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In what ways does metacognitive modelling (particularly through the 

teaching & modelling of the plan, monitor and evaluate approach) 

impact on pupil metacognition and promote their self-regulation? 

 

How do you think this might support their future learning in your 

phase/subject and beyond?  

 

How might your knowledge of metacognition and self-regulation make 

you a more effective teacher of your phase/subject? 
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Written Assignment 

Introduction  

Metacognition is the ‘thinking about thinking’, typically dualised as a self-awareness of cognitive 

strategies along with self-regulation. As described by Flavell (1979, p. 909), “cognitive strategies are 

invoked to make cognitive progress [whereas] metacognitive strategies [are deployed] to monitor it”. 

The self-regulation aspect appears particularly important for the development of writing in both 

upper-primary and lower-high school. Indeed, students participating in an EEF-funded project that 

taught self-regulation benefitted from approximately nine months’ further progress compared to 

those that didn’t (Torgerson et al., 2014). Although the focus of the aforementioned study is on 

writing only, literacy skills underpin many aspects of education, including mathematics. Research 

suggests “reading comprehension is needed” to successfully deal with mathematical problems 

(Gomez et al., 2020, p. 1351), and recent work by Kim et al. (2024) establishes a moderate 

relationship between mathematics and writing in particular. Here, I discuss the impact of 

metacognition on secondary mathematics students and reflect on my own practice. 

Metacognition in mathematics improves a student’s ability to analyse and solve unfamiliar problems. 

In practice, regulation of a student’s learning would see them decide on an approach that they can 

follow (plan), frequently check if they are progressing towards their intended goal (monitor) and 

reflect on the process they chose (evaluate). Knowing what learning strategies to use and how best 

to approach a task in the aforementioned way is metacognitive knowledge; the importance of 

explicitly teaching it is emphasised in Pintrich (2002). In contrast to this, Brown et al. (1981) discuss 

so-called blind training, meaning an implicit teaching of metacognition “without a concurrent 

understanding of [its] significance” (p. 15). Additionally, the article by Chen et al. (2023) declares that 

worked examples are superior for “prepar[ing students] to solve structurally different problems” 

when transferring knowledge. This gives credence to the benefits of metacognitive modelling in 

either sense of Pintrich (2002) and Brown et al. (1981) – it appears not to be of particular importance 

for transfer as to how explicit metacognition is flagged, but rather that it is exemplified before 

students practice it. Hence, and given that explicating metacognition appears in Part 5 of Standard 4 

of the ITT Core Content Framework (DfE, 2019), I wanted to try each approach at various stages of 

the lesson: the implicit is used to support the explicit. 

My metacognition lesson was delivered to a Year 12 A-level maths class because the placement 

school scheme of work leant itself nicely to embedding metacognitive practices into the 
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mathematical content. This adheres with the EEF report’s philosophy that there is no basis on which 

to believe that “teaching metacognitive approaches in ‘learning to learn’… sessions” is beneficial 

(Quigley et al., 2021, p. 24). Each of my two module partners taught metacognition lessons to a Year 

12 biology class and a Year 9 history class, respectively. Supported also by the EEF report, Perkins and 

Salomon (1988) suggest that students have difficulty transferring knowledge, which includes global 

metacognitive strategies, between disciplines. Hence, the primary influence for choosing my Year 12 

class was to garner meaningful comparisons and contrasts with others in my placement school 

(Appendix F). 

Modelling Metacognition  

According to Gall et al. (1990), “learning how to learn cannot be left to students. It must be taught”. 

One of the most common strategies of self-regulation is the plan-monitor-evaluate (PME) cycle, 

allowing a learner to “monitor their behaviour in terms of [achieving] their goals and self-reflect on 

their… effectiveness” (Zimmerman, 2002, p. 66). This is the process I saw during observations of 

experts on the Callerton Academy ITaP day, motivating my own PME cycle (see Appendices A and B). 

