓

(αγ̄ + βδ)z + (αδ̄ + βγ)

(ᾱδ + β̄γ̄)z + (ᾱγ + β̄δ̄)
if f ∈ M(D)− and g ∈ M(D)−

.

The determinant of the transformation’s matrix is (|α|2 − |β|2)(|γ|2 − |δ|2) > 0. Therefore,

f ◦ g ∈ M(D), demonstrating composition closure. Next, id = (1z + 0)/(0z + 1) is such that

|1|2 − |0|2 = 1 > 0, that is id ∈ M(D). As such, this is the identity element. Next, again choose

f ∈ M(D). For α, β ∈ C with |α|2 − |β|2 > 0, we define the Möbius transformation as

f(z) =
αz + β

β̄z + ᾱ
∈ M(D)+ or f(z) =

αz̄ + β

β̄z̄ + ᾱ
∈ M(D)−.

Therefore, we conclude that

f−1(z) =


ᾱz − β

−β̄z + α
if f ∈ M(D)+

ᾱz̄ − β

−β̄z̄ + α
if f ∈ M(D)−

.

Again, the determinant of the matrix representing the transformation is always |α|2 − |β|2 > 0.

Therefore, f−1 ∈ M(D). Thus, closure under forming inverses is verified. As a consequence of

Lemma 2.19, this result is a corollary of the Subgroup Criterion.
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Corollary 2.23 (M(D)+, ◦) ≤ (M(C)+, ◦), that is the group of orientation-preserving Möbius

transformations of the Poincaré disk is a subgroup of all orientation-preserving Möbius transformations,

under function composition.

Proof : This is a direct consequence of the proof of Proposition 2.22: composition closure comes

from the first case of the composition of elements in M(D); inclusion of the identity and inverse

closure comes from the first case of the inverses of elements in M(D), thus the Subgroup Criterion

is satisfied.

These results are not so deep but are important; they tell us that properties ofM(C) are inherited
by M(D), a fact needed for later discussion.

2.4 Möbius Transformations on Points and Lines

We now consider the action of Möbius transformations on subsets of the Poincaré disk, which

will be important for the theory developed in Section 4.

Proposition 2.24 The image under f ∈ M(D)+ of a hyperbolic line L is a hyperbolic line.

Proof : As f is a continuous function which fixes D, the image of ∂D is ∂D. Now, the image of

L under f is either going to be a Euclidean circle or a Euclidean line, by [Hit09]. Furthermore,

f(L) meets ∂D at right-angles, as Möbius transformations preserve angles (see Theorem 3.17)

and L is already orthogonal to ∂D, by assumption. Direct from the definition, L meets ∂D at

right-angles if it’s a circle or meets two tangents to ∂D at right-angles if it’s a line. Hence, if

f(L) is a Euclidean circle, it must intersect ∂D at right-angles and if f(L) is a Euclidean line,

then it must be a diameter across D. In either case, f(L) ⊆ D is a hyperbolic line.

Proposition 2.25 For any points p, q ∈ D, there exists f ∈ M(D) where f(p) = q.

Proof : We wish to find some Möbius transformation g ∈ M(D) such that g(p) = 0, that is

g(p) =
αp+ β

β̄p+ ᾱ
= 0.

This is true if and only if the numerator is zero, i.e. αp + β = 0 and β̄p + ᾱ = 1, say. Solving

these simultaneously gives that α = −1/(|p|2 − 1) and β = p/(|p|2 − 1). Let h be a Möbius

transformation where h(q) = 0 (of a form similar to g). By Proposition 2.22, M(D) is closed

under both composition and forming inverses. Hence,

f := h−1 ◦ g ∈ M(D).
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By definition, f : p
g7−−→

h−1
0

h−1

7−−→ q, so the desired Möbius transformation is found.

Proposition 2.26 For any hyperbolic lines K,L ⊆ D, there exists f ∈ M(D) where f(K) = L.

Sketch of Proof : For any points p, q ∈ ∂D there exists g ∈ M(D) such that g(p) = 1 and g(q) =

−1. This provides the set-up for the proof. Now, by Proposition 2.9, there exists a unique

hyperbolic line, K say, with ends on p and q. Thus, f transforms K to the real axis, since any

Euclidean line is determined uniquely by two points. For a second line, L say, there exists some

h ∈ M(D) such that h(u) = 1 and h(v) = −1, where u, v ∈ ∂D are the unique endpoints of the

line, again via Proposition 2.9. By Proposition 2.22, M(D) is closed under both composition and

forming inverses. Hence,

f := h−1 ◦ g ∈ M(D).

By definition, f : K
g7−−→

h−1
{real axis} h−1

7−−→ L, so this is the desired Möbius transformation.

2.5 Classifying Möbius Transformations

We can now think of the geometry of a Möbius transformation. As with Euclidean geometry,

a transformation is loaded in the sense that it covers a number of different situations, each

determined by their fixed points. This is also true for Möbius transformations.

Definition 2.27 A fixed point of a map f is some element of the domain x where f(x) = x.

Definition 2.28 We make the following definitions of certain Möbius transformations.

(i) Call f ∈ M(D)+ a rotation if it fixes one point in D.

(ii) Call f ∈ M(D)+ a horolation if it fixes one point on ∂D.

(iii) Call f ∈ M(D)+ a translation if it fixes two points on ∂D.

(iv) Call f ∈ M(D)− a reflection if it fixes a hyperbolic line in D.

(v) Call f ∈ M(D)− a glide reflection if it fixes two points on ∂D.

Example 2.29 Consider the following Möbius transformation: f(z) = (2z + 1)/(z + 2). In order

to compute the fixed points, assume that f(w) = w, for w ∈ D. Therefore, we see that

2w + 1 = w2 + 2w

⇒ w2 = 1

⇒ w = ±1.

Hence, the fixed points of f are 1 and −1, so f is a translation, by Definition 2.28.

13



In practice, it can be a tedious process referring directly to the definition of a fixed point to find

and classify those of a given Möbius transformation. So, assume that, for some given Möbius

transformation, f(w) = w, for w ∈ C. Applying the formula of Definition 2.11 yields

aw + b

cw + d
= w ⇒ cw2 + (d− a)w − b = 0 ⇒ w =

(a− d)±
√
(d− a)2 + 4bc

2c
.

Particularly, if g ∈ M(D)+ and g(w) = w, for w ∈ D, then the formula of Proposition 2.14 gives

αw + β

β̄w + ᾱ
= w ⇒ β̄w2 + (ᾱ− α)w − β = 0 ⇒ w =

(α− ᾱ)±
√
(ᾱ− α)2 + 4|β|2

2β̄
.

The fixed points are determined by the discriminant D of the quadratic, motivating the following

set of results on the categorising of orientation-preserving Möbius transformations.

Proposition 2.30 Let f ∈ M(D)+ and D be the discriminant of f(w)− w = 0.

(i) If D < 0, then f has one fixed point in D.

(ii) If D = 0, then f has one fixed point on ∂D.

(iii) If D > 0, then f has two fixed points on ∂D.

Sketch of Proof : Consider the solutions to the quadratic equations above, case-by-case.

14



3 Measures of the Poincaré Disk

We now focus our discussion on objects such as length, distance and area in hyperbolic geometry

and, consistent with Section 2, we will consider such measures in the Poincaré disk.

Definition 3.1 Let I ⊆ R be some interval. A parametrised curve in R2 is a smooth function

γ : I → R2; by smooth we mean that if γ(t) = (x(t), y(t)), then x, y : I → R are both smooth in

the usual sense. It is called a regularly parametrised curve if γ′(t) ̸= 0, for all t ∈ I.

Definition 3.2 The length of a parametrised curve γ : [a, b] → R2 is given by

L[γ] =

∫ b

a

∣∣γ′(t)∣∣ dt.
This definition is advantageous, because by selecting the interval I and curve γ in such a way

that it defines a path between two points, we can manipulate Definition 3.2 to suit our needs.

3.1 Lengths in the Poincaré Disk

Recall that Definition 1.1 laid the groundwork for what the intrinsic distance is between two

points in some space. This can be applied to the disk, which gives the following idea.

Definition 3.3 The Riemannian metric of the Poincaré disk is given by

ds =
2
√
(dx)2 + (dy)2

1− (x2 + y2)
.

Since, for our purposes, x and y are considered to be a part of the ordered pair represented by

γ, parametrised by t, the formula of Definition 3.3 can be re-stated, giving the following:

ds =
2|γ′(t)|

1− |γ(t)|2
dt.

Further, recall we noted in Section 1 that the integral of a metric gives the distance function

between two points. This directly motivates the forthcoming definition.

Definition 3.4 Let γ : [a, b] → D be a parametrised curve in the Poincaré disk having the form

γ(t) = (x(t), y(t)). Then, the hyperbolic length of γ is

LD[γ] =

∫ b

a
ds =

∫ b

a

2|γ′(t)|
1− |γ(t)|2

dt.

As with points, it’s useful to consider a parametrised curve as a complex-valued function, that
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is let γ : I → C, given by γ(t) = x(t) + iy(t). Thus, γ may be referred to as a contour .

We next consider the concept of a hyperbolic area. Note this will not be a major focus in Section

4 but there certainly are some interesting results regarding this concept and hyperbolic polygons

(see Section 5). Nevertheless, we define the area of a region of the Poincaré disk.

Definition 3.5 The hyperbolic area of a domain Ω ⊆ D given in terms of xy-coordinates is

AD[Ω] =

∫∫
Ω

4

(1− x2 − y2)2
dxdy.

3.2 Möbius Action on Length and Area

We can re-focus our discussion to situations involving Möbius transformations of the disk. We

state, without proof, a lemma which reduces the proofs of Propositions 3.7 and 3.8.

Lemma 3.6 Any Möbius transformation f ∈ M(D) can be written as the composition of these:

rθ(z) = eiθz, (0 ≤ θ < 2π)

tβ(z) =
z + β

βz + 1
, (β ∈ R)

s(z) = −z̄.

Proposition 3.7 Möbius transformations that fix the Poincaré disk are isometries of the disk.

Proof : We must show that for every f ∈ M(D) and any parametrised curve γ, we have

LD[f ◦ γ] = LD[γ].

It’s sufficient to show the above is true with each of the transformations defined in Lemma 3.6.

Assume that γ(t) = x(t) + iy(t) and consider γ̃1(t) := tβ ◦ γ := u(t) + iv(t). Compute the

composition directly and equate real and imaginary parts, producing the following equalities:

u =
βy2 + (x+ β)(βx+ 1)

(βx+ 1)2 + β2y2
and v =

y − β2y

(βx+ 1)2 + β2y2
.

Hence, computing the squares of the above and their derivatives with respect to t gives us

(u′)2 =
(β2 − 1)2(β2x2x′ + 2βxx′ + 2βyy′ + 2β2xyy′ − β2y2x′ + x′)2

(β2x2 + β2y2 + 2βx+ 1)4
,

(v′)2 =
(β2 − 1)2(β2y2y′ − 2βxy′ + 2βyx′ + 2β2xyx′ − β2x2y′ − y′)2

(β2x2 + β2y2 + 2βx+ 1)4
,
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(u′)2 + (v′)2 =
(β2 − 1)2((x′)2 + (y′)2)

((βx+ 1)2 + β2y2)2

1− u2 − v2 =
(β2 − 1)(1− x2 − y2)

(βx+ 1)2 + β2y2
.