The mathematics department at my placement school does not have a culture of explicit 

metacognition modelling of this sort. Given how embedded my routines have become, I anticipated a 

challenge with respect to how the students adapt to this new style, which is reflected in the feedback 

(Appendix C, Graph 5). Hence, this was accounted for in my lesson plan (Appendix A); I gradually built 

towards the students completing a PME cycle. That said, a stronger understanding of metacognition 

at that time could have alleviated these difficulties by boosting my confidence. With hindsight, 

another strategy would have been to explicate metacognition on more than this isolated occasion; 

collecting data across different lessons would have painted a more accurate picture of my teaching, 

and the class’s acceptance, of metacognition. 

The first modelling task (Appendix B, Slide 5) involved retrieval of content similar to what the pupils 

saw one lesson prior – this was in the style of a “We Do” strategy – with metacognitive questioning 

provided and verbalised during the activity. Despite meaning this to act only as a scaffold à la 

Rosenshine (2012) in preparation of a full PME cycle, some authors suggest retrieval practice can 

improve the effectiveness of self-regulation (Ariel and Karpicke, 2018), and thus the benefits here are 

twofold: students can focus more on the metacognitive aspect of the lesson, and the seed has been 

sewn (albeit covertly) for what I will soon expect students to be doing this lesson with regard to the 

PME cycle. On the other hand, Heyboer (2023, p. 35) advocates that reflecting on retrieval “did not 

have a significant effect” with regard to improving self-regulation. However, this study was limited in 

scope – just under four-times the number of subjects compared to Ariel and Karpicke, (2018) – and 
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they proceed to comment that “some students did experience [an] increase” in self-regulation (p. 

36). While this is thought-provoking, I only use retrieval for the mathematical content, discovering 

any additional benefit to self-regulation after the fact; this will surely be something I research further 

and consider in my future metacognitive teaching. This exercise aligns closely with the planning stage 

of the PME cycle, which I clarified verbally to the students afterwards (Appendix A). Although some 

students were initially hesitant with my metacognitive prompting questions, this didn’t negatively 

impact their perception of the planning state (quite the opposite; see Appendix C, Graph 1). 

The subsequent activity (Appendix B, Slide 6) had me explicitly introduce the PME cycle in the 

context of an exam question, with prompts provided (Appendix A) to guide the students. By 

conducting a sorting task, it minimises the mathematical cognitive load and instead spotlights 

metacognition. Using an exam question aligns with the theory that better metacognitive 

understanding can bolster assessment performance (Stanton et al., 2021). The students were broadly 

successful in this task, a belief reinforced when I selected students to reflect on their thinking process 

verbally during the course of the activity (Schraw and Dennison, 1994). That said, a better proxy may 

have resulted from focusing on each step of the PME cycle separately at this initial stage – compare 

Graphs 1 and 2 in Appendix C, which shows a disparity between understanding of the planning and 

monitoring phases. Nevertheless, this introduction provided the means for the next activity 

(Appendix B, Slide 8). 

I then showcased the full PME cycle for that same task on the whiteboard. When modelling in 

general, I opt for a verbal approach as a means to ‘demystify’ the abstraction encountered when 

answering mathematics problems. This is particularly helpful for low-attaining students who often 

find abstract thinking a challenge (Ward and Wandersee, 2002), and more generally those who are 

less open to alternative strategies – this is particularly relevant to the planning stage. Moreover, and 

in the language of Perkins (1992), this can be seen as a crucial step transitioning the pupils from tacit 

to aware learners. One paper claims that retrieval is “overuse[d]… in contexts where it would be 

better to start with extended study” (Carpenter et al., 2020, p. 21). From my own experience, this 

can be particularly prevalent in mathematics, especially with lower-attaining students; pupils 

encountering a new problem often ‘brain-dump’ in the hopes of getting something correct, rather 

than first assessing what they are being asked to do and how they may go about it. This greatly 

informed my planning stage (see Appendix A). In Appendix E, one module partner notes this activity 

as a key strength of the lesson in terms of “mak[ing] clear distinctions between each phase of the 

cycle” but that I could improve this phase by encouraging more participation from the students (“We 

Do” instead of “I Do”). Although I think it important for the students to see a completed PME cycle 
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without interruption, I agree that this suggestion is valid. Based on this feedback, a possible next step 

would be to partially model a PME cycle with another similar question; this minimal variation can 

facilitate learning as it “help[s] learners to notice what we want them to discern” (Kullberg et al., 

2017, p. 567) and, in this case, it would be the application of metacognitive regulation. 