Consequently, it follows, by substituting the above formulae into the integrand, that

LD[tβ ◦ γ] =
∫ b

a

2

1− u2 − v2

√
(u′)2 + (v′)2 dt

=

∫ b

a

2

1− x2 − y2

√
(x′)2 + (y′)2 dt

= LD[γ].

One can consider γ̃2(t) := rθ ◦ γ := p(t) + iq(t) and γ̃3(t) := s ◦ γ := a(t) + ib(t), which yield

p = x cos(θ)− y sin(θ), q = x sin(θ) + y cos(θ) and a = −x, b = y.

In either situation, it doesn’t take too much work to verify the formula as for the first case.

Hence, by Lemma 3.6, all Möbius transformations of the Poincaré disk can be written as the

composition of such functions and, as those functions preserve the length of curves in D, it follows
that their composition, that is any such f ∈ M(D), will be an isometry.

Proposition 3.8 Möbius transformations that fix the Poincaré disk preserve area.

Sketch of Proof : Show that each of the transformations in Lemma 3.6 preserve area.

Example 3.9 Let a ∈ R where 0 < a < 1. Consider the domain Ω = {z ∈ D : |z| ≤ a} ⊆ D. We

can compute the area of such a circle, for arbitrary a satisfying the stated conditions. In order

to apply Definition 3.5, we must find bounds on the x-variable and y-variable:

−
√

a2 − y2 ≤ x ≤
√
a2 − y2 and − a ≤ y ≤ a.

Hence, it follows that

AD[Ω] =

∫ a

−a

∫ √
a2−y2

−
√

a2−y2

4

(1− x2 − y2)2
dxdy

=

∫ 2π

0

∫ a

0

4r

(1− r2)2
drdθ
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=

∫ 2π

0

2a2

1− a2
dθ

=
4πa2

1− a2
.

On the second line, we converted to polar coordinates where r ∈ (0, a) and θ ∈ [0, 2π):

x = r cos(θ) and y = r sin(θ).

Recall also that the Jacobian of the transformation carries a factor of r, that is dxdy = rdrdθ.

Thus, any disk-preserving transformation of the domain will have the same boundary length as

a result of Proposition 3.7 and the same area as a consequence of Proposition 3.8.

We now develop theory to show that Möbius transformations preserve more than just length.

Definition 3.10 Let γ1 : I → R2 and γ2 : J → R2 be two regularly parametrised curves such

that γ1(t) = γ2(s) = p ∈ R2, for some t ∈ I and s ∈ J . The angle between γ1 and γ2 at p is the

unique value θ ∈ [0, 2π) such that

γ′1(t) · γ′2(s)
|γ′1(t)||γ′2(s)|

= cos(θ).

Definition 3.11 Let U, V ⊆ C be open. The map f : U → V is conformal at p ∈ U if, for regularly

parametrised curves γ1 : I → C and γ2 : J → C passing through p in the sense of Definition 3.10,

the map f preserves the angles between γ1 and γ2 at p. Such a map is conformal if it’s conformal

at all p ∈ U .

Next, we introduce ideas not uncommon when discussing complex analysis, which will inform

the stating and proving of one more result regarding Möbius transformations. We note that C
is a metric space, with a metric given by the modulus of the difference between two complex

numbers, meaning Definition 1.4 applies.

Definition 3.12 For U ⊆ C open, we call f : U → C complex differentiable at p ∈ U if the limit

f ′(p) := lim
h→0

[
f(p+ h)− f(p)

h

]
exists. Such a function is holomorphic if the limit exists for all p ∈ U .

In practice, Definition 3.12 can be tedious to use directly, especially if we wish to develop

a complex analytic method to verify that a function preserves angles. Therefore, it is more

beneficial to appeal to the objects defined as follows.

Definition 3.13 Let U ⊆ C be open, f : U → C where f(z) = u(x, y) + iv(x, y) and z = x+ iy.
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Then, f is holomorphic if and only if the Cauchy-Riemann equations hold:

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

Despite this, it is still difficult to show that a Möbius transformation is holomorphic on the

Riemann sphere since the separation into real and imaginary parts is, to say the least, messy.

Hence, we appeal to an idea discussed in [Nar00], whose proof is beyond the discussion here.

Theorem 3.14 (Looman–Menchoff Theorem) Let U ⊆ C be open and f : U → C continuous.

Suppose further that the derivatives ∂f/∂x and ∂f/∂y exist at every z = x+ iy ∈ U , satisfying

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
= 0.

Then, f is holomorphic on U .

Lemma 3.15 The Möbius transformations M(C \ {−d/c}) are holomorphic.

Proof : Consider f as in Definition 2.11, where now z ∈ C \ {−d/c}. For z = x+ iy, we get that

∂f

∂x
=

ad− bc

(c(x+ iy) + d)2
and

∂f

∂y
=

i(ad− bc)

(c(x+ iy) + d)2
.

Therefore, we can verify one of the conditions of Theorem 3.14, namely

∂f

∂x
+ i

∂f

∂y
= 0.

We verify that C \ {−d/c} ⊆ C is open: consider the element w ∈ C \ {−d/c} and define

ε = |w + d/c| > 0. Then, Bε(w) ⊆ C\{−d/c} and Definition 1.4 applies. Finally, f is continuous

as shown by the stronger result in [Duc06]. Therefore, the Looman-Menchoff Theorem applies,

giving the result.

Lemma 3.16 (Conformal Mapping Theorem) Suppose U ⊆ C is open and f : U → C is some

function holomorphic at p ∈ U . If f ′(p) ̸= 0, then f is conformal at p.