For its impact on metacognition itself, modelling can make students aware of the importance of 

thinking about their cognition in contrast with the over-significance they themselves often place on 

completing a process correctly. Moreover, self-regulation allowed my students to navigate towards 

an answer more accurately (cf. Appendix D(iii) and Appendix D(iv)); even those that couldn’t obtain a 

correct final answer started to demonstrate an awareness of how to begin that journey. An 

unexpected impact (from my point-of-view) was the encouragement of metacognitive dialogue 

between students that followed in the pupil engagement task, which furthered their self-regulation 

more so than I anticipated; see the following section. 

Pupil Engagement and Ethics  

I now examine the primary activity (Appendix B, Slide 8) designed for the students to rehearse 

metacognition, followed by the resulting questionnaire data. By providing the prompts seen on the 

slide, in conjunction with those I had on the board for the earlier tasks, the students here had 

scaffolding to perform an explicit PME cycle but without initial mathematical support – this acts 

conversely to the previous activity. The eventual goal is to have students become reflective learners 

such that the PME cycle is “internalise[d] and automate[d]” (McCrea, 2019, p. 121), and my decision 

to provide question stems was noted by the observer (Appendix E). This is further supported by 

Graphs 1, 2 and 4 in Appendix C, showing that the vast majority of students felt comfortable with the 

planning and monitoring stages. That said, one student had difficulty with self-regulation during the 

activity; this could be a result of slight cognitive overload given the challenging mathematics given 

their attainment. That aside, this suggests I should have guided the metacognitive aspect more in 

some places as to alleviate the cognitive demands of processing metacognition – I agree with my 

observer’s comments that more structured answer sheets would have helped in this regard 

(Appendix E). 

Overall engagement with the activity seemed high, and I regret not encouraging this explicitly but my 

students held discussions with their peers as a means of self-regulation. Zimmerman (2002, p. 69) 

claims that “self-regulated learning is not asocial”, and this is something I would capitalise on more 

when teaching metacognition in future. This could contrast with Gall et al.’s (1990) earlier quote, 

which may underplay the impact of peer-led learning compared with direct instruction. 
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Consequently, it seems appropriate to use both forms of learning, and my missing of this opportunity 

was noted in both my module partner’s and the class teacher’s observations; this will be something I 

adapt in future. Having looked at the work they produced, about half of the class demonstrated 

explicit PME usage – all-bar-one of which is working at an A or A* grade. Swanson (1990) suggests 

that metacognition and aptitude are disjoint, and that a student confident in their ability to analyse 

and self-regulate can, to an extent, use this to compensate for a (perceived) lack of cognitive 

knowledge. This is evidenced in Appendix D(iii) where a lower-attaining student achieved more than 

their higher-attaining but lower-metacognitive peers (Appendix D(iv)). Moreover, this reinforces the 

view that metacognition contributes to performance independent of ability (van der Stel and 

Veenman, 2010). 

That said, a single lesson isn’t sufficient to develop an accurate picture of metacognition and its 

impact. The literature posits that “explicit strategy teaching is rare” (Kistner et al., 2010, p. 167), 

which is in complete contrast to the principles emphasised by some UK-based education bodies such 

as the DfE and EEF. It seems, therefore, that this is an effort to address the stated omission. Although 

relevant to mathematics however, this study was conducted across a somewhat modest number of 

twenty German classes. On the other hand, this work is agreeable with similar earlier findings from 

the United States – Moely et al. (1992, p. 669) determined “infrequent use of strategy suggestions 

and… very limited effort [was] made by most teachers” – and the lack of explicit metacognitive 

modelling aligns with my own experiences recounted earlier. This may account for the unease in my 

students captured by Graph 5 in Appendix C. A better depiction of metacognition would require 

embedding this explicit strategy in future lessons. Supported by repeated self-evaluative quizzes, this 

could show class progression from tacit to reflective learners more tangibly. 

As per the Ethical Guidelines for Educational Research (BERA, 2024), participation in the lesson and 

any resulting work has been anonymised, including all questionnaire submissions as to better ensure 

all responses are honest. This was made clear at the start of the lesson, and towards the end just 

before handing out the questionnaire. Participation was not mandatory; they were informed that 

they could opt out if desired. During this time, I also remained at the front of the classroom with no 

clear view of any student’s desk in an effort to bolster the integrity of each response. 

Supporting Future Learning  

There are several possible benefits to teaching metacognition. For instance, students can better 

foster the transfer of skills in many subject areas, including mathematics (Schoenfeld, 1985). It was 

noted earlier that Perkins and Salomon (1988) refer to transfer as being difficult to master. In fact, 
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their sequel paper (1989, p. 23) suggests a “lack of conditions needed for transfer, rather than 

domain specificity, is to blame for many cases of failure of transfer”. Perhaps this insinuates that only 

sometimes can metacognitive strategies be transferrable; it is my belief that this does not contradict 

the suggestion that “metacognitive skills are only partly general” (van der Stel and Veenman, 2010, p. 

224) given that the latter paper suggests age as a factor on the argument between global versus local 

metacognition. 

In terms of challenges to learning, metacognition can alleviate the cognitive demand often faced by 

the students in their particular subject. The planning phase, in particular, is an opportunity for a pupil 

to chunk a task into manageable parts (Sweller, 1988). Although cognitive load theory typically 

“assume[s] that instructors rather than novice learners” make decisions (Paas et al., 2003, p. 3), 

Gerjets and Scheiter (2003) suggest an extension of the theory to cover the more student-led 

situation we see when developing metacognition. That said, caution should be taken as 

“metacognitive activities… have strong knowledge requirements” (Bransford and Schwartz, 1999, pp. 

65-66), so embedding taught metacognition into a lesson may increase the germane load demanded 

of a student. 

It appears also that increased metacognitive awareness can inspire more resilience when students 

encounter new problems. Indeed, Beilock and Willingham (2014) suggest that different strategies for 

approaching a task can offset mathematical anxiety. Given that metacognition develops a student’s 

arsenal when it comes to approaching novel tasks, it is more likely to lead to successful outcomes 

compared to students with less metacognitive understanding (Schoenfeld, 1987); combining these 

ideas supports my initial hypothesis. Beyond mathematics, Covington (1992) suggests that so-called 

success dynamics can overcome the fear of failure in any subject. Combining this with Schoenfeld 

(1987), it suggests increased resilience persists beyond any one domain. 

Impact  

Knowledge of metacognition may impact my teaching in several ways. Firstly, it can better inform my 

lesson planning and sequencing because I know now how students should self-regulate. The latter 

was a strength of my Year 12 lesson (Appendix E) in the context of mathematical content, so this can 

be developed further if I sequence activities that require students to be evaluative. 

A second benefit is on the classroom dynamics. Indeed, having an awareness of the importance of 

monitoring and reflection – and teaching this to the students – establishes that growth is valued 

more than obtaining a correct answer, that it is fine to be challenged. In parallel, metacognition also 
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allows me to better diagnose those challenges. This was discussed broadly earlier, but as for a direct 

impact on my own practice, I may now be able to better discern the difference between a student 

having content gaps versus poor self-regulation. 

To conclude, my exploration of metacognition has added depth to my understanding of how 

cognitive processes influence learning. I have evidenced how self-regulation is impacted even by a 

first-time introduction to the PME cycle, although this is limited in scope. Nonetheless, the benefits 

of metacognition are clear from the literature and, moving forward, this will inform my own practice 

through further purposeful integration metacognition to stimulate success in mathematics and 

beyond. 
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Appendix A (Lesson Plan and Metacognitive Scripting) 

10:10 – 10:17 Do the exercise from the “̈★’ter Booklet”. Encourage independent work but help 

where necessary whilst circulating; possibly offer general hints before showing the 

answers one-by-one. 