Proof : Let γ1 : I → C and γ2 : J → C be regular curves as in Definition 3.1 and suppose that

γ1(t1) = p = γ2(t2), for t1 ∈ I and t2 ∈ J . By Definition 3.10, the angle between the curves at p

is the unique value θ ∈ [0, 2π), satisfying

γ′1(t1) · γ′2(t2)
|γ′1(t1)||γ′2(t2)|

= cos(θ).
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The derivatives of f ◦ γ1 and f ◦ γ2 follow from the Chain Rule of differentiation, giving

f ′(p)γ′1(t1) · f ′(p)γ′2(t2)

f ′(p)|γ′1(t1)|f ′(p)|γ′2(t2)|
=

γ′1(t1) · γ′2(t2)
|γ′1(t1)||γ′2(t2)|

= cos(θ).

Thus, the angle between the curves is invariant under f , that is f is conformal at p.

One of the celebrated properties of Möbius transformations is that they are conformal maps as

functions defined on the Riemann sphere. We are now equipped to prove this.

Theorem 3.17 The set M(C) consists of conformal maps from and to the Riemann sphere.

Proof : Let f ∈ M(C). We deepen the result as discussed in [Bul09] by considering two cases.

(i) c ̸= 0: In this case, the Möbius transformations concerning the assumption are given as

f(z) =
az + b

cz + d
, where ad− bc ̸= 0 and a, b, c, d ∈ C.

By applying the Quotient Rule of differentiation, one can compute

f ′(z) =
ad− bc

(cz + d)2
.

The only pole of f ′(z) is the point z = −d/c, meaning f ′(z) ̸= 0, for all z ∈ C \ {−d/c}.
Define g(z) := 1/f(z). By again applying the Quotient Rule and simplifying, we obtain

g′(z) = − ad− bc

(az + b)2
.

Therefore, g′(−d/c) = −c2/(ad− bc) ̸= 0, meaning that g is conformal at z = −d/c and, as

a result, that f is conformal at z = −d/c also. Consider f(1/z) = (a+ bz)/(c+ dz). The

Quotient Rule yields the following result:

f ′
(
1

z

)
=

bc− ad

(c+ dz)2
.

Therefore, f ′(1/0) := f ′(∞) = (bc− ad)/(c2) ̸= 0, meaning f is conformal at z = ∞.

(ii) c = 0: In this case, the Möbius transformations concerning the assumption are given as

f(z) =
az + b

d
, where ad ̸= 0 and a, b, d ∈ C.

Now, a, d ̸= 0, otherwise the condition above is violated. It immediately follows that

f ′(z) =
a

d
̸= 0, for all z ∈ C.
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Consider f(1/z) = (a+ bz)/dz. Differentiating this relation gives the following result:

f ′
(
1

z

)
= − a

dz2
.

Therefore, f ′(1/0) := f ′(∞) = ∞ ≠ 0, meaning f is conformal at z = ∞.

Consequently, M(C) consists of conformal maps, by the Conformal Mapping Theorem.

Remark 3.18 We can differentiate the transformation in the proof of Theorem 3.17 as a result

of Lemma 3.15. This is because we realise that f is meromorphic on C, that is holomorphic at all

but finitely many points of its domain; we rectify any issues of holomorphism over the complex

plane by the fact that the transformation is defined also at the point at infinity.

Corollary 3.19 The set M(D) consists of conformal maps from and to the Poincaré disk.

Proof : This is a direct consequence of Proposition 2.22 and Theorem 3.17.

Here ends the discussion on introductory hyperbolic geometry. By no means is this a complete

dissection of the subject but this provides a solid ground upon which to begin the study of

hyperbolic polygons with right-angles.
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4 Hyperbolic Polygons with Right-Angles

Elementary properties of hyperbolic geometry have been discussed and proved; we now begin to

explore some right-angled shapes, specifically in the Poincaré disk.

4.1 Hyperbolic Triangles and Trigonometry

The first shape to be discussed is the triangle. The idea of such a polygon is broadly the same

as in the Euclidean definition, but we will soon see some fundamental differences.

Definition 4.1 A hyperbolic triangle in D is the set of three points A,B,C ∈ D such that they

are non-collinear and are connected by hyperbolic line segments.

We now specialise in the case where a hyperbolic triangle has (at least) one right-angle. It will

become clear that the related trigonometric identities for such polygons are specific to this case,

but first we recall the definitions of sinh, cosh and tanh.

Definition 4.2 The hyperbolic sine, hyperbolic cosine and hyperbolic tangent functions are defined

as follows, for z ∈ C:

sinh(z) =
ez − e−z

2
, cosh(z) =

ez + e−z

2
, tanh(z) =

ez − e−z

ez + e−z
.

Now, Definition 4.2 is a needed starting point for the development of hyperbolic trigonometric

identities. Before we state and prove such results, we must first define a number of objects which

establish key ideas that we can exploit.

Definition 4.3 A radical axis of two circles is the locus of points from which tangent lines of equal

length can be drawn to each of the circles. In particular, for two non-disjoint circles, the radical

axis is the Euclidean line which contains the intersecting points.

Definition 4.4 Let z1, z2, z3, z4 ∈ C be distinct points. Then, their cross-ratio is defined as

[z1, z2; z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

Example 4.5 Consider the following cross-ratio, for arbitrary z ∈ D:

[z, 0; 1,−1] =
(z − 1)(0 + 1)

(z + 1)(0− 1)
=

z − 1

−z + 1
.

This satisfies Proposition 2.14, meaning it’s a Möbius transformation of the Poincaré disk.

Remark 4.6 The cross-ratio can actually be used to construct a Möbius transformation which

maps specified points to other specified points. The way in which to find the conformal map
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Figure 4: Right-angled triangle as in Theorem 4.10 and Corollary 4.11, like [Jab08, Figure 4].

that sends z1, z2, z3 to w1, w2, w3 is to solve [z, z1; z2, z3] = [f(z), w1;w2, w3] for f(z).

Before we can state and prove some trigonometric identities of right-angled hyperbolic triangles,

we introduce a final notion of distance. This will be a reformulation of the idea of distance seen

in Definition 3.4.

Definition 4.7 Let a, b ∈ D be distinct. The Poincaré length between a and b is defined as

ρ(a, b) = log([a, b; p, q]),

for p, q ∈ ∂D the endpoints of the hyperbolic line segment through a and b, where log is the

natural logarithm.

Remark 4.8 It is known, by [Con17], that the cross-ratio of points that lie on a Euclidean circle or

line, in particular a hyperbolic line in the Poincaré disk, is real. Thus, the formula in Definition

4.7 does make sense since Proposition 2.8 gives that a and b are on some such line.

Example 4.9 This is inspired by (but elaborates upon) [Hay08]; let O be the origin and suppose

p ∈ D and u, v ∈ ∂D lie on a diameter of the Poincaré disk. Without loss of generality, assume

that said diameter is precisely the intersection of the disk with the real axis and that, from

left-to-right, the points are u,O, p, v. Hence, it follows that

ρ(O, p) = log([O, p;u, v]) = log

(
1 + |p|
1− |p|

)
,

since, by definition, |u| = |v| = 1, where we also use |u− p| = 1+ |p| and |v − p| = 1− |p|. Thus,
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as this is a real number, we can exponentiate, resulting in the following equality:

eρ(O, p) =
1 + |p|
1− |p|

.

As a near-immediate consequence of Definition 4.2, therefore, we get these expressions:

sinh(ρ(O, p)) =
2|p|

1− |p|2
, cosh(ρ(O, p)) =

1 + |p|2

1− |p|2
, tanh(ρ(O, p)) =

2|p|
1 + |p|2

.

Note that we will abuse notation slightly in the proof of the following theorem by referring to

the modulus of the difference of points in the plane as the Euclidean line joining them. Be aware

that this is indeed just notation alone.

Theorem 4.10 Suppose ABC is a right-angled hyperbolic triangle with A the origin and C the

right-angle. Assume further that the hyperbolic lengths of the edges BC,AC,AB are a, b, c and

angles at A,B,C labelled α, β, γ, respectively, Consequently, it follows that

sin(α) =
sinh(a)

sinh(c)
and cos(α) =

tanh(b)

tanh(c)
.

Proof : Let ABC be as in Figure 4. Definition 2.3 gives that the hyperbolic line joining p and q

is the arc of some circle C, centred at n, say. By construction, C contains the inverse points p̃

and q̃. Define u and v to be the intersections of C and ∂D; the line segment connecting these

points is the radical axis, which intersects the line segments |p̃| and |q̃| at z1 and z2, respectively.

So,

|p̃− p| = 1− |p|2

|p|
=

2

sinh(c)
and |q̃ − q| = 1− |q|2

|q|
=

2

sinh(b)
,

where equality in terms of the hyperbolic sine function comes from Example 4.9. Now, note that

m is defined to be the point such that |p−m| = 1
2 |p̃− p|. and T is the line tangent to C at the

point p. So, by Euclidean trigonometry applied to the triangle with vertices p,m, n,

sin(β) =
|p−m|
|q − n|

=
1
2 |p̃− p|
1
2 |q̃ − q|

=
sinh(b)

sinh(c)
.

The conclusion is that the sine of an angle is the quotient of the hyperbolic sines of the lengths

of the side opposite the angle and the side opposite the right-angle. Hence, applying this then

to angle α gives the intended result. Next, [Joh60] provides the following useful formula:

|z1|2 − 1 = |p− z1||p̃− z1| = |q − z2||q̃ − z2|.
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Consequently, taking each of these equalities generates the following argument:

|z1|2 − 1 = |p− z1||p̃− z1|

= 1− |z1||p| − |z1|/|p|+ |z1|2

⇒ |z1| =
2|p|

1 + |p|2

= tanh(c)

again by Example 4.9. By identical reasoning to that just exhibited, we also conclude that

|z2| =
2|q|

1 + |q|2

= tanh(b).

Hence, by Euclidean trigonometry applied to the triangle with vertices O, z1, z2, we see that

cos(α) =
|z2|
|z1|

=
tanh(b)

tanh(c)
.

As mentioned, the proof of Theorem 4.10 uses Figure 4 as a model. Note it applies to any such

hyperbolic right-angled triangle ABC, with C being the right-angle, since any such triangle can

be ‘moved’ so that it has a vertex at the origin, that is apply a Möbius transformation, which

is now known to both be an isometry of the Poincaré disk and to preserve angles. These facts

were established in Proposition 3.7 and Theorem 3.17.

Corollary 4.11 Suppose ABC is a right-angled hyperbolic triangle with A the origin and C the

right-angle. Assume further that the hyperbolic lengths of the edges BC,AC,AB are a, b, c and

angles at A,B,C labelled α, β, γ, respectively, Consequently, it follows that

cosh(a) cosh(b) = cosh(c) and tan(α) =
tanh(a)

sinh(b)
.