 

10:17 – 10:18 Get students to assess their work against the solutions. Anticipate some questions 

about the manipulation of the trigonometric intervals. 

 

10:18 – 10:19 Introduce the students to the metacognitive aspect of the lesson. Explain that there 

will be more of an emphasis on how we plan an answer, monitor our progress 

towards a solution and evaluate the process after the fact. 

 

10:19 – 10:21 Recall the derivative from first principles. Have students write down the rate of 

change interpretation (to embed it for later in the lesson). Give some historical 

context; talk about the connection to infinitesimals – although not necessary, it 

should be sufficient to get students remembering the rate of change interpretation. 

We can further link this to the derivative from first principles (acting as recall from 

the first lesson of this chapter). In this case, it may be handy to show them 

𝑓′(𝑎) = lim
𝑥 → 𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

– which is different-yet-equivalent to the form they learn per the Key Stage 5 

specification (the equivalence comes by defining ℎ ∶= 𝑥 − 𝑎) – as this is much closer 

to the calculation of the gradient of a straight line they know from GCSE. 

 

10:21 – 10:25 Explicate the planning stage of the PME cycle by having the students answer an 

exam-style question with prompting in place to get them thinking about what steps 

should be taken. 

Script: Read the exam question presented on the board and think about the process 

that we have to go through to get an answer. Ask yourselves what we mean by the 

rate of change. Why is it important that we have the radius, and how can we use it? 

Why is the derivative important to this story? Here are three prompting questions to 

assist you with a plan. You have two minutes to think about how these questions are 

helpful, and a further two minutes to answer the question. 

Annotation 1 The purpose of this exercise is to introduce the first aspect of the PME cycle, which will 

act as a segway into the explicit modelling and usage of the PME cycle later in the lesson. This will 

alleviate some cognitive load in the sense that future questions are similar to this one, and in the sense 

that the students will be able to focus on mastering each phase in isolation before combining all three. 
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10:25 – 10:33 Students work through a sequencing activity, in which they need to order the 

constituent pieces of an answer to a similar exam-style question. About half-way into 

the activity, pause the students and have them analyse their progress. 

 Script: Okay class, I want you to put your pens down and face the front for a minute 

or two. Some of you are making good progress towards sequencing an answer to this 

question, and some may have hit a slight wall. As such, I want you ask yourselves the 

following questions: “are we on the way to an answer?”, “did I stick to a plan similar 

to the one we made for the previous exam question?”, “do I understand each 

step/calculation we are given, and how it is useful?”. If you can answer in the 

affirmative to these questions, you are likely approaching in on an answer. On the 

other hand, this might reveal where you are having difficulty and better allow you to 

ask for help with overcoming it. Think about this for the next 30 seconds and then 

continue working with your partner in light of this self-reflection. 

Annotation 2 This is an introduction to the monitoring phase of the PME cycle without explicit 

labelling it as such. This, to some extent, is the stage the students are most likely to already do when 

answering questions. Upon questioning them, it seems they have never purposefully come to a halt 

mid-flow in order to monitor their progress.  

Inform the students how this fits into the metacognitive aspect of the lesson, namely 

that we have planned how to answer this question and used the prompts on the 

slide to both inform the plan and monitor our progress during the task. 

 

10:33 – 10:39 Model the answer in the style of a PME cycle. 

Script: Of course, the answers are important but we care more about the way in 

which they are obtained. Therefore, I will explicitly model the entire process. 

Reading the question, I first ask myself “have I seen a similar problem before?”. The 

answer to this latter question is clearly “yes” because we’ve just done one on the 

previous slide. Next, “what is it I want to achieve?” and “what information do I 

have/need in order to get to a final answer?”. We want the volume of the tank. We 

know that its net has an area of 54 m2 and that the opposite vertical faces are 

square. This allows us to draw a picture [sketch on the board] where the height and 

depth are the same. The question tells us to denote the height by 𝑥, so this is also its 

depth. We do not know its length, so let’s call it 𝑦. The volume is therefore 𝑉 = 𝑥2𝑦. 