Proof : First, we prove the cosh identity by appealing to Theorem 4.10. This is inspired by but

distinct from [Val06]; note it is sufficient to prove the square of the identity. Now, we have that

sin2(α) + cos2(α) = 1

⇒ sinh2(a) + tanh2(b) cosh2(c) = sinh2(c)

⇒ 1 + sinh2(a) + tanh2(b) cosh2(c) = 1 + sinh2(c)

⇒ cosh2(a) cosh2(b) + sinh2(b) cosh2(c) = cosh2(c) cosh2(b)

⇒ cosh2(a) cosh2(b) = cosh2(c)(cosh2(b)− sinh2(b))
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Figure 5: Triangle ABC as in Theorems 4.13 and 4.14.

= cosh2(c)

Furthermore, we can apply the above result to obtain the last identity, that is

tan(α) =
sin(α)

cos(α)
=

sinh(a) tanh(c)

sinh(c) tanh(b)
=

sinh(a)

cosh(a) cosh(b) tanh(b)
=

tanh(a)

sinh(b)
.

Now that expressions for the sine, cosine and tangent of the non-right-angles in the right-angled

triangle are proved, as well as one relating each of the sides of a hyperbolic triangle (which is

analogous to Pythagoras’ Theorem), we can state versions of the sine and cosine rules.

Remark 4.12 In the sequel, we exclusively refer to the vertices of the polygons as A,B,C and

so forth, with the angle at each vertex the corresponding Greek letter, unless otherwise stated.

Specifically, these are points in the Poincaré disk but Theorem 4.10 and Corollary 4.11 are

suitable to extend the theory without the need of a rigorous construction as in Figure 4. This

allows us to relax notation: ABC... will represent the polygon.

Theorem 4.13 (Hyperbolic Sine Rule) Suppose that ABC is a hyperbolic triangle, labelled as in

Figure 5. Then, it follows that

sinh(a)

sin(α)
=

sinh(b)

sin(β)
=

sinh(c)

sin(γ)
.

Proof : First of all, note that ABC the union of the two triangles ACM and BCM . Then, by

initially considering triangle ACM , we have that

sin(α) =
sinh(h)

sinh(b)
⇒ sinh(h) = sin(α) sinh(b),

where we appeal to Theorem 4.10. In a similar vein, for the triangle BCM , we have that

sin(β) =
sinh(h)

sinh(a)
⇒ sinh(h) = sin(β) sinh(a).
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Equating the above and re-arranging gives the first equality. Likewise, we can consider ABC the

union of the triangles ACN and ABN , showing the second equality.

Theorem 4.14 (Hyperbolic Cosine Rule 1) Suppose that ABC is a hyperbolic triangle, labelled

as in Figure 5. Then, it follows that

cosh(a) = cosh(b) cosh(c)− sinh(b) sinh(c) cos(α).

Proof : We apply Corollary 4.11 to the triangle BCM :

cosh(a) = cosh(h) cosh(c2)

= cosh(h) cosh(c− c1)

= cosh(h)(cosh(c) cosh(c1)− sinh(c) sinh(c1)) (4.15)

= cosh(c) cosh(c1) cosh(h)− sinh(c) sinh(c1) cosh(h)

= cosh(b) cosh(c)− sinh(c) cosh(b) tanh(c1) (4.16)

= cosh(b) cosh(c)− sinh(b) sinh(c) cos(α),

where (4.15) follows from applying the identity cosh(x± y) = cosh(x) cosh(y) ± sinh(x) sinh(y)

and where (4.16) follows from Corollary 4.11 applied to the triangle ACM .

Corollary 4.17 (Hyperbolic Cosine Rule 2) Suppose that ABC is a hyperbolic triangle, labelled

as in Figure 5. Then, it follows that

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β)
.

Proof : This follows from manipulations of the results of Theorems 4.10 and 4.14.

Remark 4.18 The second cosine rule for hyperbolic triangles does not have an analogous relation

in Euclidean space; consider now what the result states about hyperbolic triangles: the side length

of one of its sides is uniquely determined by the size of its angles. This is false in Euclidean

geometry; triangles with congruent angles aren’t congruent generally.

4.2 Lambert Quadrilaterals

We will now study a special type of quadrilateral in hyperbolic space, whose identities follow

from the previous work on hyperbolic triangles.

Definition 4.19 A hyperbolic quadrilateral in D is the set of points A,B,C,D ∈ D such that no

three are collinear, consisting of four hyperbolic line segments connected cyclically.
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Figure 6: Lambert quadrilateral ABCD as in Propositions 4.24, 4.25 and Corollary 4.26.

Definition 4.20 Two hyperbolic lines are called parallel if they do not intersect anywhere other

than at the boundary of the Poincaré disk. If they are completely disjoint, then they are said to

be ultra-parallel.

We first look at a related but, for our purposes, less significant polygon in order to develop results

for the special type of quadrilateral this section is dedicated to.

Definition 4.21 A Saccheri quadrilateral ABCD is a quadrilateral such that the sides AD,BC

are parallel, of equal length, with right-angles at the base angles α and β.

Proposition 4.22 Let ABCD be a Saccheri quadrilateral, labelled anti-clockwise with base length

a, vertical length b and summit (i.e. upper edge) length c. Then, the summit angles are equal and

the summit CD is perpendicular to the perpendicular bisector of AB. Furthermore, the following

formula relates the lengths of each of the sides of the shape:

sinh
( c
2

)
= sinh

(a
2

)
cosh(b).

Proof : See [Sib15, Gre03] for each of the properties.

We now prove (some) formulae for the titular polygon. This is important not only in its own

right but for the development of theory regarding the final polygon studied in this paper.

Definition 4.23 A Lambert quadrilateral is a quadrilateral with at least three right-angles.

Proposition 4.24 Let ABCD be a Lambert quadrilateral, with acute angle θ at C. Then, given

the labelling as in Figure 6, it follows that

sin(θ) =
cosh(a)

cosh(c)
.

Sketch of Proof : This follows by first applying Theorem 4.10 to the triangle BCD. The known

identity sin(x) = cos(π/2− x) and Corollary 4.11 are then utilised, before appealing to Proposition

4.22, treating b as the summit, d the base and c the vertical height. Note for a Lambert
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quadrilateral, the side lengths are half those of a Saccheri quadrilateral, meaning that we have

the equality sinh(b) = sinh(d) cosh(c). Combining these results in sequence gives us a sufficient

way to complete the proof.

Proposition 4.25 Let ABCD be a Lambert quadrilateral, with acute angle θ at C. Then, given

the labelling as in Figure 6, it follows that

cos(θ) = sinh(a) sinh(d).

Proof : Here, we apply the hyperbolic cosine rule (second version) to triangle BCD, giving

cos(θ) = cosh(h) sin(β2) sin(δ2)− cos(β2) cos(δ2).

Now then, the formula sin(x) = cos(π/2− x) can once again be applied:

cos(θ) = cosh(a) cosh(d) cos(β1) cos(δ1)− sin(β1) sin(δ1)

= cosh(a) cosh(d) tanh(a) tanh(d) coth2(h)− sinh(a) sinh(d) csch2(h)

= sinh(a) sinh(d)(coth2(h)− csch2(h))

= sinh(a) sinh(d),

again appealing to Theorem 4.10, Corollary 4.11 and using known trigonometric identities.

Corollary 4.26 Let ABCD be a Lambert quadrilateral, with acute angle θ at C. Then, given the

labelling as in Figure 6, it follows that

cot(θ) = sinh(b) tanh(a).

Sketch of Proof : The result follows by expressing cot(θ) as a quotient of cosine and sine and

applying a version of the formula seen in Proposition 4.22.

This concludes the look into Lambert quadrilaterals and naturally leads into the study of a

five-sided polygon with right-angles.

4.3 Hyperbolic Pentagons

The final area for discussion will be that regarding hyperbolic right-angled pentagons. The first

set of results give formulae relating the different side lengths of the pentagon, proved here using

trigonometric identities; note that other texts often appeal to different methods.

Definition 4.27 A hyperbolic right-angled pentagon in D is the set of points A,B,C,D,E ∈ D
such that no three are collinear, consisting of five hyperbolic line segments connected cyclically,
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Figure 7: Right-angled pentagon ABCDE as in Propositions 4.28, 4.31 and Corollary 4.29.

intersecting at right-angles only at the aforementioned vertices.

Proposition 4.28 Let ABCDE be a right-angled pentagon, labelled as in Figure 7. Then,

cosh(a) cosh(c) = sinh(a) sinh(c) cosh(b).

Sketch of Proof : One can use [Bea83] for a general case where the hyperbolic pentagon has four

right-angles and one acute angle, in which the result follows by substituting in π/2 for the acute

angle. In essence, use the fact that ABME and DCME are Lambert quadrilaterals and appeal

to Propositions 4.24 and 4.25. This allows for one to subtract zero from cosh(a) cosh(c) in a

non-trivial way, leading to the result.

It is important to note that, as with other polygons studied, the sides/vertices are arbitrarily

chosen in the statements of these results; Proposition 4.28 is no different. Therefore, we can

interpret the above as follows: the product of the cosh of two non-adjacent sides of a hyperbolic

right-angled pentagon is equal to the product of the sinh of those sides and the cosh of the side

adjacent to both. This fact will be used to prove that which follows.

Corollary 4.29 Let ABCDE be a right-angled pentagon, labelled as in Figure 7. Then,

tanh(a) tanh(c) cosh(b) = 1 and cosh(d) = sinh(a) sinh(b).

Proof : The first result follows directly from Proposition 4.28; divide through by cosh(a) cosh(c)

to get the desired formula. The second result is more involved. One can apply Proposition 4.28

to sides c and e, giving

cosh(c) cosh(e) = sinh(c) sinh(e) cosh(d).

Therefore, we can isolate an expression for the side length c, leading to this expression:

tanh(c) =
cosh(e)

sinh(c) cosh(d)
.
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Figure 8: Constructing a right-angled pentagon as in Proposition 4.31.

This can be substituted into the first result of this corollary and manipulated, which gives

tanh(a) cosh(b) cosh(e) = sinh(e) cosh(d) ⇒ cosh(d) = tanh(a) cosh(b) coth(e).

Now, applying the first result of this corollary to the sides e, a and b, we get

tanh(e) cosh(a) tanh(b) = 1 ⇒ coth(e) = cosh(a) tanh(b).

Finally then, the above relations immediately imply the second desired expression, that is

cosh(d) = tanh(a) cosh(b) cosh(a) tanh(b)

= sinh(a) sinh(b).

Thus, the desired result is achieved.

Finally, we conclude the discussion on hyperbolic pentagons with a necessary and sufficient

condition which allows for the construction of such a shape with given adjacent side lengths. We

first state, without proof, a result which will be used to prove Proposition 4.31.

Lemma 4.30 Two hyperbolic lines are ultra-parallel if and only if there exists a third hyperbolic

line which intersects each of them perpendicularly. In particular, if the lines intersect, then there

exists no such perpendicular third line.

Proposition 4.31 Consider some right-angled pentagon ABCDE. Then, it has adjacent sides of

lengths a, b ∈ R if and only if sinh(a) sinh(b) > 1.

Proof : (⇒) Trivial, since Corollary 4.29 gives that sinh(a) sinh(b) = cosh(d) ≥ 1, with equality

if and only if d = 0, but d ̸= 0 since it is the length of the edge of a polygon.