Because the volume in question is in terms of 𝑥 only, we now want to express 𝑦 in 

terms of 𝑥. From our diagram, the surface area is 2𝑥2 + 2𝑥𝑦 + 𝑥𝑦 (recall the top is 

open, so there is only one horizontal rectangle). Since we are told this is 54, we can 

rearrange to obtain 

𝑦 =
54 −  2𝑥2

3𝑥
. 

Substituting this into 𝑉 = 𝑥2𝑦 then produces the desired outcome. I have indeed 

answered the question, and my strategy was minimal in the sense that every decision 

I made informed what maths I was doing and what I had to do the next step. But this 

might not always be the case and that is fine. The important thing is to monitor your 
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progress; if you appear to reach a dead-end, trace your steps back and find an 

alternate path. 

The next part asks us to find the maximum or minimum volume. We are told to use 

differentiation, so I first ask myself “have we used the derivative to compute extreme 

values before?”. Indeed we have, the last lesson! This is my plan: differentiate 𝑉 with 

respect to 𝑥, equate to zero to find any stationary points and use the second 

derivative to find which of these (if any) is a maximum/minimum point. Well then, 

𝑑𝑉

𝑑𝑥
= 18 − 2𝑥2 = 0      ⇒       𝑥 = ±3. 

Because 𝑥 is the height of the tank, the correct stationary point is positive three. The 

corresponding volume is 𝑉 = 36. As for the justification, we determine maximality or 

minimality by substituting the stationary value into 

𝑑2𝑉

𝑑𝑥2
= −4𝑥. 

Doing this gives us −12; because it is negative, we know we have a maximum. This 

agrees with our plan to show that the volume is maximised. We monitored ourselves 

during the stationary point calculation to ensure that we select the correct one. If we 

didn’t, i.e. if we chose 𝑥 = −3, then 𝑉 would be negative which doesn’t make sense 

in the context that it represents a volume (something physical). 

Annotation 3 By demonstrating a full PME cycle, it shows the students how I am planning and 

monitoring the progress I am making towards an answer. In mathematics, I would argue that monitoring 

is slightly less overt. For example, “because the volume… is in terms of 𝑥 only, we… express 𝑦 in terms 

of 𝑥” is an example of monitoring; I am not yet at a final answer and this shows how working I have 

achieved ‘along the way’ can be used to get us to the solution. 

 

10:39 – 10:54 Students work through some similar questions independently. Answers will be 

shown one-by-one throughout the practice so that students can evaluate their work. 

Do not insist on the full PME structure yet; this is an opportunity for students to plan 

if they want to, but rather they should be focused on the mathematical content and 

monitoring/evaluating their progress. Bring the class together if there are any 

common mistakes seen whilst circulating. 

 

10:54 – 11:05 The students now have an opportunity for guided PME practice. 

• Plan: students have one minute to think about what information they are 

told, what they might need and what steps they will take to get an answer. 

 

• Monitor: after two minutes, students stop and compare with their plan what 

they have done. Use the prompting questions to help out anyone struggling. 

 

• Evaluate: after a further two minutes of work in light of their monitoring, 

students see the final answer and reflect on their process. 



15 
 

Annotation 4 Having been shown a process on self-regulation, they can now try it out in full for 

themselves. The scaffolding leading up to this activity was important so that they are capable not only 

of the mathematics involved but also the metacognitive thinking required. Here, they are very much left 

to their own devices albeit with an explicit monitoring break to ensure they do indeed self-reflect 

during the task. 

 

11:05 – 11:10 Students fill out the PME questionnaire.  
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Appendix B (Lesson Slides) 

This appendix contains slides from my Year 12 metacognition lesson. Note that the only slides 

included are those with relevance to the PME cycle and the lesson context. Each caption provides 

additional details regarding the purpose of the corresponding slide. 