(⇐) Suppose sinh(a) sinh(b) > 1. We construct hyperbolic line segments connecting the points
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A,B,C, as in Figure 8, such that the hyperbolic distance between A and B is a; the hyperbolic

distance between B and C is b and the segments form a right-angle at B. Then, consider

the hyperbolic lines L1 and L2 extending from A and C, respectively, such that they form

right-angles at the aforementioned points. But now, these lines intersect another hyperbolic

line, K say, perpendicularly. Indeed, if L1 and L2 intersect within the Poincaré disk, at D ∈ D
say, this means ABCD is a Lambert quadrilateral. Hence the acute angle θ, at D, satisfies

sinh(a) sinh(b) = cos(θ), by Proposition 4.25, but this contradicts sinh(a) sinh(b) > 1. Hence, it

is clear that L1 and L2 don’t intersect inside the disk. As a result, they are ultra-parallel and

Lemma 4.30 applies. Consequently, there exists some hyperbolic line, K, intersecting L1 and L2

perpendicularly at some points D,E ∈ D. Thus, the conditions of Definition 4.27 are satisfied

by ABCDE.

Remark 4.32 It is possible to form an algorithm which can be used to construct regular right-angled

hyperbolic n-gons; the statement of Proposition 4.31, that it is possible to construct an irregular

pentagon with specified adjacent lengths, isn’t completely obvious at first glance.

The discussion on right-angled hyperbolic polygons now comes to an end. Now then, as with

Sections 2 and 3, there is much more left to be discussed, a point elaborated upon in the

subsequent section.
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5 Discussion

This concludes the excursion into hyperbolic geometry in a general sense and, more specifically,

in looking at properties of some particular polygons. The groundwork established initially by

discussing rudimentary hyperbolic geometry was sufficient to allow for the expansion into the

area of right-angled polygons. This itself was developed in such a way to allow for the later work

and earlier results to complement each another.

5.1 Extending the Discussion

There are a number of possibilities as to where the discussion could go, as considered below. To

begin with, a natural continuation would be to study right-angled hyperbolic hexagons. In fact,

a satisfying property exhibited is that of the sine rule, as adapted from [Thu02].

Theorem (Sine Rule for Hyperbolic Hexagons) Let ABCDEF be a right-angled hyperbolic hexagon

with sides (a, d), (b, e), (c, f) pairwise opposite. Then,

sinh(a)

sinh(d)
=

sinh(b)

sinh(e)
=

sinh(c)

sinh(f)
.

Better yet, one of the most natural routes to take now would be to look at n-gons in general.

More specifically, we could introduce technical properties of hyperbolic space (e.g. curvature),

leading to the Gauss-Bonnet Theorem for hyperbolic triangles.

Theorem (Gauss-Bonnet Theorem for Hyperbolic Triangles) Let ABC be some hyperbolic triangle

with angles α, β, γ at A,B,C, respectively, and an enclosed region ∆. Consequently,

AD[∆] = π − (α+ β + γ).

The area of any hyperbolic polygon follows inductively, without need of Definition 3.5; it would

be interesting to state properties of the area of a general n-gon and then to research some

relationships between lengths of adjacent/non-adjacent sides.

One could even consider other models of hyperbolic geometry, or even higher-dimensional extensions

to the ones covered in this paper. This in itself could be a large undertaking, if we not only discuss

properties of points, lines and transformations in other models but construct isomorphisms to

show precisely that each model indeed does represent the same geometry.
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[Ols10] John Olsen. The Geometry of Möbius Transformations. University of Rochester, 2010.

URL: https://johno.dk/mathematics/moebius.pdf.

[Roy08] David C. Royster. Non-Euclidean Geometry. University of Kentucky,

2008. URL: http://www.ms.uky.edu/~droyster/courses/spring08/math6118/

Classnotes/Chapter09.pdf.

[Sib15] Thomas Q. Sibley. Thinking Geometrically: A Survey of Geometries. American

Mathematics Society, 2015.

[Thu02] William Thurston. Geometry and Topology of Three-Manifolds. MRSI Mathematical

Sciences Research Institute, 2002. URL: http://library.msri.org/books/gt3m/

PDF/Thurston-gt3m.pdf.

[Val06] Laura Valaas. Triangles in Hyperbolic Geometry. Whitman College, 2006. URL:

https://www.whitman.edu/Documents/Academics/Mathematics/valaasla.pdf.

[Wal01] David Alexander Ross Wallace. Groups, Rings and Fields. Springer Undergraduate

Mathematics Series. Springer Science & Business Media London, 2001.

35

https://doi.org/10.1006/jabr.1997.7242
https://johno.dk/mathematics/moebius.pdf
http://www.ms.uky.edu/~droyster/courses/spring08/math6118/Classnotes/Chapter09.pdf
http://www.ms.uky.edu/~droyster/courses/spring08/math6118/Classnotes/Chapter09.pdf
http://library.msri.org/books/gt3m/PDF/Thurston-gt3m.pdf
http://library.msri.org/books/gt3m/PDF/Thurston-gt3m.pdf
https://www.whitman.edu/Documents/Academics/Mathematics/valaasla.pdf

	Abstract
	Acknowledgements
	Metric Spaces, Isometries and Groups
	Introducing Metric Spaces
	Introducing Isometries
	Introducing Group Theory

	Models of Hyperbolic Geometry
	Lines of the Poincaré Disk
	Introducing Möbius Transformations
	Möbius Groups
	Möbius Transformations on Points and Lines
	Classifying Möbius Transformations

	Measures of the Poincaré Disk
	Lengths in the Poincaré Disk
	Möbius Action on Length and Area

	Hyperbolic Polygons with Right-Angles
	Hyperbolic Triangles and Trigonometry
	Lambert Quadrilaterals
	Hyperbolic Pentagons

	Discussion
	Extending the Discussion

	References