 

 

Slide 5: This is the first slide of the lesson involving metacognitive elements, in particular planning. The task was to answer 

the question but with the additional prompting of some planning-like questions. I cold called for answers to these extra 
questions – as well as the exam question – to gauge how well students could justify why they are doing each step. 

 

 

Slide 6: This was the first time I explicitly introduced the PME cycle; this came after the sorting activity (the answers 

appeared via animation and in columns corresponding to each part a, b, c of the exam-style question). All parts of the PME 
cycle were done verbally, with me writing down the mathematics on the whiteboard. I took no input from students here, so 
that they could see precisely what was being done at each phase. 
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Slide 7: For context, this slide preceded the main PME activity, as a means to reduce the cognitive load demanded 

mathematically and instead allow the students to focus on developing metacognition. I still provided questions on the 
whiteboard to motivate planning and monitoring during these questions, however. 

 

 

Slide 8: This was the primary activity, where students would answer an exam-style question similar to those found on Slide 
7, except this time they would model a full PME cycle. Note the answers in the top-right appear via an animation to signal 
the beginning of the evaluate phase. 
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Appendix C (Student Feedback Data) 

This appendix collates the responses received from the student feedback forms at the end of my Year 

12 metacognition lesson. Each question is replicated verbatim as they appeared on the sheet (they 

are essentially as written on the provided template). 

  

 

Graph 1: This suggests that the vast majority of students understood the planning phase. It was expected, as there are a 
lot of natural questions one can ask themselves before starting to answer a problem (typically, some of these are done 
automatically and internally, without explicit mention of it being a metacognitive strategy). 

 

 

Graph 2: The data here suggests that a majority, still, understood the monitoring phase. Note there were two additional 

“Strongly Agree” students in comparison with Graph 1, but one student vocalised their misunderstanding of the monitor 
phase. Personally knowing said student, it is more likely that this comes from explicating metacognition rather than not 
knowing how to monitor, as they often do demonstrate self-regulation. 
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Graph 3: This graph shows that many of the students understood the benefits of the PME cycle on their learning and 
answering of questions. However, just over 27% of them were either “Neutral” or “Disagree” with the statement. Perhaps 
this indicates that I should reiterate and emphasise the why more often instead of focusing on the what. 

 

 

Graph 4: Although 16 of the 18 students felt that I insisted they explain their working, the fact that two students were 

indifferent is enough for me to demand change when I next model metacognition. This may be partly down to a slight 
‘crunch’ as the end of the lesson was rapidly approaching during the evaluate phase. It may have been beneficial to instead 
get the students to do a PME cycle earlier (in addition to this one). 
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Graph 5: This graph is telling. Although many students were confident with each of the three stages, some are much more 
hesitant if they were to do the full PME cycle in totality independently. I regret not asking an additional sixth question of the 
form “following this lesson, I feel confident that I know how to approach a similar task in future with guidance from my 
teacher”. Nevertheless, this question had the joint-highest number of “Strongly Agree” responses. Some caution should be 
taken as the students were likely in a rush to leave the class when they were answering the end of the survey, but the fact 
there is such a spread of results seems to indicate the survey was taken honestly (to an extent). 

 

 

Table 1: This table consists of the raw data used to create Graphs 1 to 5 above. Each entry is the number of students that 

selected the corresponding option on the questionnaire. 
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Appendix D (Student Work) 

(i) Good Evidence of PME  

      

 

Work 1 These pieces of student work show clear evidence of the planning stage. The bottom-left also demonstrates that 

monitoring has taken place, as they are “unsure  on what steps to follow”. Although some evaluation was done verbally at 
the end of the task and lesson, not much was written down. One way to counter this next time is discussed as a result of 
the observer feedback (Appendix E); namely, to provide a structured sheet on which the students can answer the question 
but with explicit planning, monitoring and evaluating sections in which they can track their metacognition. 

 

(ii) Little Evidence of PME  

 

Work 2 This is the work of an A* grade student, which shows much less evidence of the PME cycle. In particular, the 

student has not explicated any of the stages, although they do annotate a drawing which could be interpreted as a de facto 
plan. Nevertheless, the student surpasses the work seen in Appendix D(i) in terms of mathematical content, which could 
mean that their planning and monitoring is more instinctive and already attuned, whether they know it or otherwise. 
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(iii) Lower-Attaining Student with More Metacognitive Evidence  

 

Work 3 This is the work of a B grade student. Not only does it show signs again of (de facto) planning via the annotated 
diagram, but there is clear evidence of implicit monitoring throughout, by writing useful formulae and assessing that they 
“need to get rid of 𝑦”. Moreover, there is some evaluative process demonstrated: in rather faint purple pen towards the 
bottom of their working, the student has written the correct answer to compare with their own work. The result is not a full 
evaluation on-paper, but what they have written could lead to a constructive self-reflection. 

 

(iv) Higher-Attaining Student with Less Metacognitive Evidence  

 

Work 4 This is the work of an A grade student. There is no evidence of planning, monitoring nor evaluating throughout 
their work on the exam-style question. Although Work 3 and Work 4 arrived at the same point at first glance, the latter has 
made an error and their answer is incorrect. Perhaps if the student felt more confident with the PME cycle, they would 
have been able to perform better both in a metacognitive sense, and hence mathematically. On the other hand, this issue 
could also reside at the level of subject content, so further (one-to-one, with this student in particular) analysis would be 
needed to understand what is happening in this case. 
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Appendix E (Observation Notes) 

Herein lies the comments from the observation notes of one of my module partners. I have added 

some comments regarding suggestions for the future and verbal feedback they gave me after the 

lesson. In conjunction with the data from Appendix C, this will help improve my understanding of 

metacognitive pedagogy in mathematics. 

 

 

 

 

 

  
Comment 2 The observer fed back to me afterwards 

that the majority of the comments they heard from 

students fell into the plan phase of PME, with some 

things demonstrating monitoring. Evaluation was less 

frequent, unfortunately. 

Comment 1 The idea for a print-out would have structured the students’ metacognitive processes much 

better. In reality, I had them write their answers on the blank sides of their questionnaires so that I could 

ensure the working was handed in along with the data. 
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Appendix F (Module Partner Data) 

In this appendix, I reproduce the data from my module partner’s survey of their Year 9 history class 

(with their permission). Relevantly, van der Stel and Veenman (2010) investigate general and subject-

specific metacognitive development in history and mathematics, expecting that “[subject]-specific 

metacognitive skills would tend to generalize [sic] during development” (p. 224) but being unable to 

confirm this hypothesis. This seems to suggest that some metacognitive strategies remain specialised 

and thus the impact of teaching metacognition in one subject fails to translate to another. 

 

 

Chart 1: This pie chart shows that the vast majority of the 28 surveyed students felt confident that they could recognise 
the correct answer structure to their assessment question. This data aligns nicely with mine in the sense that a significant 
majority were confident when it came to the planning phase of the PME cycle. 

 

 

Chart 2: Here again, there is some consistency with the data from my Year 12 class in that there was scepticism regarding 

the modelling phase. However, this Year 9 class was larger (28 students compared to my 20) and the percentage of those 
that didn’t understand modelling was lower (4% compared to my approximate 9%). That aside, there is some cross-
curricular and cross-age agreement on a broad scale. 
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Chart 3: This shows that all students didn’t get any less confident upon completion of the lesson. Sadly, this hasn’t got a 
true comparison to my data (Appendix C, Graph 5). Indeed, the aforementioned phrasing of my question was loaded with 
the suggestion of independence, something that this question has tactfully avoided. On the other hand, a student with zero 
(resp. maximum) confidence may still have no (resp. full) confidence at the end and thus fall into the “Same Confidence” 
category, so it could be difficult to decipher the meaning here. 

 

With hindsight, it may have been prudent for my module partner and I to each explore 

metacognition with our respective Year 9 and Year 12 classes and compare data as a means of 

supporting or rejecting the aforementioned conjecture of van der Stel and Veenman (2010). Further 

comparisons could have been made with my second module partner but I did not manage to share 

data with them at the time of writing. 
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